EFF Detector R&D, Collaboration and Plan

João Guimarães da Costa (for the Physics and Detector Working Group)

International Advisory Committee Meeting Beijing, October 30, 2023

Institute of High Energy Physics Chinese Academy of Sciences

中国科学院高能物理研究所

CEPC Physics Program Factory of Higgs / W / Z / top quarks High precision Higgs, EW, flavor physics and QCD studies, and probe for physics BSM

Operation mode			ZH	Z	W+W-	
			~240	~91.2	~160	~360
Run time [years]		7	2	1	-	
L / IP [×10 ³⁴ cm ⁻² s ⁻¹]		3	32	10	-	
CDR (30 MW)		[ab ⁻¹ , 2 IPs]	5.6	16	2.6	-
		Event yields [2 IPs]	1×10 ⁶	7×10 ¹¹	2×10 ⁷	-
Run Time [years]		10	2	1	~5	
	30 MW	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	5.0	115	16	0.5
Latest	50 MW	L / IP [×10 ³⁴ cm ⁻² s ⁻¹]	8.3	191.7	26.6	0.8
		[ab ⁻¹ , 2 IPs]	20	96	7	1
		Event yields [2 IPs]	4×10 ⁶	4 × 10 ¹²	2×107	5×10 ⁵

Physics potential similar to FCC-ee, ILC, CLIC

Requirements of Detector and Key Technologies

Sub-detector	Key technology	Key Specifications
Silicon vertex detector	Spatial resolution and materials	$\sigma_{r\phi} \sim 3 \ \mu { m m}, X/X_0 < 0.15\%$ (per layer)
Silicon tracker	Large-area silicon detector	$\sigma(\frac{1}{p_T}) \sim 2 \times 10^{-5} \oplus \frac{1 \times 10^{-3}}{p \times \sin^{3/2} \theta} (\text{GeV}^{-1})$
TPC/Drift Chamber	Precise dE/dx (dN/dx) measurement	Relative uncertainty 2%
Time of Flight detector	Large-area silicon timing detector	$\sigma(t) \sim 30 \mathrm{ps}$
Electromagnetic	High granularity	EM energy resolution $\sim 3\%/\sqrt{E({\rm GeV})}$
Calorimeter	4D crystal calorimeter	Granularity $\sim 2 \times 2 \times 2 \text{ cm}^3$
Magnet system	Ultra-thin	Magnet field $2 - 3 \mathrm{T}$
	High temperature	Material budget $< 1.5X_0$
	Superconducting magnet	Thickness $< 150 \text{ mm}$
Hadron calorimeter	Scintillating glass	Support PFA jet reconstruction
	Hadron calorimeter	Single hadron $\sigma_E^{had} \sim 40\%/\sqrt{E({\rm GeV})}$
		Jet $\sigma_E^{jet} \sim 30\%/\sqrt{E({\rm GeV})}$

These specifications already include some of the 4th detector design

				•
				•
	_	_	_	•
)				
				•
,		_		•
				•
	_		_	

Detector Design in CEPC CDR

IDEA Detector Design in CEPC CDR

IDEA concept (also proposed for FCC-ee) Pre-shower (μ -RWELL) **Dual-readout calorimeter** Yoke + Muon (µ-RWELL)

The 4th Conceptual Detector Design

HTS Solenoid Magnet (3T / 2T) **Between HCAL & ECAL, or inside HCAL**

Advantage: HCAL absorbers act as part of the magnet return yoke. **Challenges**: Thin enough not to affect the jet resolution; Stability.

Transverse Crystal bar ECAL

Advantage: Better π^0/γ reconstruction

Challenges: Minimum number of readout channels; Compatible with PFA calorimeter; Maintain good jet resolution.

A Drift chamber optimized for PID

Advantage: Work at high luminosity Z runs

Challenges: Sufficient PID power; Thin enough not to affect the moment resolution; Need supplementary ToF detector

Detector R&D Breakdown

Det	Technology	Det	Technolo
×	JadePix		Crystal ECAL
erte	TaichuPix		Stereo Crystal
Ι ۷	CPV(SOI)	<u> </u>	Scint+W ECAL
oixe	Stitching	lete	Si+W ECAL
	Arcadia	rim	Scint+Fe AHCA
	CEPCPix	Calc	ScintGlass AH0
PID	Silicon Strip		RPC SDHCAL
З	TPC		MPGD SDHCA
cke	Drift chamber		DR Calorimeter
Tra	PID drift chamber	c	Scintillation Bar
	LGAD ToF		RPC
mi	SiTrk+Crystal ECAL	2	^μ -Rwell
Lu	SiTrk+SiW ECAL		HTS / LTS Mag
	CEPC SW		MDI & Integrati
	TDAQ		

Large number of detector **R&D** projects on-going

Not all at the same level of maturity

Some have reach the large-scale prototype level

Prototypes under evaluation

	Sub-detector	Specification	Requirement	CEPC prototype
	Pixel detector	Spatial resolution	$\sim 3~\mu{ m m}$	$3-5\mu{ m m}$ [14–16]
	TPC/drift chamber	dE/dx (dN/dx) resolution	$\sim 2\%$	∼ 4% [19–21]
				Prototype built
	Scintillator-W	Energy resolution	$< 15\%/\sqrt{E({ m GeV})}$	to be measured
	ECal	Granularity	$\sim 2 \times 2 \ {\rm cm^2}$	$0.5 imes 0.5 \ { m cm}^2$
				Prototyping [25]
PFA	4D crystal ECal	EM energy resolution	$\sim 3\%/\sqrt{E({\rm GeV})}$	$\sim 3\%/\sqrt{E(\text{GeV})}$
calorimeter		3D Granularity	$\sim 2 \times 2 \times 2 \ {\rm cm^3}$	$\sim 2 \times 2 \times 2 \ {\rm cm^3}$
	Scintillator-Steel	Support PFA,		Prototyping
	HCal	Single hadron σ_E^{had}	$< 60\%/\sqrt{E({\rm GeV})}$	
	Scintillating	Support PFA		Prototyping
	glass HCal	Single hadron σ_E^{had}	$\sim 40\%/\sqrt{E({\rm GeV})}$	$\sim 40\%/\sqrt{E({\rm GeV})}$
	Low-mass	Magnet field strength	2 T - 3 T	Prototyping
	Solenoid magnet	Thickness	$< 150 \mathrm{~mm}$	

Pixel Vertex Detector

LAPIS 200nm SOI process

Overview of CEPC vertex detector R & D

• Design CMOS imaging sensor chip

- Detector Module prototyping
- Vertex Detector assembly and testbeam

Vertex detector Prototype

Full-size TaichuPix3 prototyping (engineering run)

- **Developed the first full-size CMOS pixel sensor for particle detector in China**
 - Full size 1024×512 Pixel array, Chip Size: 15.9×25.7mm ullet
 - $25\mu m \times 25\mu m$ pixel size \rightarrow high spatial resolution
 - **Process: Towerjazz 180nm CIS process**
 - Fast Periphery digital readout, high-speed data interface

	ALPIDE	ATLAS-MAPS (MONOPIX / MALTA
Pixel size	\checkmark	X
Readout Speed	X	\checkmark
TID	X (?)	\checkmark

25.7 mm

TaichuPix-3 chip vs. coin

Tianya Wu

Test beam @ DESY

- 2nd testbeam: April 11-23 2023 DESY test beam in Germany (4-6 GeV electron)
 - Vertex detector prototype testbeam
- 1st testbeam: Dec 12-22 2022 DESY test beam in Germany (4-6 GeV electron)
- TaichuPix Beam Telescope testbeam

2022 DESY test beam

Excellent collaboration with DESY testbeam team

2023 DESY test beam

Spatial resolution for Taichupix

The 6-layer of TaichuPix-3 telescope built

- **Tested at DESY with 4-5 GeV electron beam, 1kHz rate** •
- **One layer of TaichuPix used as Detector-Under-Test (DUT)**
- Other five layers as beam telescope used for track fitting \bullet
- Spatial resolution of TaichuPix reach 4.5 μ m

Setup for Taichupix beam telescope

Residual distribution

Test beam @ DESY for vertex detector prototype Six double-side ladders installed on the vertex detector prototype for DESY testbeam

- 12 flex PCB, 24 Taichupix chips installed on detector prototype
- Beam spot (~2×2cm) is visible on detector hit map

Spatial resolution 4.9 µm with vertex prototype

Detector prototype in testbeam

Air Cooling for vertex prototype

- Dedicated air cooling channel designed in prototype.
- Measured Power Dissipation of TaichuPix chip: ~60 mW/cm2 (17.5 MHz clock in testbeam) •
- Before turning on the fan, chip temperature can go above 41 °C. •
- With air cooling, chip temperature can reduced to 25 °C (on average) •
 - In good agreement to our cooling simulation

No visible vibration effect observed in position resolution offline analysis when turning on the fan

Silicon Tracker

Sensors with HVCMOS

Silicon sensors with high-voltage CMOS considered a promising technology for the CEPC silicon tracker, utilizing the excellent timing and spatial resolutions and moderate costs to cover a large area $(O(100 \text{ m}^2))$

Submission: Oct 2022

1st Design with Foundry B 55 nm HV-CMOS (+ high bulk resitivity)

Passive diodes and two pixel arrays with readout electronics; Chips expected in December

Aug 2023

More on 55 nm HVCMOS

- Smaller feature size: potential for more functionalities with reduced power consumption
- **Synergies** with other projects (the LHCb Upstream Tracker and MightyTracker, extendable to readout electronics, DAQ etc.), possible applications in medical imaging
- performance, limited accessible venders)

- functional full reticle-sized chip in a few years.
 - Target performance: spatial resolution <10 μ m, timing resolution <10 ns

• Technology evaluation with a promising 55nm HVCMOS process being conducted (high voltage combined with high bulk resistivity \rightarrow high bias voltage, drift collection & large signal); decent technical support from the vendor

• International collaboration based on mutual interests (attractive process of small feature size/expected higher

• With the coming MOST funding support, multiple MPW designs will be scheduled, with the hope to realize a fully

International Collaboration in Silicon Tracker Project

• Australia

• University of Adelaide

China

- Harbin Institute of Technology
- Hunan University
- Institute of High Energy Physics, CAS
- Northwestern Polytechnical University
- Shandong University
- T. D. Lee Institute Shanghai Jiao Tong University
- University of Science and Technology of China
- University of South China
- Zhejiang University

• Germany

• Karlsruhe Institute für Technologie

Italy

- INFN Sezione di Milano, Università degli Studi di Milano e Università degli Studi dell'Insubria
- INFN Sezione die Pisa e Università di Pisa
- INFN Sezione di Torino e Università degli Studi di Torino

• UK

- Lancaster University
- Queen Mary University of London
- STFC Daresbury Laboratory
- STFC Rutherford Appleton Laboratory
- University of Bristol
- University of Edinburg
- University of Liverpool
- University of Oxford
- University of Sheffield
- University of Warwick

Gas trackers: TPC and Drift Chamber

Roadmap of CEPC TPC detector R&D

CEPC TPC detector prototyping roadmap:

- From TPC module to TPC prototype R&D for Higgs and Tera-Z
- Low power consumption FEE ASIC R&D
- Achievement so far:
- Supression ions hybrid GEM+Micromegas module
 - IBF×Gain ~1 @ G=2000 validation with hybrid GEM/MM
- Spatial resolution of $\sigma_{r\phi} \leq 100 \,\mu m$ and dE/dx resolution of <4%
- WASA chip: reach ~3.0mW/ch with ADC, 32channels/chip TPC prototype with integrated 266nm UV laser

160m δ=98.77

3.5

3

		Entries	21077
ım	4	Mean	4.106
um	il –	RMS	0.1006
	11	χ^2 / ndf	50.77 / 44
		Prob	0.2242
		Constant	1699 ± 14.4
		Mean	4.106±0.001
		Sigma	0.09877 ± 0.00049

4.5

5

5.5 6

Y-axis(mm)

Status of Pad readout TPC

- - Massive production and assemble MPGD lab has been setup at IHEP
 - are pretty good to Higgs run.
 - ALICE collaboration)

Status of Pixelated readout TPC

R&D on pixel TPC readout for CEPC at 2023

- Smaller pad size improved momentum resolution via dE/dx and dN/dx
- High readout granularity VS the cluster size optimization
- Pixel TPC ASIC chip has started development
 - Power consumption: <1.1mW/ch (1st prototype)
 - <400mW/cm² (Test)
- 2nd prototype wafer design done and ongoing
 - <200mW/cm² (Simulation)

dN/dx

.6mm

International collaboration R&D

- Activities in LCTPC collaboration
 - IHEP contributed in **Ion backflow and pixelated R&D**.
 - MPGDs for TPC readout is a baseline solution and further R&D features many benefits in LCTPC:
 - Small pitch of gas amplification regions => strong reduction of E×B-effects
 - No preference in direction => all 2 dim. readout geometries possible
 - **Ion backflow** can be reduced significantly (Gating, Hybrid structure...)
 - Continue electronics, cooling, UV laser track and low power consumption FEE development
- All research will be integrated with DRD1 of CERN from 2023
 - LCTPC will be integrated in DRD1.
 - CEPC TPC study group joined in DRD1. •
- Collaboration with internal University in China
 - **Tsinghua University:** Low power consumption ASIC R&D and the pixelated Readout
 - **Shandong University**: Ion backflow R&D with the graphene layer
 - Others actives: CIEA, IMP/CAS,...

Drift Chamber

Model	AUC	pAUC (F
Target RNN*	0.926	0.8
Source RNN	0.878	0.7
Unsupervised DeepJDOT	0.895	0.7
Semi-supervised DeepJDOT	0.912	0.7

Time of flight detector

Time of flight detector

- Combining a gas detector with time of flight detector the particle separation ability improves
 - 0 4 GeV for K/ π separation, 0 8 GeV for K/p separation

Main technology:

CEPC time of flight detector based on LGAD: Part of SET (silicon wrapper layer outside TPC or drift chamber) Timing resolution: <30, Spatial resolution: $\sim 10 \,\mu m$ Area of detector (Barrel : 50 m², Endcap 20 m²) Strip-like sensor (each strip: 4 cm × 0.1 cm): to reduce readout channels

IHEP AC-LGAD

Pixel AC-LGAD

Different process parameters: n+ dose(phosphorus): 10P to 0.2P

> Timing resolution <30ps **Spatial resolution ~10um**

Two type of AC-LGAD have been fabricated and tested: Pixel AC-LGAD and Strip AC-LGAD. Spatial resolution of sensors with different process parameter and structures design studied

Strip AC-LGAD

 Strip length 5.6mm •pitch-pad: 250-100um 200-100um 150-100um

Colorimeters

CEPC calorimeter prototypes: developments

- ScW-ECAL prototype: transverse ~20x20 cm, 32 sampling layers
 - ~6,700 channels, ~350 kg, **SPIROC2E** (192 chips), **developed in 2016-2020**
- AHCAL prototype: transverse 72x72 cm, 40 sampling layers
 - ~13k channels, ~5 tons, **SPIROC2E** (360 chips), **developed in 2018-2022**

HCAL prototype: scintillator (tile)+SiPM, steel

2 sampling layers eveloped in 2016-2020

npling layers eloped in 2018-2022 Prototypes developed within CALICE

- China: IHEP, SJTU, USTC
- Japan: U. Shinshu, U. Tokyo
- France: CNRS Omega
- Israel: Weizmann

CEPC calorimeter prototypes: beamtest in 2022

• Successful beamtest at CERN SPS H8: Oct-Nov, 2022

- High energy particle beams: muons, positrons and hadrons (10 160 GeV)
- Suffered from beam purity issue in pion and positron beams

CEPC calorimeter prototypes: beamtests in 2023

- Beamtest campaigns
 - First period (16 days): CERN SPS-H2 in Apr. May 2023
 - Second period (15 days): CERN PS-T09 in May 2023
- Data sets: significantly improved beam purity than 2022
 - Collected decent statistics, enabling detector performance evaluation, validation of Geant4 simulation, particle-flow studies, etc.

Event display with ScECAL+AHCAL

One run of different position scans: muon beam out of ScW-ECAL acceptance

General impressions: much better purity of electron and pion beams than data taken at H8 in 2022

60GeV electron

60GeV negative pion

Key calorimeter performance

- AHCAL preliminary results: data sets with PID selection
 - Energy linearity within $\pm 1.5\%$
 - Hadronic energy resolution: $56.5\%/\sqrt{E(GeV)} \oplus 2.8\%$
 - Consistent with expectation: $60\%/\sqrt{E(GeV)} \oplus 3\%$

High-granularity calorimetry: new concepts

CALICE prototypes EM/hadronic resolutions, ~14%/ $\sqrt{E(GeV)}$ and ~58%/ $\sqrt{E(GeV)}$; new concepts expected to further improve performance

• CEPC 4th Concept Detector: new calorimeters

- 4D crystal calorimeter: high granularity, EM resolution $\leq 3\%/\sqrt{E(GeV)}$
- Glass scintillator calorimeter: high granularity, hadronic resolution $\leq 40\%/\sqrt{E(GeV)}$

Glass scintillator sampling calorimeter

a la CALICE-AHCAL, but with glass tiles

Replacing plastic scintillator in the PFA HCAL with high light yield, high density, low cost scintillating glass

4D crystal calorimeter

- Design specifications
 - Granularity 1 × 1 cm², EM resolution $\leq 3\%/\sqrt{E(GeV)}$
 - Timing resolution: ~100 ps @MIP signal
 - Single photon detection capability
 - Low energy threshold: ~0.5 MeV
 - Wide dynamic range: single photon 100k photons

cylindrical crystal ECAL

Proposal inputs to the 2021 US Snowmass (IF) and ongoing ECFA DRD6 (Calorimetry)

4D crystal calorimeter: R&D overview

Hardware development: key questions and specs

Crystal modules: beamtest at CERN in 2023

Successful CERN beamtest: parasitic runs at PS-T9 (May 16-23, 2023)

CALICE-CEPC

calorimeter prototypes

- Achieved major goals
 - Commissioning of the first crystal module
 - Validation of simulation and digitization

Crystal modules: beamtests in 2023

CEPC calorimetry: international collaborations

CALICE collaboration

- International community to explore technology options of high-granularity calorimetry
- Technical Board Members: Jianbei Liu (USTC), Yong Liu (IHEP)
- Institutional Board Members: J. Liu (USTC), Y. Liu (IHEP), Haijun Yang (SJTU) ECFA Detector R&D (DRD) collaboration

- Implementations of <u>ECFA detector research and development roadmap</u>
- Actively involved with DRD6 formation for future calorimetry
- Three input R&D proposals submitted to DRD6
 - crystal calorimeter (HGCC), glass scintillator calorimeter (ScintGlassHcal), ScW-ECAL
- US Snowmass 2021
 - Two input R&D proposals to PFA-oriented calorimetry with high granularity Report of the Topical Group on Calorimetry [<u>arXiv:2208.12861</u>]
- Particle Flow Calorimetry [<u>arXiv:2203.15138</u>]

The Large Area Glass Scintillator Collaboration

- -- The Glass Scintillator Collaboration Group established in Oct.2021
- -- There are 3 institutes of CAS, 5 universities, 3 factories join us for the R&D of GS;

Institute of High Energy Physics, CAS 中国科学院高能物理研究所

Jinggangshan University 井冈山大学

CBMA

Beijing Glass Research Institute 北京玻璃研究院

China Building Materials Academy 中国建筑材料研究院

China Jiliang University 中国计量大学

Harbin Engineering University 哈尔滨工程大学

Harbin Institute of Technology 哈尔滨工业大学

. ق**اد**دية

Sichuan University 四川大学

Shanghai Institute of Ceramics, CAS 中国科学院上海硅酸盐研究所

Shanghai Institute of Optics and Fine Mechan 中国科学院上海光学精密机械研究所

CNNC Beijing Unclear Instrument Factory 中核(北京)核仪器有限责任公司

The Progress of the R&D of GS

The Progress of the PFA of the GS-HCAL

Comparing baseline AHCAL with glass HCAL

Next steps:

- Study the Glass Scintillator HCAL on test beam
- Optimize the design and mechanics of the GS-HCAL, to improve the BMR to $\sim 3.0\%$;
- Main: Continue R&D of large-size glass tiles featuring high density, high light yield and short decay time

High Temperature Superconducting Detector Solenoid

CEPC HTS detector magnet

The 4th Conceptual Detector Design: The solenoid magnet locates between Hcal and Ecal.

A large ultra-thin & transparent HTS solenoid magnet:

Magnetic field	3 T	Current	28000 A	
Inner diameter	4660 mm	Inductance	1.27 H	
Outer diameter	4960 mm	Stored energy	500 MJ	
Magnet thickness	150 mm	Cold mass	27 ton	
Length	8000 mm	HTS cable length	10.7 km	
Total weight	48 ton	ASTC weight	16.6 ton	

HTS cable development

ASTC(AI stabilized HTS Stacked Tape Conductor) cable development

Small size cable: 15*10 mm², Tape Width: 4 mm, tape thickness: 80 µm, tape Ic > 120A@77K;

Significant progress has been made in the development of HTS cable. **Object:** single tape core lc > 100 A@77K; 14-core cable lc > 830 A@77K, self-field.

Mechanical Design

Progress in the mechanical design of the CPEC

Moving towards engineering design:

CEPC Detector diagram

Comparison of the several schemes of engineering design for each sub-detector has been carried out

Detector conceptual design transferred to draft of engineering drawing

Progress in the mechanical design of the CPEC

Progress in Yokes, superconducting magnets, EM Calorimeter and beam tubes

Yoke

Structural analysis of different yoke layers (4, 5, 6, 7) with minimum deformation: approx. 0.5 mm

Superconducting magnet

EM Calorimeter

MDI design

Fast simulation optimization of 4th concept detector

Optimization of 4th Conceptual Detector using Fast Simulation

- Tracker layout optimization on-going using diverse tools:
 - A Drift Chamber starting at smaller radius is favored
 - Significant better momentum resolution for low pt tracks when DC adopted

- DELPHES simulation implemented for 4th conceptual detector (tracker, calorimeter, etc...)
 - Full covariance of tracks
 - Some code developed for the PID and jetclustering functions
 - Ready for physics study after careful validations
 - Keep updating according to detector design and opfimization

Significance of PID with DELPHES simulation

W/o PID

CEPC Preliminary $B^0 \rightarrow \pi^+ \pi^-$ 6000 — CEPC simulation $B^0 \rightarrow \pi^+\pi^ B_s^0 \rightarrow \pi^+\pi^ B_s^0 \rightarrow K^+ K$ $B^0 \rightarrow K^+ \pi^ --- B_s^0 \rightarrow K^+ \pi^-$

W/ PID

6000

CEPCSW (CEPC Software)

- A consensus among CEPC, CLIC, FCC, ILC and other future experiments was reached at the Bologna workshop in 2019
 - Develop a Common Turnkey Software Stack (Key4hep) for future collider experiments
 - Maximize the sharing of software components among different experiment
- The development of CEPCSW is based on Key4hep and the developers have a close collaboration with Key4hep members at CERN and DESY
- CEPCSW is organized as a multi-layer structure and the key components include:
 - Gaudi/Gaudi: defines interfaces to all software components
 - Edm4hep: generic event data model
 - k4FWCore: management of event data objects
 - DD4hep: detector geometry description

56

Progress: Core Software (1)

Extended Edm4hep to accommodate the requirements raised by the simulation of primary ionizations in the drift chamber

Heterogeneous computing

- ACTS's seeding algorithm (SYCL version) was imported to CEPCSW and optimization of data communication between CPU and GPU is in progress
- RDataFrame-based analysis framework development
 - Integrated Marlin Kinefit and JetClustering algorithms to **RDataframe**
 - Completed multi-threading performance studies with $e+e- \rightarrow H(2jet)\mu\mu$ events
- Migration to Gaussino-based simulation framework is ongoing

Progress: CEPC reconstruction software and Distributed Computing

Many reconstruction algorithms were developed:

- A common API for different track fitting algorithms
- Silicon vertex detector machine leaning based digitization algorithm
- Drift Chamber track finding software
- **Crystal-bar ECAL Software reconstruction**
- The CEPC distributed computing platform for detector R&D was established based on DIRAC and WLCG middleware
 - The platform is able to integrate heterogeneous and distributed resources, including cloud, grid, cluster resources
 - ~4600 cores from IHEP, UK and other Chinese universities

C++ () PyTorch libtorch

58

Timescole

(1)

CEPC Project Timeline

Accelerator

Technical Design Report (TDR)

Engineering Design Report (EDR) R&D of a series of key technologies Prepare for mass production of devices though CIPC

Civil engineering, campus construction

Construction and installation of accelerator

New detector system design & Technical Design Report (TDR)

Detector

Detector construction, installation & joint commissioning with accelerator

Experiments operation

na Ы Cooperati Internatio

Further strengthen international cooperation in the filed of Physics, detector and collider design

Sign formal agreements, establish at least two international experiment collaborations, finalize details of international contributions in accelerator

TDR Timescale

What is the proper timescale from TDR to first beam?

• **BABAR Timescale**

- 1989: First physics workshop
- 1993: PEP-II CDR released
- 1994: BABAR Letter of Intent released
- 1995: BABAR TDR released
- 1998: The BABAR Physics Book
- May 1999: First collisions in BABAR in May 1999
- 2001: BABAR first physics paper

Detectors will be complex but not as large **and** complex **as the LHC detectors**

6 years from TDR to first paper 4 years to collisions

Final remarks

Some CEPC R&D detector projects reaching a successful conclusion

Explore the CEPC and FCC-ee R&D synergies

- e.g. Silicon Vertex Detector, Scintillator HCAL and ECAL
- Although these are likely not what we will ultimately build, they provide invaluable information for the future and demonstrate that the targets get be achieved
 - New ideas have emerged and they are being put to prototyping quickly
 - e.g. Crystal calorimeter, scintillating glass calorimeter
 - No identifiable showstoppers in detector R&D
 - International collaboration continues to be a main goal of the CEPC

Acknowledgements

Li, Zhijun Liang, Yong Liu, Feipeng Ning, Zhao Mei, Huirong Qi,

Thank you to all that provided material for this talk, in particular, Hongbo Zhu, Yiming

The End

Challenges

Particle Identification in case of no TPC

66

A Quest of Silicon Pixel Vertex Detector

	JadePix	TaichuPix	MOST3	CDR
Spatial resolution	2.7-5 μm for JadePix-3 Worse for JadePix-4	4.5 μm for single chip 4.9 μm for ladder	3 μm	3 μm
IP resolution	_	~5-6 µm for P= 4-6 GeV		
Power dissipation	72 mW/cm ² for JadePix-3	60 mW/cm² @ 17.5 MHz ?? @ 40 MHz	100 mW/cm ²	
Time resolution	100 μs for JadePix-3 1 μs for JadePix-4	Time stamp resolution: 25 ns for modified process 50 ns for standard process	100 ns	
In-chip readout speed	100 μs / frame for Jadepix3 100 ns/hit for Jadepix4	50 ns / hit		
Material budget		0.45% X0 / layer	ASIC thinning + Al trace	0.15% X0 / layer
Radiation Hardness	> 1 Mrad	> 3 Mrad		1 Mrad/year at Z

The performance can feed into more realistic simulation studies of the CEPC physics reach, while we improving further the performance.

PID studies on beam compositions

Calorimeter PID based on Fractal Dimension

PID comparison: ANN versus **Fractal Dimension (cut-based)**

Al-stabilized superconducting technology research

- > Coextrusion line has been established at Wuxi Toly Co.
- > Al-stabilized NbTi superconductor with lengths greater than 1 kilometer has been produced(4.7mm*15mm), and samples by a second coextrusion are in the process of testing(56mm*22mm).
- > Al-stabilized HTS cable have been successfully developed, and the critical current of the cable has a degradation of less than 10%.
- > R&D of High Strength and High RRR Aluminum- Stabilizer for Superconducting Cable get a good results: Yield strength > 74 MPa at room temperature, RRR value > 400.

By Feipeng Ning/Ling Zhao

Pre-processing equipment

	Parameter	Extrusion wheel diameter/mm	Rod diameter/mm	Cable thickness/mm	Cable wid
	Value	400	2*9.5~12	3.0~30.0	10.0~

Fast simulation of the 4th conceptual detector design with DEPHES

- Implement tracker, calorimeter, ..., into a DELPHES card; full covariance of tracks \bullet
- Some code development for the PID and jet-clustering functions \bullet
- Ready for physics study after careful validations \bullet
- Keep updating according to detector design and optimization \bullet

 $e^+e^- \rightarrow Z(vv)H(gg)$

To be checked

Tracker Optimization
The End

ATLAS Timing Detector (HGTD) China is taking a leadership role in HGTD (IHEP, USTC, Nanjing, Shandong, Shanghai)

- 34% of LGAD sensors (IHEP-IME, USTC-IME)
- 100% module flex electronics
- 50% module hybridization •
- 44% module assembly
- 50% module supports
- **33% flex cables**
- 67% design/100% production peripheral electronics

- **Project leader**
- HGTD risk and schedule coordinator
- L2 Sensors coordinator
- L2 Module coordinator
- L3 Module flex coordinator
- L2 software coordinator \bullet
- L3 Peripheral electronics coordinator
- L3 High Voltage coordinator
- **HGTD Speakers committee Chair**

CEPC International Detector R&D Review Committee (IDRC)

Committee proposed by CEPC IAC

Initial Charge and Goals

Evaluate International proposals for detector R&D relevant to the CEPC

Independent organ to evaluate the importance and suitability of worldwide detector R&D proposals for CEPC and produce short report with findings.

Reviews and endorses the Detector R&D proposals from the international community, such that international participants can apply for funds from their funding agencies and make effective and sustained contributions

Later, this committee is expected to evolve to evaluate the Letters of Intent for the **CEPC** Detectors submitted by the proponents of the International Detector Collaborations

CEPC International Detector R&D Review Committee (IDRC) Goals for original meeting, provided to committee:

- Provide an overview of the on-going detector R&D linked to the CEPC
- Solicit input regarding the directions one should take in the near future

Outcome of original review: Report with main recommendation to produce:

- 1) Document with a coherent list of the on-going of R&D activities, such that the presence of gaps and overlaps can be determined and addressed — DONE
- 2) Updated CDR document within 12-18 months
- 3) A conservative full-detector concept, potentially deliverable on an aggressive time scale, should be specified by the CEPC Management and adopted as the baseline for the CDR update

forward with the R&D for a 4th detector

- Suggest: Short report with the opinion of the committee regarding the current R&D program and future directions

We, the CEPC management and IAC, didn't agree with the production of another "CDR" document in this timescale, due to the large amount of resources required. Instead, the decision was to move

76

Key previous steps:

- IDRC expressed concern that the schedule presented to them (with detector TDRs in 2023) was not realistic and prompted the problematic recommendations
- Follow-up IDRC meeting in 2020, planned for Marseille, was cancelled due to COVID
- A document with the summary of on-going R&D activities was produced and sent to the IDRC chair, as requested by the IDRC
- Since the last IAC meeting in 2021:
 - An updated version of the document with the summary of R&D activities was produced and sent to the IDRC
 - Two attempts to organize a meeting in 2022 were made by the IDRC chair, but unfortunately it was not possible to secure the presence of enough committee members
 - Given the current international situation, the chair has \bullet suggested a modification to the committee charge that we would like to discuss

Document with summary of on-going R&D activities updated in early 2022

Contents

Contents
Introduction
Project Schedule
1 Vertex
1.1 Vertex Prototype
1.2 ARCADIA CMOS MAPS
2. Tracker
2.1 TPC modules and prototype
2.2 Silicon Tracker Prototype
2.3 Drift Chamber Activities Error! Bookma
3. Calorimetry
3.1 ECAL Calorimeter
3.1.1 Crystal Calorimeter
3.1.2 PFA Sci-ECAL Prototype
3.2 HCAL Calorimeter
3.2.1 PFA Semi-Digital Hadronic Calorimeter
3.2.2 PFA Sci-AHCAL Prototype
3.3 Dual-readout Calorimeter
4. Muon Detector
4.1 Scintillator-based Muon Detector Prototype
4.2 Muon and pre-shower μRWELL-based detectors
5. Solenoid
5.1 LTS solenoid magnet
5.2 HTS solenoid magnet
6. MDI
6.1 LumiCal Prototype
6.2 Interaction Region Mechanics
8. Software and computing

Suggestions and next steps:

Discussion with IDRC chair \rightarrow suggestions on how to proceed

- Concern that, given the current international situation, effectively there are no proposals from \bullet international community specifically to work at CEPC and it is difficult to imagine such proposals will materialize in the near future, therefore, the charge to this committee is not actionable
 - Observation: This might not be exactly correct since most detector R&D work for FCC-ee directly applies to CEPC. It is possible that, for certain communities, getting the support of this International Committee would be advantageous — this seems to be the situation with our Italian colleagues
- Suggest to change the charge of the committee to become more technical covering a technical evaluation of all detector R&D being done towards the CEPC — hence, closer to the International Accelerator Review Committee charge
- Re-evaluate the committee membership in light of this new, more technical, charge, and in particular, investigate the availability of the current committee members to still serve in such committee

Given that this committee was created following an IAC recommendation, we would like to discuss these possible changes with you

78

Suggestions for a new charge:

- The IDRC will advise on matters related to the CEPC detector R&D, including the Machine-Detector Interface, and the compatibility of the detector technologies proposed with the high-luminosity operation of the accelerator at the Z, WW, ZH, and tt-bar production threshold energies.
- The IDRC will evaluate international proposals for detector **R&D** relevant to the CEPC, and produce a short report with its findings.
- The IDRC reports to the Project Director.
- Later, this committee is expected to evolve into an experimental committee (similar to LHCC) to evaluate the Letters of Intent for the CEPC Detectors submitted by the proponents of the International Detector Collaborations
- The committee should have external members including 2-3 IAC members.
- The committee should meet at least once a year and a report should be provided at the IAC meeting.

Current committee membership:

Dave Newbold, UK, RAL (chair) Jim Brau, USA, Oregon Brian Foster, UK, Oxford Liang Han, China, USTC Andreas Schopper, CERN, CERN Steinar Stapnes, CERN, CERN Hitoshi Yamamoto, Japan, Tohoku Valter Bonvicini, Italy, Trieste Ariella Cattai, CERN, CERN Cristinel Diaconu, France, Marseille Abe Seiden, USA, UCSC Laurent Serin, France, LAL **Roberto Tenchini, Italy, INFN** Ivan Villa Alvarez, Spain, Santader Harvey Newman, USA, Caltech Marcel Stanitzki, Germany, DESY

Key R&D Issues Moving Forward

- Machine Detector Interface
- Luminosity meter (LumiCal) continue integration in beampipe development
- Silicon Vertex
 - Continue to explore low-material budget solutions, cooling integration and performance optimization Major issue: Sensor technology and availability in China
 - \bullet
 - Curved silicon, as in ALICE ITS3, should be considered but it has lots of challenges that would need to be solved in a tight timescale

Tracker

- Time Projection Chamber
 - Evaluate the Pixel TPC possibility \bullet

- Drift Chamber •
 - Demonstrate it can cope with the high increased rates at the Z pole? Enough resolution? •
 - Demonstrate PID capabilities with cluster counting
 - Continue mechanical design and stability analysis \bullet
- Full silicon tracker \rightarrow still need manpower increase to exploit this option
 - Continue Silicon Tracker prototype collaboration •
 - Need to add detector for particle identification drift chamber is an option \bullet
 - **Consider adding timing Silicon layer** ullet
 - AC-Coupled Resistive Silicon Detector (RSD)
 - Trench-isolated LGAD (TI-LGAD)

Trade off: Transparency <--> reliability/resolution

82

Calorimetry •

- Cost versus physics performance
- ECAL
 - Finalize evaluation of the crystal calorimeter option lacksquare
 - Cooling of PFA calorimeter versus performance \bullet

HCAL

- Finalize evaluation of Scintillator Steel option
- Study glass hadronic calorimeter has an alternative
- Cooling and mechanics studies •
- Dual Readout
 - Demonstration using full size prototype ullet

Calorimetry

- Cost versus physics performance
- ECAL
 - Finalize evaluation of the crystal calorimeter option
 - Cooling of PFA calorimeter versus performance

HCAL

- Finalize evaluation of Scintillator Steel option
- Study glass hadronic calorimeter has an alternative
- Cooling and mechanics studies
- Dual Readout
 - Demonstration using full size prototype ullet

Muon System optimization

- Optimize number of layers
- Optimize design for industrialization and cost \bullet

Optimization of detectors

- Use a mixture of fast simulation and full simulation
- Need to consider engineering aspects
- Need to consider costing issues
 - balance between performance and eventual total detector cost

Not an easy task without definite detectors/collaborations target

