# Simulation of Cluster Counting with TPC

Guang Zhao, Yue Chang, Huirong Qi, Linghui Wu zhaog@ihep.ac.cn

> CEPC Cay July 13<sup>rd</sup>, 2023

### Outline

Introduction: Cluster counting basics

#### Simulation study of pixelated TPC

- Primary cluster simulation
- Full simulation



### Motivation: Particle identification

#### Particle identification is essential for flavor physics and jet study

- Reduce combination background
- Improve mass resolution
- Improve jet energy resolution
- Benefit flavor tagging



### PID by ionization

#### Main mechanism: Ionization of matter by charged particles



- Number of clusters per unit length is Poisson-distributed
- Primary electrons sometimes get large energies
  - Can make secondary ionization
  - Can even create visible secondary track ("delta-electron")

### Energy loss measurement: dE/dx

#### dE/dx: Total energy loss per unit length

- Landau distribution due to secondary ionizations
- Large fluctuation due to energy loss, amplification ...





- Fit by Lehraus 1983:
  - dE/dx res. = 5.7 \* L<sup>-0.37</sup> (%)
- Fit in 2021:
  - dE/dx res. = **5.4** \* L<sup>-0.37</sup> (%)
- No significant improvement in the past 40 years

### Cluster counting measurement: dN/dx

#### dN/dx: Number of primary ionization clusters per unit length

- Ideal measurement of ionization, clean in statistics
- Poisson distribution  $\rightarrow$  Get rid of the secondary ionizations
- Small fluctuation  $\rightarrow$  Potentially, a factor of 2 better resolution than dE/dx





### Cluster counting in gaseous detectors

#### In time

- Time measurement in small drift cells of DC
- Challenging of fast-shaping electronics (~ns needed)
- De-couple the charge collection from the cluster counting altogether
- →optical, with ~(sub) ns continuous readout sensors

#### In space

- Resolve clusters in space by high granularity TPC
- Challenging of the low power consumption electronics (>40 mV/fC needed at 2000 of gas gain)
- Pixelated readout high granularity
- → the reasonable pixilation reveals the underlying cluster structure in 3D chamber





### Pixelated readout TPC for CEPC

Pixelated readout TPC is a good option at high luminosity Z running (2x36 cm<sup>-2</sup>s<sup>-1</sup>)

#### Pixelated readout TPC is a realistic option to provide

- dE/dx and cluster counting (in space)
- High spatial resolution under 2T or 3T magnetic field
- Better momentum resolution
- High-rate operation (MHz/cm<sup>2</sup>)
- Excellent two tracks separation



GridPixes

### Simulation of cluster counting in TPC

Simulation plays an important role in the design stage of an experiment

#### TPC design optimization

- Gas mixture
- Pressure
- Readout granularity
- Occupancy
- Geometry

••••



### Primary cluster simulation

#### Primary cluster profile

- Running 10000 events using Garfield++
- Operation gas: T2K @ 1 atm
- Particle: muons @ 100 GeV/c





### Primary cluster simulation

#### Particle separation

- Simulating pion/muon/kaon within [0.1-100] GeV/c
- Operation gas: T2K





EPJ C 78, 464 (2018)



at the Z-pole

### **Full Simulation framework**



#### Simulation/Digitization

Reconstruction

### Simulation setup

- Magnetic field: 2T (Z-pole run)
- Gas mixture: T2K (Ar/CF<sub>4</sub>/iC<sub>4</sub>H<sub>10</sub>: 95/3/2)
- Detector Layout: R (0.3 m -1.8 m); L (2.34 m)



A track of 1 GeV/c pion in TPC



Projection of the same track on end-cap

### Parametrizations

- To speed up the simulation, make several decompositions and apply parametrized models
- Electron diffusion:
  - $\sigma_T$  vs drift distance
  - $\sigma_X$  vs drift distance
  - $\sigma_{Y}$  vs drift distance
- Amplification:
  - Polya function sampling
- Signal generation:
  - Double-Gaussian sampling



### MC-truth-level readout



- MC-truth-level readout with simplified amplification and shaping model
- Color code indicates the cluster ID
- Note:
  - Most electrons are separatable
  - Electrons from the same cluster are spatially localized

### Readout assuming a pixel size of 0.5 x 0.5 mm

Pixelated Readout (0.5x0.5 mm)

#### Pad Readout (1x6 mm)



Pixelated readout is essential for cluster detection

### **Outlook: Reconstruction**



#### The algorithm should be able to

- Detect single electron signals
- Merge single electrons to form a cluster



- Simulation study of cluster counting with TPC is starting
- A simulation framework is developed including ionization/transport/signal generation
- To complete the software cycle, a reconstruction algorithm is under developing
- Optimizations of the detector design will be carried out afterwards



# Backup

# Low power consumption pixelated TPC technology IHEP/LCTPC

- R&D @ IHEP based on 0.5 × 0.5 mm<sup>2</sup> pixels and electronics uses a power of <0.2mW/channel.
  - For all the active area of 160 000 cm<sup>2</sup> one has 64 M channels and <1.2 kW power consumption
  - > 89% coverage in the endplate
- Current TPX3 chip has 256×256 channels and a surface of 1.41×1.41 cm<sup>2</sup>
- Power consumption ~2W/chip; this means 30 mW/channel
- A full pixel TPC in the detector will have a total area 160 000 cm<sup>2</sup>
  - For full coverage one needs 80 000 chips
  - With the current TPX3 chip one reaches about 60% coverage
  - For the pixel TPC the total power is 160 kW (so 80 kW per endcap)
- Low power consumption **is the first requirement** for the pixelated TPC technology to LCTPC
  - TPX3 Gridpixes in low power mode reduces the power consumption for a pixel TPC to **8 kW per** endcap at the cost of a worse time resolution.

Ref1 https://iopscience.iop.org/article/10.1088/1748-0221/14/01/C01024

Ref2 https://iopscience.iop.org/article/10.1088/1748-0221/14/01/C01001

### **Cost estimation**

- The total cost of a pad or a pixel readout is at same level .
  - The cost goes comparably to pad technology for massive production referred to Gridpix chip of NIKHEF
- All readout options need CO<sub>2</sub> cooling and electronics and that drives the TPC readout cost. (cite#7)

|                       |         | TPC COST ESTIMATION (unit: *10K RMB) |      |         |          | <b>Fotal:</b> 1  | 180 Milli               | ons | <b>RMB</b> |
|-----------------------|---------|--------------------------------------|------|---------|----------|------------------|-------------------------|-----|------------|
|                       | ITEM    | DEVICE ITEM                          | TYPE | UNIT    | Quantity | Prive/           | Total                   |     |            |
|                       |         |                                      |      |         |          |                  |                         |     |            |
| Including the cooling | 3.1     | TPC detector (TPC)                   |      |         |          |                  | 18000.00                |     |            |
|                       | 3.1.1   | Chamber                              |      |         |          |                  | 3600.00                 |     |            |
|                       | 3.1.1.1 | Fieldcage                            |      | set     | 1        | 1200.00          | 1200.00                 |     |            |
|                       | 3.1.1.2 | Connector                            |      | set     | 1        | 800.00           | 80 <b>0. 00</b>         |     |            |
|                       | 3.1.1.3 | Barrel                               |      | set     | 1        | 1000.00          | 1000. 00                |     |            |
|                       | 3.1.1.4 | Support device                       |      | set     | 1        | 6 <b>00. 0</b> 0 | 60 <b>0</b> . <b>00</b> |     |            |
|                       | 3.1.2   | Readout                              |      |         |          |                  | 2500.00                 |     |            |
| system                | 3.1.2.1 | MPGD detector                        |      | set     | 1        | 800.00           | 80 <b>0. 00</b>         |     |            |
|                       | 3.1.2.2 | Support board                        |      | set     | 2        | 6 <b>00. 0</b> 0 | 1200.00                 |     |            |
|                       | 3.1.2.3 | Readout board                        |      | board   | 200      | 2.50             | 50 <b>0</b> . 00        |     |            |
|                       | 2 1.3   | Electronics                          |      |         |          |                  | 10000.00                |     |            |
|                       | 3.1.3.1 | FEE ASIC readout                     |      | channel | 1200000  | 0.002            | 2400.00                 |     |            |
|                       | 3.1.3.2 | Cables                               |      | set     | 50000    | 0.03             | 150 <b>0</b> . 00       |     |            |
|                       | 3.1.3.3 | Optical driver                       |      | set     | 50000    | 0.03             | 1500.00                 |     |            |
|                       | 3.1.3.4 | Optical link, connectors             |      | set     | 500      | 1.00             | 50 <b>0. 00</b>         |     |            |
|                       | 3.1.3.5 | DAQ                                  |      | set     | 5000     | 0.30             | 1500.00                 |     |            |
|                       | 3.1.3.6 | Crate and controller                 |      | set     | 50       | 20.00            | 1000.00                 |     |            |
|                       | 3.1.3.7 | Cooling sytem                        |      | set     | 1        | 1600.00          | 1600.00                 |     |            |
|                       | 3.1.4   | Calibration                          |      |         |          |                  | 50 <b>0. 00</b>         |     |            |
|                       | 3.1.4.1 | Calibration system                   |      | set     | 1        | 5 <b>00. 0</b> 0 | 50 <b>0. 00</b>         |     |            |
|                       | 3.1.5   | HV and Gas system                    |      |         |          |                  | 1400.00                 |     |            |
|                       | 3.1.5.1 | HV and low power                     |      | set     | 1        | 8 <b>00.0</b> 0  | 80 <b>0</b> . 00        |     |            |
|                       | 3.1.5.2 | Gas system                           |      | set     | 1        | 3 <b>00. 0</b> 0 | 300.00                  |     |            |
|                       | 3.1.5.3 | Monitor system                       |      | set     | 1        | 300.00           | 300.00                  |     |            |

ite <u>#7</u> Cost estimation of ILD concept