Quarkyonic phase induced by Rotation The 7th International Conference on Chirality, Vorticity and Magnetic Field in Heavy Ion Collisions

Fei Sun, Kun Xu, and Mei Huang

July 7, 2023

• The Most Vortical Fluid (Nature 548, 62 (2017)).

Angular momentum at the order of $10^4 \sim 10^5 \hbar$!

• Rotation gives rise to lots of interesting phenomena...

イロト イポト イヨト イヨト

æ

The rotation effect suppresses the chiral condensate!

A (very incomplete) list of references on chiral condensate
Y. Jiang, J. Liao, Phys. Rev. Lett. 117(19) (2016).
H.-L. Chen, K. Fukushima, X.-G. Huang, K. Mameda, Phys. Rev. D 93(10) (2016).
S. Ebihara, K. Fukushima, K. Mameda, Phys. Lett. B 764 (2017) 94-99.
M. Chernodub, S. Gongyo, J. High Energy Phys. 01 (2017) 136, Phys. Rev. D 95(9) (2017) 096006.
X. Wang, M. Wei, Z. Li, M. Huang, Phys. Rev. D 99(1) (2019) 016018.
H. Zhang, D. Hou, J. Liao, Chin. Phys. C 44(11) (2020) 111001.

How the rotation affects the deconfinement phase transition is still highly debated ...

X. Chen, L. Zhang, D. Li, D. Hou, and M. Huang, JHEP 07, 132 (2021).
 Y. Fujimoto, K. Fukushima, and Y. Hidaka, Phys. Lett. B 816, 136184 (2021).
 M. Chernodub, Phys. Rev. D 103, 054027 (2021).
 V. V. Braguta, A. Y. Kotov, D. D. Kuznedelev, and A. A. Roenko, Phys. Rev. D 103, 094515 (2021).

PNJL model incorporates confinement effects in the NJL...

What are the influences of rotation on the QCD phase structure?

How does the interplay between chiral and deconfinement phase transitions?

The Lagrangian in the two-flavor NJL model under rotation:

$$\mathcal{L}_{NJL} = \sum \bar{\psi}_f \left\{ i \bar{\gamma}^{\mu} (\partial_{\mu} + \Gamma_{\mu}) - m + \gamma^0 \mu \right\} \psi_f + G \left(\bar{\psi} \psi \right)^2, \quad (2.1)$$

The Lagrangian of Polyakov-loop extended NJL model under rotation

$$\mathcal{L}_{PNJL} = \mathcal{L}_{NJL} + \bar{\psi}\gamma^{\mu}A_{\mu}\psi - \mathcal{U}(\Phi, \bar{\Phi}, T), \qquad (2.2)$$

$$\Phi = \frac{1}{N_c} \left\langle \text{tr}L \right\rangle, \bar{\Phi} = \frac{1}{N_c} \left\langle \text{tr}L^{\dagger} \right\rangle, L(\bar{x}) = \mathcal{P} \exp[i \int_0^\beta d\tau A_4(\bar{x}, \tau)]$$
(2.3)

Main Results

Conclusion

Expanding the Lagrangian up to the first order of angular velocity, the PNJL model under rotation has the form:

$$\mathcal{L}_{PNJL} = \bar{\psi} \left[i \gamma^{\mu} D_{\mu} - m + \gamma^{0} \mu + (\gamma^{0})^{-1} \left(\left(\vec{\omega} \times \vec{x} \right) \cdot \left(-i \vec{\partial} \right) + \vec{\omega} \cdot \vec{S}_{4 \times 4} \right) \right] \psi$$

$$+ G \left(\bar{\psi} \psi \right)^{2} - \mathcal{U}(\Phi[A], \bar{\Phi}[A], T),$$

Carrying out the mean field approximation and the path integral formulation

$$\log Z = -\frac{1}{T} \int d^3x \left(\frac{(M-m)^2}{4G}\right) + 2\log \det \frac{D^{-1}}{T}$$

$$D^{-1} = \begin{pmatrix} \left(-i\omega_l + \left(n + \frac{1}{2}\right)\omega + \mu - iA_4\right) - M & -\overrightarrow{\sigma}.\overrightarrow{p} \\ \overrightarrow{\sigma}.\overrightarrow{p} & - \left(-i\omega_l + \left(n + \frac{1}{2}\right)\omega + \mu - iA_4\right) - M \end{pmatrix}$$

Fei Sun, Kun Xu, and Mei Huang

Quarkyonic phase induced by Rotation

$$\log \det \frac{\hat{D}^{-1}}{T} = tr \log \frac{\hat{D}^{-1}}{T} = \int d^3x \int \frac{d^3p}{(2\pi)^3} \left\langle \psi_p\left(x\right) \left| \log \frac{\hat{D}^{-1}}{T} \right| \psi_p\left(x\right) \right\rangle.$$

Considering the eigenstate of the complete set of commutating operators $\{\hat{H}, \hat{p}_z, \hat{p}_t^2, \hat{J}_z, \hat{h}_t\}$

$$u = \frac{1}{2}\sqrt{\frac{E+m}{E}} \begin{pmatrix} e^{ip_{z}z}e^{in\theta}J_{n}(p_{t}r) \\ se^{ip_{z}z}e^{i(n+1)\theta}J_{n+1}(p_{t}r) \\ \frac{p_{z}-isp_{t}}{E+m}e^{ip_{z}z}e^{in\theta}J_{n}(p_{t}r) \\ \frac{-sp_{z}+ip_{t}}{E+m}e^{ip_{z}z}e^{i(n+1)\theta}J_{n+1}(p_{t}r) \end{pmatrix}$$

$$v = \frac{1}{2}\sqrt{\frac{E+m}{E}} \begin{pmatrix} \frac{\frac{p_{z}-isp_{t}}{E+m}e^{-ip_{z}z}e^{in\theta}J_{n}(p_{t}r)\\ \frac{-sp_{z}+ip_{t}}{E+m}e^{-ip_{z}z}e^{i(n+1)\theta}J_{n+1}(p_{t}r)\\ e^{-ip_{z}z}e^{in\theta}J_{n}(p_{t}r)\\ -se^{-ip_{z}z}e^{i(n+1)\theta}J_{n+1}(p_{t}r) \end{pmatrix}$$

イロト イポト イヨト イヨト

æ

Taking trace over color space and using $\Omega = -\frac{T}{V} \log \mathcal{Z}$ we obtain

$$\begin{split} &\Omega_{PNJL} = \\ &G\langle \bar{q}q \rangle^2 - \frac{1}{4\pi^2} \sum_{n=-\infty}^{\infty} \int_0^{\Lambda} p_l dp_l \int_{-\sqrt{\Lambda^2 - p_l^2}}^{\sqrt{\Lambda^2 - p_l^2}} dp_z \left(\left(J_{n+1}(p_l r)^2 + J_n(p_l r)^2 \right) T \times \right. \\ &\left\{ \log \left[1 + 3\Phi e^{-\frac{\varepsilon_n - \mu}{T}} + 3\bar{\Phi} e^{-2\frac{\varepsilon_n - \mu}{T}} + e^{-3\frac{\varepsilon_n - \mu}{T}} \right] + \log \left[1 + 3\bar{\Phi} e^{\frac{\varepsilon_n - \mu}{T}} + 3\Phi e^{2\frac{\varepsilon_n - \mu}{T}} + e^{3\frac{\varepsilon_n - \mu}{T}} \right] \\ &\left. + \log \left[1 + 3\bar{\Phi} e^{-\frac{\varepsilon_n + \mu}{T}} + 3\Phi e^{-2\frac{\varepsilon_n + \mu}{T}} + e^{-3\frac{\varepsilon_n + \mu}{T}} \right] + \log \left[1 + 3\Phi e^{\frac{\varepsilon_n + \mu}{T}} + 3\bar{\Phi} e^{2\frac{\varepsilon_n + \mu}{T}} + e^{3\frac{\varepsilon_n + \mu}{T}} \right] \right\} \\ &\left. + \mathcal{U}(\Phi, \bar{\Phi}, T). \end{split}$$

here, $\varepsilon_n = \sqrt{(m - 2G \langle \bar{q}q \rangle)^2 + p_t^2 + p_z^2 - (\frac{1}{2} + n)\omega}$ with the dynamic quark mass $M = m - 2G \langle \bar{q}q \rangle$

$$\begin{aligned} &\frac{\mathcal{U}}{T^4} = -\frac{1}{2}b_2(T)\Phi\bar{\Phi} - \frac{b_3}{6}\left(\Phi^3 + \bar{\Phi}^3\right) + \frac{b_4}{4}\left(\Phi\bar{\Phi}\right)^2 \\ &b_2(T) = a_0 + a_1\frac{T_0}{T} + a_2\left(\frac{T_0}{T}\right)^2 + a_3\left(\frac{T_0}{T}\right)^3. \end{aligned}$$

Stationary condition

$$rac{\partial\Omega}{\partial\langle\bar{q}q\rangle}=0, \quad rac{\partial\Omega}{\partial\Phi}=0, \quad rac{\partial\Omega}{\partial\bar{\Phi}}=0.$$

Causality condition

 $\omega r < 1$

Input parameters

 $m = 0.005 \text{ GeV}, \Lambda = 0.65 \text{ GeV}, G = 4.93 \text{ GeV}^{-1}, n = 0, \pm 1, \pm 2..., r = 0.1 \text{ GeV}^{-1}.$

a_0	<i>a</i> ₁	<i>a</i> ₂	<i>a</i> ₃	b_3	b_4	T_0
6.75	-1.95	2.625	-7.44	0.75	7.5	0.27 GeV

Table: Parameters of the Polyakov sector of the model.

• The light quark effective mass and Polyakov loop as functions of temperature *T* at $\mu = 0$ GeV for different angular velocities.

• The light quark mass and the Polyakov loops as functions of temperature at $\mu = 0.1$ GeV for different angular velocities.

Fei Sun, Kun Xu, and Mei Huang

Quarkyonic phase induced by Rotation

Main Results

• Pseudocritical temperatures of the quark and Polyakov loop according angular velocity at zero chemical potential (left panel). Susceptibilities $d\Phi/dT$ as function of temperature at zero chemical potential for different angular velocities (right panel).

• Pseudocritical temperatures of the quark and Polyakov loop according angular velocity at zero chemical potential with $T_0 = 0.32$ GeV.

Conclusion

We focus on the rotational effect of the coupling between the quark and gauge field on the chiral transition and deconfinement transition...

Conlusion 1

The effect of the rotation plays an important role in the chiral transition.

Conlusion 2

The deconfinement transition is not so sensitive (compared to the chiral transition) to the presence of the rotating effect.

Conlusion 3

The chiral dynamics and gluon dynamics can be splitted by rotation, which means a quarkyonic phase can be induced by rotation.

Thank you for your attention !!

Fei Sun, Kun Xu, and Mei Huang Quarkyonic phase induced by Rotation

イロト イ理ト イヨト イヨト

æ