

白光源下裂变瞬发中子谱测量实验

报告人: 黄翰雄

2023年9月20日

内容大纲

1. 裂变瞬发中子谱简介 2. 裂变瞬发中子谱测量初步结果 3. 后续工作计划

- **a) 裂变瞬发中子和缓发中子 (**β 衰变之前, 10⁻¹⁴s内完成; 缓发占比2%)
- b) 意义: 裂变瞬发中子能谱 (PFNS) 在GF、核结构理论模型、反应堆 设计等方面都有应用价值。
- c) 数据现状:当前实验测量数据与理论结果之间存在明显的分歧。
- d) 裂变瞬发中子谱测量的难点:高能区、低能区、样品量

国内外PFNS实验装置的比较

实验室或 主要完成人	中子探 测 器个数	PPAC 层数	中子飞 行距离	样品名称	样品量	年份
CIAE/Li Anli	2	103	2.5	238U	\sim 5g	1996
France/A. Sardet	1	几十片		²³⁵ U, ²³⁸ U, ²³⁷ Np		2013
Japan/Miura	1	24 for ²³³ U	2	²³³ U, ²³⁸ U, ²³² Th	2.28g for ²³³ U, φ20mm*50mm for the others	2002
Los Alamos/Noda	60	10	1	²³⁵ U, ²³⁹ Pu,	100mg	2019
India/Desai	2	1	0.7	²³⁸ U	2.1mg/cm^2	2015
FINDA/China	48	10	1		100mg	

基于白光中子源的裂变瞬发中子谱测量意义?

CHINA INSTITUTE OF ATOMIC ENERGY 中核集团 CNNC

中国原子能科学研究院 3.裂变瞬发中子谱测量初步结果

10000000

测量方法

双飞行时间法(不考虑相对论条件下):

100000

其中: t为中子飞行时间, ns; L为中子飞行距离, m; E为中子能量。MeV。

2022年1月的实验

时间	状态
2022/01/18/08: 00-2022/01/19/2: 42	设备安装及调试,到19号凌晨2点没看到有效的 PPAC信号;
2022/01/19/8: 30-2022/01/20/00: 00	发现PPAC计数率过小,拆开PPAC找原因未果,装 上后发现PPAC漏气,加装一片前挡窗后解决漏气 问题,但是PPAC信号还是少得可怜;
2022/01/20/08: 08-2022/01/21/00: 00	挡束,更换PPAC前窗,重新彻底洗气,晚上11点 所有探测器工作正常,开始测量无束与在束本底;
2022/01/21/00: 00-2022/01/22/00: 00	测量不同孔径束斑条件下的双飞行时间谱,总体而 言
2022/01/22/00: 00-2022/01/22/09: 33	结束实验。

50mm束斑下信号堆积严重

Event: 85 e: 0 ts: 22817492 cfd: valid

Event: 89 e: 809 ts: 22817491 cfd: valid

Event: 80 e: 14081 ts: 22817492 cfd: valid

Event: 90 e: 44523 ts: 22817480 cfd: valid

9

3.3.4

101111

THE P. L. P.

国原子能科学研究院 2022年10月的实验

Shutter	Coll#1	Coll#2	ES#1 spot	ES#1 flux	ES#2 spot	ES#2 flux
(mm)	(mm)	(mm)	(mm)	$(n/cm^2/s)$	(mm)	$(n/cm^2/s)$
Φ3	Φ15	Φ40	Φ15	1.27E5	Ф20	4.58E4
Φ12	Φ15	Φ40	Ф20	2.20E6	Ф30	7.81E5
Φ50	Φ50	Φ58	Φ50	4.33E7	Ф60	1.36E7
78×62	76×76	90×90	75×50	5.98E7	90×90	2.18E7

a national nuolear oorporatio

ALAEA I

2023探测器效率刻度实验

通过测量锎源完成探测器的效率刻度(黄翰雄,吴鸿毅,康梦霄,张时宇)

PPAC幅度与裂变中子飞行时间二维关联谱 (加PSD后)

14小时锎源的测量能谱

3. 后续工作计划

- 增加探测器,提高统计精度
- 降低本底:支架改进,移走带电粒子靶室、追加 薄底衬靶等
- •测量低能出射中子的裂变瞬发中子谱
- 测量其它裂变核素的裂变瞬发中子谱
- 尝试测量出射中子的角分布

中国原子能科学研究院 CHINA INSTITUTE OF ATOMIC ENERGY hhanxiong@163.com 13520061343

感谢 PFNS 小 组的辛勤劳作 和散裂白光小 组的大力支持!