CEPC Jet Flavor tagging using Particle net: Preliminary results

Yongfeng Zhu, Huiling Qu, Yuexin Wang, Hanhua Cui, Manqi Ruan, etc

Flavor tagging

- Critical for High Energy Frontier, especially Future Higgs factory
- Sample: Z->di jet, Higgs->di jet
- Methods:
 - LCFIPlus: baseline (BDT based)
 - LCFIPlus*:
 - Particle Net
- Input:
 - 4 momentum, Pid, Track impact parameters for Charged Particle for all reconstructed final state particles
- Output: b/c-likelihoods, etc

- [part_isElectron, null]
- [part_isMuon, null]
- [part_isNeutralHadron, null]
- [part_isPhoton, null]
- [part_d0, null]
- [part_d0err, 0, 1, 0, 1]
- [part_dz, null]
- [part_dzerr, 0, 1, 0, 1]
- [part_deta, null]
- [part_dphi, null]
- [part_pt_log, -1.5, 1.0]
- [part_e_log, -0.687, 1.0]
- [part_logptrel, -4.7, 1.0]
- [part_logerel, -4.473, 1.0]
- [part_deltaR, 2.1, 2.3]
- [part_charge, null]
- [part_isChargedHadron, null]

[part_isKaon, null]

Methods: more details

• LCFI:

FIG. 1: The structure of the EdgeConv block.

- VTX finding;
- Categories according to VTX number
- BDT developed for different categories
- LCFI*: BDT (using lightgbm framework to acc. processing)
- PN: Machine learning using Particle Cloud

https://arxiv.org/pdf/1902.08570.pdf

FIG. 2: The architectures of the ParticleNet and the ParticleNet-Lite networks.

Performance: Migration Matrix

• For simplicity: line parallel to axis from (0.5, 0.5)

Flavor Tagging: impact on H→2jet

LCFI@Baseline

Compared to baseline, perfect Flavor tagging improves the accuracy by 2%/63%/13% for vvH and 35%/120%/180% for qqH channels (bb, cc, gg)

13/7/2023

Vcb (\mathcal{O})

Similar performance dependence on CKM measurements at 240 GeV using semi-leptonic WW events

Performance Comparison

13/7/2023

Performance Comparison

Improves much significant in forward region...

Remark: No Pid

13/7/2023

Vertex

- Closer, Thinner, Preciser w.r.t. Baseline
- 3 Scenarios
 - Smaller radius: 10 mm inner radius
 - Vin (Vertex inside): innermost layer inside Beam pipe
 - Vin portable: Movable innermost layers inside beam pipe

	R(mm)	Z(mm)	single-point	material
			resolution(µm)	budget
Layer 1	16	62.5	2.8	0.15%/X ₀
Layer 2	18	62.5	6	0.15%/X ₀
Layer 3	37	125.0	4	0.15%/X ₀
Layer 4	39	125.0	4	0.15%/X ₀
Layer 5	58	125.0	4	0.15%/X ₀
Layer 6	60	125.0	4	0.15%/X ₀

Flavor tagging V.S. VTX geometry

Table 2. Reference geometries.

	Scenario A (Aggressive)	Scenario B (Baseline)	Scenario C (Conservative)
Material per layer/ X_0	0.075	0.15	0.3
Spatial resolution/µm	1.4 - 3	2.8 - 6	5 - 10.7
R _{in} /mm	8	16	23

From eff*purity \rightarrow Tr(MM)

the dependence of JFT on vertex detector configuration

$$PN: Tr_{mig} = 2.609 + 0.034 \cdot log_2 \frac{R_{material}^0}{R_{material}} + 0.022 \cdot log_2 \frac{R_{resolution}^0}{R_{resolution}} + 0.078 \cdot log_2 \frac{R_{radius}^0}{R_{radius}}$$

$$LCFIPlus: Tr_{mig} = 2.303 + 0.05 \cdot log_2 \frac{R_{material}^0}{R_{material}} + 0.04 \cdot log_2 \frac{R_{resolution}^0}{R_{resolution}} + 0.10 \cdot log_2 \frac{R_{radius}^0}{R_{radius}}$$

Jet Charge @ Conventional

https://arxiv.org/pdf/2306.14089.pdf

Figure 3. The percentages of species of final state leading charged particles within the c jet (left) and \bar{c} jet (right).

Eff. Tagging power (eff*(1-2*omega)²): ~ 20%/40% for c/b jet (@ Z pole)
 13/7/2023

predicted

Remark: Higgs to dijet sample, Ideal Pid

Summary

- Compared to conventional methods (LCFI), Machine Learning (Particle Net)
 - Improves significantly: Tr(MM) from $2.4 \rightarrow 2.7$ at baseline (barrel)
 - ~ 50% improvements on $H \rightarrow gg/cc$ measurements
 - Gives consistent conclusion on VTX optimization
 - Inner Radius > Material budget > Position Resolution
- Vision: jet identification (quark species & gluon) as particle identification
 - New paradigm that combines jet charge, flavor & quark-gluon jet id
 - Huge impact on Physics
 - Entanglement with Jet Clustering, CSI...
- To do: lots of scan, comparisons, application...

Back up

Performance Comparison cos(theta)

Improves much significant in forward region...

