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For a class of hindered magnetic-dipole (M1) transition processes, such as �ð3SÞ ! �b þ � (the

discovery channel of the �b meson), the emitted photon is rather energetic so that the traditional

approaches based on multipole expansion may be invalidated. We propose that a ‘‘hard-scattering’’

picture, somewhat analogous to the pion electromagnetic form factor at large momentum transfer, may be

more plausible to describe such types of transition processes. We work out a simple factorization formula

at lowest order in the strong coupling constant, which involves convolution of the Schrödinger wave

functions of quarkonia with a perturbatively calculable part induced by exchange of one semihard gluon

between quark and antiquark. This formula, without any freely adjustable parameters, is found to agree

with the measured rate of�ð3SÞ ! �b þ � rather well, and can also reasonably account for other recently

measured hindered M1 transition rates. The branching fractions of �ð4SÞ ! �ð0Þ
b þ � are also predicted.
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As a century-old subject, electromagnetic (EM) transi-
tions have been extensively studied in the fields of atomic,
nuclear, and elementary particle physics. EM transition is
of considerable interest in heavy quarkonium physics from
both experimental and theoretical aspects [1]. Experi-
mentally, it proves to be a powerful tool to discover new
quarkonium states that cannot be directly produced in
eþe� annihilation into a virtual photon. A very recent
example is that the long-sought bottomonium ground state,
the �b meson, was finally seen by the BABAR Col-
laboration in the magnetic dipole (M1) transition process
�ð3SÞ ! �b� [2]. Theoretically, it provides a useful
means to probe the internal structure and the interplay
between different dynamic scales in quarkonium.

The standard textbook treatment of EM transitions is
based on the concept ofmultipole expansion,1 by assuming
the emitted photon to be ultrasoft, i.e. k� �mv2, where m
is heavy quark mass and v denotes the typical velocity of
the quark inside a quarkonium. Consequently, the long
wavelength of the photon cannot resolve the geometrical
details of quarkonium. Obviously, the multipole expansion
method is valid provided that kr � 1, where r� 1=mv is
the typical radius of a quarkonium.

One of the great theoretical undertakings is to under-
stand EM transitions in a situation where the multipole
expansion may break down. It is difficult to find such a

situation in an atomic system, since the typical atomic
energy spacings are always of the order mv2 �m�2

(where � � 1=137 is the fine structure constant). By con-
trast, in the realm of QCD, the linearly rising interquark
strong force can host rather highly excited quarkonium
states; thus one may encounter EM transitions in quark-
onium with an energetic photon. The aim of this work is to
offer a new perspective to tackle such a situation. For
definiteness, in this work we will concentrate on the hin-
dered M1 transition (i.e., two quarkonium states with the
same orbital angular momentum but with different spin and
principal quantum numbers). Such study is of practical
importance, because it will help one to better understand
the process �ð3SÞ ! �b�, where the photon carries a
momentum as large as 1 GeV and multipole expansion
may cease to be a decent method.
One usually assumes that the M1 transition can proceed

without gluon exchange between Q and �Q. In the non-
relativistic limit, the transition rate between two S-wave
quarkonia is usually described by the well-known formula
[1]:

�½n3S1 ! n01S0 þ ��

¼ 4
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where eQ is the fractional electric charge of Q, k is the

photon momentum viewed in the rest frame of the n3S1
state, and RnlðrÞ stands for the radial Schrödinger wave
function of quarkonium of the principal quantum number n
and orbital angular momentum l. The spherical Bessel
function j0ðkr2 Þ [j0ðxÞ � sinx

x ] takes into account the so-

called finite-size effect (equivalently, resumming
multipole-expanded magnetic amplitude to all orders).
When k is expected to be ultrasoft, it is then legitimate to
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1The literal meaning of this term is to expand the electromag-

netic field A�ðt;R� r
2Þ around R, the center-of-mass coordinate

of Q �Q pair, in powers of the relative coordinate r, and the
expansion parameter is essentially kr, k denoting the photon
momentum. Some authors prefer to dub it long wavelength
approximation. These two terms are equivalent in this work.

PHYSICAL REVIEW D 82, 014008 (2010)

1550-7998=2010=82(1)=014008(5) 014008-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.82.014008


expand this function, and the leading contribution to the
hindered transition vanishes due to orthogonality of wave
functions. For several observed hindered transition pro-
cesses, Eq. (1) usually yields predictions a few times
smaller than the measured values.

It is widely believed that hindered M1 transitions are
very sensitive to the relativistic corrections to (1).
Unfortunately, the way of implementing relativistic cor-
rections seems to be rather model-dependent. For example,
some authors proposed that, among the contributions from
the relativistic corrections to the M1 transition, the hy-
pothesized scalar part of the confinement potential may
play an eminent role, as well as the large anomalous
magnetic dipole moment that may be acquired by the
bound quark due to some nonperturbative mechanism
[1]. However, both of these suggestions seem not to be
based on a firm and indisputable footing. As a matter of
fact, a variety of quite different predictions to the transition
rates of �ð3S; 2SÞ ! �b� have been made by different
authors over the years [3]. When confronting the recently
established experimental results, however, most of them
seem not to be favored.

Recently, relativistic corrections to the M1 transition
have been readdressed from the angle of nonrelativistic
effective field theories (EFT) [4], which allows one to
critically examine the validity of some popular, yet maybe
ad hoc, assumptions in many potential model approaches.
However, it still remains a great challenge to accommodate
the hindered M1 transition in this EFT framework. For
instance, after including all types of conceivable relativis-
tic corrections, the predicted rate for �ð2SÞ ! �b� seems
to be much larger than the measured one.

Impressive progress has been made in calculating the
transition rate of J=c ! �c� directly from lattice QCD
simulation [5]. However, it is challenging to analyze very
hindered EM transitions, since excited quarkonium states
will be difficult to probe by lattice simulation. There are
also attempts to model the coupled channel effects for
c 0 ! �c�, but such framework seems not to be very
predictive due to existence of several purely phenomeno-
logical parameters [6].

In view of shortcomings of the traditional approaches,
we present a new attempt to analyze very hindered M1
transition processes typified by �ð3SÞ ! �b�. The key
observation is very simple: in such situations, it is more
appropriate to count the radiated photon as semihard [k� �
mv, often called soft in nonrelativistic QCD (NRQCD)
terminology], rather than ultrasoft. As a consequence, we
should and must give up the notion of multipole expansion.
We further make a key assumption: the leading contribu-
tion to such a very hindered transition is described by
Fig. 1. The underlying rationale is that, in order for the
spectator antiquark to join the final quarkonium state with a
significant probability, a semihard gluon must be ex-
changed between Q and �Q to exert a kick on it.

It may be worth digressing into pion EM form factor
temporarily. At large momentum transfer, there exists a
well known factorization theorem for this case [7]:

F�ðQ2Þ ¼
Z 1

0

Z 1

0
dxdy��ðxÞTðx; y;QÞ��ðyÞ þ 	 	 	 ;

(2)

where �� implies the nonperturbative light-cone distribu-
tion amplitude of a pion, and T refers to the ‘‘hard-
scattering’’ part, which can be computed in perturbation
theory. The lowest-order contribution to T is also depicted
by Fig. 1. It is generally believed that, at large Q2, this
hard-scattering picture is physically more plausible than
the so-called Feynman mechanism (without exchange of a
hard gluon).
We plan to derive a factorization formula analogous to

(2). In our process, the analogous hard-scattering part is
obtained by integrating out the semihard mode. We will
assume this part is also perturbatively calculable, crucially
because mv 
 �QCD, which seems legitimate for the �,

presumably even for the c family. Quite naturally, we
expect that the counterpart of ��ðxÞ in our nonrelativistic
problem will be the Schrödinger wave function of
quarkonium.
In passing, we highlight the very different role played by

the semihard mode in this work and in Ref. [4]. In the latter
case, when the photon is treated as ultrasoft, the semihard
mode can only appear in a loop. In contrast to the potential
mode (p0 �mv2, p�mv), it does not make a contribution
when descending from NRQCD onto potential NRQCD
[4]. According to our scheme, however, the semihard mode
already makes a crucial contribution at tree level. It is the
very mode that we attempt to integrate out perturbatively,
in order to fulfill the intended factorization.
This said, let us turn to the derivation of the very

hindered 3S1 ! 1S0 radiative transition rate. We will per-

form the calculation in a covariant fashion at the level of
QCD. Since the hard (p� �m) quanta decouple in this
process, it is also feasible, perhaps more illuminating, to
directly start from NRQCD. We first note that parity and
Lorentz invariance constrain the transition amplitude to be
the form

FIG. 1. Two of four lowest-order diagrams contributing to
hindered M1 transition in our hard-scattering picture.
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M½n3S1ðPÞ ! n01S0ðP0Þ þ �ðkÞ�
¼ A����	P

�"�½n3S
1
�k

�"�	� ; (3)

where "½n3S
1
� and "� represent the polarization vectors of

the initial quarkonium and the photon, respectively. At the
rest frame of the initial state, as we will always work in, the
Lorentz structure becomes "½n3S

1
� 	 k� "��, clearly corre-

sponding to the M1 transition. The scalar coefficient A
encodes all the nontrivial dynamics, and we will proceed to
deduce its explicit form.

We begin with the parton process QðpÞ �Qð �pÞ !
Qðp0Þ �Qð �p0Þ þ �ðkÞ, as indicated in Fig. 1. We assign the
momentum carried by each constituent as

p ¼ P

2
þ q; �p ¼ P

2
� q;

p0 ¼ P0

2
þ q0; �p0 ¼ P0

2
� q0;

where q and q0 are relative momenta inside each pair,
which satisfies P 	 q ¼ P0 	 q0 ¼ 0. The invariant masses
of the pairs are P2 ¼ 4E2

q and P
02 ¼ 4E2

q0 , and the Lorentz

scalars Eq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � q2

p
, Eq0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � q02

p
, which guaran-

tees that each (anti)quark stays on their mass shell. Note in

the rest frame of Pð0Þ, qð0Þ becomes purely spacelike.
The quark propagator in Fig. 1(a) can be expanded:

1

ðp0 þ kÞ2 �m2 ¼ 1

k 	 P0 þ 2k 	 q0

� 1

k 	 Pþ 2k 	 q0

ðk 	 PÞ2 þ 	 	 	 ; (4)

because k 	 q0 �m2v2 � k 	 P0 ¼ k 	 P�m2v. We have
neglected the small q00 component induced by the recoiling
of P0, as well as the Lorentz boost effect on q0, which are
higher order corrections. The quark propagator in Fig. 1(b)
can be expanded in a similar fashion. Note this expansion
is also legitimate when k is ultrasoft.

Figures 1(a) and 1(b) share a common gluon propagator:

1

ðk2 þ q0 � qÞ2 þ i�
� �1

ðq0 � qÞ2 þ k 	 ðq0 � qÞ � i�
:

(5)

Here we retain the i� term explicitly, for the momentum
integration to be properly evaluated. The two terms in the
denominator are of comparable size, so (5) cannot be
further expanded. If k is nevertheless counted as ultrasoft,
the second term can be treated as a perturbation. Note our
situation is in drastic contrast to the ordinary NRQCD
calculation for hard exclusive processes. In that case, there
is always a hard scale � m in the propagators, so it is safe

to neglect qð0Þ at the zeroth order of NRQCD expansion.
Having specified the concrete forms of the quark and

gluon propagators, we then project the quark amplitude for

QðpÞ �Qð �pÞ ! Qðp0Þ �Qð �p0Þ þ �ðkÞ onto the corresponding
color-singlet quarkonium Fock states, with the aid of the

covariant spin projectors accurate to all orders in qð0Þ [8],
and include the respective momentum–space wave func-
tion for each quarkonium state (e.g., see [9]). At the lowest
order in q and q0, we only need retain the first term in (4),

and neglect all the occurrences of qð0Þ in the numerator of
the amplitude. It turns out that Fig. 1(a) then exactly
cancels against Fig. 1(b), thus rendering a net vanishing
result at the lowest order in velocity expansion.2

To obtain a nonvanishing prediction, one must proceed

to the first order in qð0Þ in the amplitude. To this level of
accuracy, it is legitimate to set Eq ¼ Eq0 � m, since the

induced error is of the quadratic order in qð0Þ. It is a curious
fact that, if one still keeps only the first term in the quark

propagator (4), the Oðqð0ÞÞ pieces from the spin projectors

and the q6 ð0Þ term from the quark propagator then make
a nonzero contribution in an individual diagram, but
their contributions again cancel upon summing Figs. 1(a)

and 1(b). Therefore, the leading surviving Oðqð0ÞÞ contri-
bution can only be obtained by retaining the second term in

the expanded quark propagator (4), while neglecting qð0Þ
terms altogether elsewhere in the amplitude. After some
efforts, we can read off the reduced amplitude,

A ¼ 2
4eeQg

2
sCF

ðk 	 PÞ2
ZZ d3q

ð2�Þ3
d3q0

ð2�Þ3 �
�
n00ðq0ÞTðq0 � qÞ

��n0ðqÞ; (6)

where CF ¼ 4
3 , and the prefactor 2 indicates that two

undrawn diagrams make equal contributions as Figs. 1(a)
and 1(b) , owing to charge conjugation symmetry. �nð0Þ0
signifies the momentum-space Schrödinger wave function,
and the hard-scattering kernel is

TðqÞ ¼ � k 	 q
q2 þ k 	 q� i�

: (7)

Equation (6) is the desired factorization formula in mo-
mentum space.
It would be more convenient to work with the familiar

spatial wave functions. Thanks to the fact that the hard-
scattering part depends only on the difference between the
relative momenta of two quarkonia, q0 � q, and not on q or
q0 separately, upon Fourier transformations, one can arrive
at a compact expression in the position space via contour
integral:

A ¼ 4eeQCF�s

Mn

Enn0 ; (8a)

Enn0 ¼
Z 1

0
drr2R�

n00ðrÞT ðrÞRn0ðrÞ; (8b)

2This is somewhat analogous to the hard exclusive process
�b ! J=c J=c , where the amplitude also vanishes at the lowest
order in charm quark relative velocity [9].
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where RðrÞ appearing in the overlap integral Enn0 is the
radial wave function. We have used the relation k 	 P ¼
kMn, and Mn is the mass of the initial-state quarkonium.
The dimensionless kernel T ðrÞ is obtained by Fourier
transforming TðqÞ and integrating over solid angle:

T ðrÞ ¼ eði=2Þkr

Mnr

�
j0

�
kr

2

�
� 2

kr
j1

�
kr

2

�
þ ij1

�
kr

2

��
; (9)

where j1ðxÞ � sinx
x2

� cosx
x . It may be worth recalling that the

above combination of spherical Bessel functions in the
bracket resembles the conventional electric dipole (E1)
transition formula with finite-size effect incorporated.
Notice T ðrÞ develops an imaginary part, since the ex-
changed semihard gluon can become on shell when q�
q0 ¼ k. However, we would like to stress that, the charac-
teristic virtuality of the exchanged gluon in (5) should be of
the order m2v2 
 �2

QCD; thus the emergence of the imagi-

nary part in the hard-scattering kernel should be viewed as
an artifact due to ignoring the recoiling effect of P0. If the
effect of the imaginary part is insignificant with respect to
that of the real part, we may feel such ignorance is toler-
able, otherwise it will indicate a theoretical disaster. As we
will see in later phenomenological analysis, the contami-
nation of the imaginary part is indeed always negligible for
a class of hindered M1 transitions in bottomonium and
charmonium systems.

It is interesting to examine the asymptotic form of T ðrÞ
as kr � 1. Using jlðxÞ � xl

ð2lþ1Þ!! at small x, one finds

T ðrÞ ! 1
3mr þ i k

4m as kr ! 0. It turns out that the real

part might be identified with, up to a constant, the Oð�sÞ,
matching coefficient V½
	ðr�r�BÞ�=m2

S in Sec. IIIC of [4]

(note that there arises some subtle issue regarding gauge
invariance). Since the imaginary part becomes r indepen-
dent in the long wavelength limit, as expected, it does not
contribute to the hindered M1 transition.

Finally, we can express the transition width as

�½n3S1 ! n01S0 þ ��

¼ k3

12�
jAj2 ¼ 16

3
�e2Q

k3

M2
n

C2
F�

2
s jEnn0 j2; (10)

where we have averaged upon the spin of the initial 3S1
state and sum over two transverse polarizations of the
photon.

Equation (10) is the key formula of this work, which
looks quite simple. In evaluating the overlap integral Enn0 ,
the input wave functions are obtained by solving the
Schrödinger equation with the widely used Cornell poten-
tial model [10] and Buchmuller-Tye (BT) potential model
[11]. Parameters in both potential models are tuned such
that the b �b and c �c spectroscopy below open flavor thresh-
old are successfully reproduced. The only freely adjustable
parameter seems to be the strong coupling constant, �sð�Þ.

However, the choice of the renormalization scale � is by
no means arbitrary. On physical ground, it should be fixed
around the typical value of the quark 3-momentum in
quarkonium, which is about 1.2 GeV for the b �b system,
and 0.9 GeV for the c �c system [12]. Therefore, with �s

fixed, our formalism becomes rather predictive and readily
falsifiable.
In Table I we have tabulated various predictions to

hindered M1 transitions of n3S1 ! n01S0. We also present

the numerical results for Enn0 , and reassuringly, the con-
tribution from ImT ðrÞ is indeed insignificant. As one can
tell, the agreement between our predictions, especially
from the Cornell potential model, and the measurement
for the transition rate of �ð3SÞ ! �b�, is strikingly suc-
cessful. Curiously, for other hindered M1 transitions,
where the photon is not that energetic so that the multipole
expansion method may still apply, our formalism again
appears to make a decent account of the measured tran-
sition rates, agreeing typically within 2–3
. It seems fair to
conclude that our simple factorization formula has passed
quite nontrivial tests. Given the fact that there are almost
no free parameters in (10), we feel encouraged that our
formalism has captured at least some correct and relevant
ingredients. We hope future measurements of �ð4SÞ !
�b� can further test our mechanism.
It might be tempting to seek a simplified expression for

the overlap integral Enn0 , by exploiting some hierarchy
between different b �b energy levels. Higher radial excita-
tion, for example, �ð3SÞ, is known to have a considerably
larger radius than �b. An intuitive guess is that E31 may not
be necessarily sensitive to the full profile of R30ðrÞ, and
instead may only be sensitive to its value at a small
distance (about the radius of �b). If this were true, one
could pull R30ðrÞ outside of the integral and approximate it
by its value at the origin. The transition rate predicted this
way turns out to be about two orders of magnitude greater
than the measured one. If we play the same game for
R�
10ðrÞ, the result would be about 10 times larger than the

data. The failure of these approximations may be under-
stood from the empirical fact that, in the Cornell or BT
potential models, the average momentum of quark in dif-
ferent b �b energy levels is more or less equal. As a result,
there seems to be no ground to neglect q or q0 in the hard-
scattering kernel in (6).
For the M1 transition from n1S0 to n03S1, one needs to

multiply (10) by a statistical factor of 3. Various partial
widths for �bðnSÞ ! �� are about 10 eV, and that for
�cð2SÞ ! J=c� is about 1 keV. These bottomonium tran-
sitions may be accessible in high-energy hadron collider
experiments such as CERN Large Hadron Collider (LHC),
and the BESIII program may provide a chance to look for
this hindered charmonium transition.
As in any factorization framework, we expect that the

factorization formula (6) is perturbatively improvable. It
will be a major progress to calculate the next-to-leading
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order correction to the hard-scattering kernel. To achieve
this, it might prove easier to reformulate our derivation in
the context of NRQCD. It would also be interesting to
implement relativistic corrections to (6).

Obviously, our strategy need not be confined to hindered
M1 transitions only. It should be applicable whenever the
radiated photon cannot be viewed as ultrasoft and multi-
pole expansion breaks down. It will be interesting to work
out the corresponding factorization formula for E1 transi-

tions such as �bJð2PÞ ! ��. It would also be interesting
to generalize this hard-scattering formalism to explore the
hadronic transition processes such as �ð3S; 4SÞ !
�þ ��.
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