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Charged Lepton Flavor Violation (CLFV)
• Processes that violate the 

conservation of individual lepton 
number* in the charged lepton row
• Not necessarily violating the total lepton 

number.

• Among all CLFV processes, 3 muonic 
channels are particularly popular:
• 𝜇 → 𝑒𝛾, 𝐵𝑟 =

Γ(𝜇→𝑒𝛾)

Γ(𝜇→𝑒𝜐𝜐)

• 𝜇 → 𝑒𝑒𝑒 , 𝐵𝑟 =
Γ(𝜇→𝑒𝑒𝑒)

Γ(𝜇→𝑒𝜐𝜐)

• 𝜇𝑁 → 𝑒𝑁 , C𝑟 =
Γ(𝜇𝑁→𝑒𝑁)

Γ(𝜇𝑁→𝜈𝑁)
**
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* In the lepton sector, family, generation, and flavor are somewhat used interchangeably. It was originally called “muon number 
violation”. The name “lepton family violation” was also used in the past.
**This is the original format of definition. In the recent years, some experimentalists use inclusive Γ as denominator, so that they 
simply stopped muons. This is causing confusions.



The discovery of muon
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• Muon was first discovered in 1936 from the cosmic ray using cloud chamber
• A particle with mass between electron and proton: named mesotron

• Naturally considered as Yukawa’s meson which carries nuclear force
• Postulated one year earlier
• The actual Yukawa’s meson, pion, was discovered one year later in 1937.

• Decay mode conceived as 𝜇 → 𝑒 + 𝜈



Muon is a lepton
• After a series of experiments, it’s eventually clear that muon 

doesn’t interact via strong force.
• Natural to take it as an exited electron: 𝜇 → 𝑒 + 𝛾
• Pontecorvo’s experiment was the start of the CLFV search.
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The “muon puzzle”
• Feinberg calculated 𝜇 → 𝑒 + 𝛾 Br up to 10−4

• BNL’s accelerator was used to search for 𝜇 → 𝑒 + 𝛾 but not found
• Start of accelerator CLFV

• Nishijima and Schwinger proposed “two neutrino theory”
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Search for Improbable Muon Decays



Muonic neutrino
• Pontecorvo proposed to search for the different neutrino.

• Again in BNL, a group verified 𝜐𝜇 ≠ 𝜐𝑒
• Two generations of leptons! Muon number accepted as a new quantum number.
• A series of experiments carried out to test the conservation law of muon number.
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The standard model (SM)

• The standard model was founded during 
1960s and 1970s
• Renormalizable quantum field theory with 
𝑆𝑈(3)𝐶 × 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 gauge symmetry.

• Initially on 2, then extended to 3 generations of 
fermions (quarks & leptons)

• CLFV strictly forbidden, but
• Neutrinos have tiny masses: allowed with 

negligible branching ratio.
• A very clean place to test the SM!
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S.T. Petcov, Sov.J. Nucl. Phys. 25 (1977) 340

Highly suppressed by GIM due to 
the smallness of 𝑚𝜈

𝜇 → 𝑒 + 𝛾 in the SM+ 𝑚𝜈



New physics models beyond SM

• SM is a huge success. 
However it’s definitely not the 
end.
• Flavor puzzle.
• Hierarchy problem.
• Neutrino mass term.
• Cosmological phenomena.

• New physics models proposed
• CLFV naturally introduced.
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Meson factories
• In the same period of time, meson factories were built

• SIN (PSI) 1960, TRIUMF 1968, LAMPF 1972
• All with muon facilities to search for new physics on the precision frontier
• All with > 106 muons (stopped) per second.
• SIN (PSI) continued to upgrade to 107~108 muons (stopped) per second

• The world most powerful DC muon beam.
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CLFV in meson factories
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• The improvement was 
significant in 1980s
• Brought the sensitivity down

by ~4 orders of magnitude
• Slowed down afterward

• Met challenge on the 
detector side

• Gradually learning how to 
deal with the intensity 
frontier

• What will happen in the future?
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?



CLFV in the future?
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• More experiments!
• Already data taking: MEG-II
• Under construction: COMET Phase-I, 

Mu2e, Mu3e
• Even more in the future

• PSI muon facility upgrade plan 
(HiMB) will make Mu3e Phase-II 
and next stage 𝜇 → 𝑒𝛾 possible to 
improve by x10.

• COMET Phase-II and Mu2e-II are 
seeking to be approved: aiming at 
10−18, an improvement by x10 .

• In the far future, AMF/PRISM may 
bring the sensitivity to < 10−19

COMET Phase-I

Mu2e run 1
Mu2e run 2

Mu3e Phase-I

MEG-II
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Model independent approach: EFT
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𝜃𝐷 parameterizes the relative magnitude of dipole and
four-fermion coefficients

• Extend SM in effective field theory 
with higher dimension operators:

ℒ = ℒ𝑆𝑀 + σ𝑛≥1
𝐶𝑖𝑗

4+𝑛

Λ𝑛
𝒪4+𝑛

• CLFV can be introduced from dim-6: 

𝐵𝑟~
1

Λ4

• Λ can reach 𝒪(103~104) TeV!
• Good complementation to direct 

searches for new physics.
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𝜇 → 𝑒𝛾 and 𝜇 → 𝑒𝑒𝑒

• Both processes have accidental 
backgrounds proportional to muon 
beam intensity
• Needs to improve detectors constantly
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History of detector upgrades for 𝜇 → 𝑒𝛾

Illustration for accidental background limit to 𝜇 → 𝑒𝛾 sensitivity.

Even thinner silicon 
detector?

Mu3e Phase I Mu3e Phase II

MEG II

*One conceptual design for next step



Muon-to-electron conversion (𝜇𝑁 → 𝑒𝑁)
• Muon nuclear capture 

• Coherent process enhanced: the nucleus stays at ground state

• Signal: 1 mono-energetic electron: 𝐸𝑒 = 𝑀𝜇 − 𝐵𝜇 − 𝐸𝑟𝑒𝑐𝑜𝑖𝑙~105 𝑀𝑒𝑉

• Background: intrinsic, beam related, cosmic ray
• The intrinsic background, from muon Michel decay in orbit, has an end point 

energy near half muon mass, but

17

An example using He-
based drift chamber



Lesson from SINDRUM-II
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PSI proton beam repetition rate: 50.6 MHz. Pion 
lifetime: 26 ns: Pions can survive between pulses
• Original strategy: use scintillators to veto.

• No longer feasible with  
• SINDRUM-II strategy:

• Use narrow momentum window and time 
window to select the beam.

• Highly relying on the understanding of the 
beam

• Found unexpected events and had to stop.

To move forward, pion induced background must 
be solved!
• Need a better design about the beam structure.

Eur. Phys. J., 2006, C47:337-346
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Masaharu Aoki, HEF-ex WS 

The Lobashev scheme:



Toward < 10−16 sensitivity
• Need much more muons

• Thick target: ~1 hadron interaction length.
• Powerful capture magnetic field. ~5 T

• Need to suppress pion induced background
• Pulsed beam. Wait for pions decay.

• Need to suppress other beam particles
• Curved solenoid: select low momentum.
• Pulse beam also helps: wait for fast particles fly though.

• Need to control moun decay in orbit (DIO) 
background
• A few 100 keV/c resolution can work: drift chamber, 

straw tracker, etc. 
• Mind the non-gaussian tail: fitting quality check.

• Need to suppress cosmic ray induced background.
• Passive shielding will no longer be enough!
• Pave scintillators on top to veto cosmic ray event.
• Reduce live time: higher beam intensity. 20
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Masaharu Aoki, HEF-ex WS 



Mu2e @ Fermilab
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Prospect in the summer of 2009



COMET @ J-PARC
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COMET Phase-II
• Search for 𝜇 − 𝑒 conversion with full 

sensitivity:  factor of 10,000 improvement
• CDR submitted in 2009
• 8 GeV, 56 kW, tungsten target

COMET Phase-I
• Directly measure the muon beam 

with prototypes of Phase-II 
detector.

• Search for 𝜇 − 𝑒 conversion with 
factor of 100 improvement

• LOI submitted in 2011: E21
• 8 GeV, 3.2 kW, graphite target

• Upstream part same as Phase-II
• Except production target and 

part of shielding

• Detector is different.



Production target and the capture magnet

• 8 GeV 56 kW proton beam

• Thick target with 1~2 hadron 
interaction length

• Powerful capture magnet: 5 T
• Large inner bore to fit in the 

shielding
• Adiabatic decreasing field: focusing 

and mirroring

• Expected muon yield: 1011

muon/sec! (108 @𝑃𝑆𝐼)
24



Transportation solenoid

• Use C shape curved solenoid
• Beam gradually disperses

• Charge & momentum

• Dipole field to pull back muon 
beam

• Can be used to tune the beam

• Collimator placed in the end
• Utilize the dispersion in 180 degrees

25

Drift vertically, proportional 
to momentum.

Vertical field as “correction”



• Use straw tracker to measure the momentum
• Really light: put in vacuum, 12 micro 

meter thin straw

• Electromagnetic calorimeter
• Providing trigger, TOF and PID

Stopping target and detector system
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Phase-I detector: Cylindrical detector 
(CyDet)
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• Specially designed for Phase-I. Consists of:
• Cylindrical trigger hodoscope:

• Two layers: plastic scintillator for t0 and Cerenkov counter for PID.

• Cylindrical drift chamber:
• All stereo layers: z information for tracks with few layers’ hits.
• Helium based gas: minimize multiple scattering.
• Large inner bore: to avoid beam flash and DIO electrons.



Phase-I detector: Straw Tracker & Energy 
Calorimeter (StrEcal)
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• To measure all delivered beam incl BG, vacuum-compatible tracker and 
calorimeter is employed

• Straw = Planer/Low-mass, LYSO crystal ECAL = High resolution / High density
• Same concept as Phase-II detector = Prototype of Phase-II Final Detector



Design is good, but actual work is not just 
copy paste in reality…
• Proton beam

• Extinction, spill duty factor

• Full simulation of the muon beam: radiation issue

• Geant4 physics model validation

• Tracking quality control

29



Proton beam from J-PARC
• To make the proton extinction factor: R (𝑁𝑙𝑒𝑎𝑘/𝑁𝑝𝑢𝑙𝑠𝑒) < 10−10

• Shift the kicker phase by half period to avoid residual protons in the empty bucket.
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Measurement at main ring: 
proton leak < 10−12 2018: Observed K4 rear leak.

2021: T78 at hadron hall, solved the 
leak by shifting the kicker further: 
< 3.2 × 10−12

2023: Confirmed same performance 
after the power upgrade in the J-
PARC main ring.
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Proton beam intensity stability

* Current ripple in beamline magnet. From Ryotaro
Muto, Slow Extraction Workshop 2019

Data taken from MBM during Phase-
alpha, March 2023.

Muon beam monitor
(MBM)

• Measured the time structure of the secondary beam using COMET proton beamline.

• First look gave an impression that stability is not great.
• Maybe caused by the current ripple shown below.

• Can be canceled if precise fluctuation function can be give: next plan!



Full simulation of the muon beam
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From 100 proton hitting the target

It would be great if we only have muon/pion…

1

160000
bunch

Or 0.00625 ns

Trajectory colors
Blue: e-
Green: e+
Magenta: mu±
Cyan: pi±
Yellow: photon
Gray: neutron
Red: proton
Black: ion



Full simulation of the muon beam
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From 100 proton hitting the target

1

160000
bunch

Or 0.00625 ns

Trajectory colors
Blue: e-
Green: e+
Magenta: mu±
Cyan: pi±
Yellow: photon
Gray: neutron
Red: proton
Black: ion

But we also have photon/electron/positron…



Full simulation of the muon beam
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From 100 proton hitting the target

1

160000
bunch

Or 0.00625 ns

Trajectory colors
Blue: e-
Green: e+
Magenta: mu±
Cyan: pi±
Yellow: photon
Gray: neutron
Red: proton
Black: ion

And neutron…
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From 100 proton hitting the target

To study the radiation in the detector

1

160000
bunch, Or 0.00625 ns

1

16
bunch, Or 62.5 ns

Accumulate x10000, record on 
sampling plane, and simulate part-II

* Statistics here are chosen for visualization. Actual study utilized 𝒪(100)
bunches by mass production



Events that have hits in detectors

• The part from 
muon/pion in the 
beam is very 
difficult to be 
shielded.
• Can work on 

improving the 
collimator 
design.
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Events that have hits in detectors

• The part from 
electron/positron
/photon/neutron 
in the beam can 
be shielded
• Shielding has 

been carefully 
optimized to 
reduce the hit 
rate in detector.
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Radiation challenge to the CTH

• The original design no longer work 
under the radiation
• New design requires 4-fold coincidence 

to reduce the trigger rate.
• Complicated optimization to an additional 

shielding (around CTH) was carried out.

• The neutron radiation level was found 
to be too high for MPPC
• Had to use long fibers to reach out to low 

radiation level area.
• Had to give up Cherenkov counter (for 

now) due to low yield.
• Still cooling is found to be needed.

38

Original design

Evolved to
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One typical event:
About 44% occupancy if 
counted in a 1 usec
long time window.
Top left panel: hits 
drawn by endplate wire 
positions.
Top right panel: hits 
drawn by MC truth 
positions.

Hit colors
Blue: e-
Green: e+
Magenta: mu±
Cyan: pi±
Yellow: photon
Gray: neutron
Red: proton
Black: ion
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After hit selection using 
GBDT
• It is known that neural 

networks can provide 
much better selection 
quality. However that 
takes larger training 
samples to study.

• This GBDT method was 
tentatively used for 
illustration.
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Further selection based on 
Hough transform can 
provide further rejection 
to noise hits
• Final performance is 

(on average) ~85% 
sample purity VS 85% 
signal efficiency after 
the selection



The above-like sample was used for a Mock 
data challenge
• Usually the impurity of 

input sample will cause a 
tail in momentum 
resolution, which is 
dangerous, and very 
difficult to be removed 
by a traditional box cut.

• Recent study shows that 
GBDT can help to control 
the fitting quality: 
significantly better than a 
box cut.
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The biggest validation task is in the 
production target: hadron physics @ 8 GeV
• The Phase-alpha experiment measured muons from 8 GeV proton 

beam on graphite target.
• The comparison with MC (a randomly chosen model) has already 

shown some discrepancy.
• Further investigations are needed to better validate the hadron physics models.
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Range counter (RC)

Muon spectrum by RC



The biggest validation task is in the 
production target: hadron physics @ 8 GeV
• For anti-proton production, which 

is a source to background, we don’t 
have any data near the threshold. 
Had to implement theoretical 
model into Geant4
• Can be improved by comparing with a 

larger set of data, present or in future.
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Differential cross section in model

Distribution from Geant4 simulation using the 
implemented physics list



The nuclear capture models in Geant4 are 
mostly questionable
• For muon capture, we 

performed direct 
measurement at PSI 
(AlCap, with Mu2e 
group). The measured 
spectra were 
implemented as new 
physics models.

• For pion capture, 
recent updates caused 
concerns.
• Further investigations 

needed.
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The neutron scattering model

• The neutron radiation 
level is very important to 
guide the design.

• Some part of the 
scattering model in 
Geant4 doesn’t seem 
correct.

• Comparisons with other 
simulations tools are 
under investigation.
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The electron scattering model
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The energy straggling model in Geant4 (PAI model) is now under investigation. Certain 
discrepancies with literature was found.
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PRISM-PRIME experiment
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Design started before 2005. An ultimate dream.

• Use FFAG to store muon
• Clean muon beam.
• No need to wait for a few 100 ns: 

can perform search on high-Z 
materials.

• Narrow momentum bite: can use 
very thin stopping target to 
avoid energy straggling in the 
target which undermines the 
sensitivity.

• Use an additional curved solenoid to 
suppress DIO
• At this sensitivity, DIO electrons 

will be too intense for the 
detector.

• Curved solenoid can be used to 
select ~105 MeV electrons.



Trade off in Lobashev scheme can be 
recovered in PRISM scheme

• In high-Z target, muons immediately got absorbed by the nuclear
• The muonic atom’s lifetime can be shorter than the beam flash duration itself.
• There is no way to wait for the beam flash to vanish…

• High-Z target is of particular interests:
• Higher capture ratio means larger Cr and smaller DIO background.
• Z scanning can tell apart new physics model.
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Area in gray: 
Impossible 
in Lobashev’s
scheme, but 
possible in 
PRISM

Vector 2

Vector 1

Dipole
Scalar

V. Cirigliano et al., phys. Rev. D80 013002 (2009)



PRISM-PRIME experiment
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Design started before 2005. An ultimate dream.
Demonstration of pion capture 
and FFAG in RCNP, Osaka Univ.



𝜇𝑁 → 𝑒𝑁: Next generation
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The original design before COMET
Started from 2005.

The PRISM group is still updating the design to achieve an
ultimate search for 𝜇𝑁 → 𝑒𝑁

In synergy with muon collider: target, capture, and 
storage ring. Might be the most intense muon beam 
before muon collider.



𝜇𝑁 → 𝑒𝑁: Next generation

• FermiLab will have its accelerator 
upgraded: PIP-II, 8kW -> 100 kW

• Advanced Muon Facility (AMF) was 
proposed to make use of PIP-II for next 
generation muon physics

• 𝜇𝑁 → 𝑒𝑁 plan in AMF took the idea 
from PRISM: in cooperation.

• AMF proposed to use compressor ring 
to make beam structure for FFA
• 10 ns bunches at 100-1000 Hz

• Pile-up effect will be too much
• Need PRISM type detector: select electrons.
• 𝜇−𝑁 → 𝑒+𝑁 needs separate run in this case.

53AMF: hep-ex 2203.08278 



Challenges in detector system

• Better resolution needed.
• The thickness of the straw trackers can possible be reduced further

• Absolute momentum calibration
• Current designs are using pion decays to calibrate the absolute value.
• Extrapolation will cause an issue in higher sensitivity.

• People even considered to build small LINAC to provide calibration source.

• Potential high radiation level
• The duty factor of the beam from FFAG is small: Instantaneous radiation 

level might be very high.
• Full simulations/radiation tests needed to make sure the shielding is 

enough. Also providing challenges to detectors and electronics.
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Summary

• CLFV processes provide a clean test field for new physics models. 

• Out of all CLFV channels, the muonic channels, especially the muon-
electron conversion channel, remain in the leading position.

• The Lobashev’s scheme aims to bring the sensitivity of muon-electron 
conversion from 10−13 to 10−17, or even 10−18

• The scheme has already been waiting for 34 years…
• Mu2e @ FermiLab & COMET at J-PARC are the current experiments aiming to 

achieve the goal by early 2030s.
• Both have been delayed by > 10 years…

• The PRISM scheme aims to bring the sensitivity below 10−19

• Challenges are bigger, but so are the interests.
• Now sure when will it be realized, but the quest will surely continue!
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Thank You!
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