

LGAD探测器在中子核数据零度角探测的应用

报告人:郭宇航

参与人:郭宇航、李梦朝、牛梦臣、

梁志均、樊瑞睿

2023/09/21

灵

- 1 研究背景
- 2 实验原理及装置
- 3 数据分析与讨论
- 4 结论与总结

1.1 核数据测量与零度角探测器

- 核数据测量中,中子与靶的裂变产物的角分布是重要的测量内容之一。
- 然而由于零度角探测器的缺位, 束流零度方向的核数据不能直接测量。

- 约束零度角核数据测量的原因:
 - 1. 受束流辐照效应影响严重,很难稳定运行
 - 2. 束流粒子成为主要本底,影响测量

1.2 各种探测器对比

探测器类型		问题		
气体探测器		时间性能差,影响飞行时间测量;容易打火,很难稳定测量;		
闪烁体探测器		对γ本底敏感,需要n-γ甄别		
硅探测器	Si	抗辐照能力差		
	SiC	灵敏面积小;厚度低,对MIP粒子探测能力差		
	Diamond	贵!		

- 因此亟待寻找一种能够用于零度角方向核数据测量的探测器。
- 该探测器要满足:
 - 1. 耐辐照
 - 2. 对中子和Y粒子不敏感,本底低。

1.3 LGAD探测器

- 低增益雪崩探测器(Low Gain Avalanche Dynode)是一种近年来出现的前沿探测技术。
- 用于升级后的LHC上的Atlas谱仪端盖探测器。
- 十分耐辐照, 时间分辨率高, 对中子和γ不敏感。
- 国内已量产,适用于核数据测量零度角探测器。

表 LGAD探测器的主要性能参数

性能	耗尽层厚度	信号上升时间	信号宽度	时间分辨率	探测器尺寸
参数	50μm	~700ps	2~3ns	30 ps	$\sim 1 \times 1 \ mm^2$

1.4 测试实验@ CSNS-Back_n

- 在CSNS-Back_n开展实验,证明LGAD用于零度角探测器的可行性。
- 本报告介绍该实验的装置、实验结果与结论。

目

灵

- 1 研究背景
- 2 实验原理及装置
- 3 数据分析与讨论
- 4 结论与总结

2.1 实验原理

- · 拟采用CSNS back-n的白光中子束打6Li靶,产生次级α和T。
- 利用LGAD探测器测量产生的次级粒子,通过飞行时间测量中子能量。
- 根据白光中子能谱数据,测量 $^6Li(n,T)\alpha$ 反应截面谱。

2.2 探测器系统

- · 实验使用的LGAD探测器附在UTSC 探测器板上。
- 只用了其中一个探测器单元。
- 探测器尺寸1.3mm×1.3mm。

2.3 读出电子学

感谢中科采象有限公司的鼎力支持!

- 探测器的信号由FROS(Fast Read Out System)采集。
- LGAD探测器信号上升沿约700 ps, 宽度仅2~3 ns。
- 波形采集需要高采样率电子学。

FROS参数

- PCIe-X1022板卡
- PXIe 协议
- 6.4Gsps 采样率
- 2G 带宽
- 在线数据存储
- 无死时间
- 最大支持16路数据读出

灵

- 1 研究背景
- 2 实验原理及装置
- 3 数据分析与讨论
- 4 结论与总结

3.1 中子飞行时间计算

- 通过 γ -flash可以反演得到粒子打靶时间 T_0 .
- 进而得到每个次级粒子的hit时间T_{hit.}
- 由于辐照靶距离探测器非常近,近似认为中子到达辐照靶时间 $T_n \approx T_{hit.}$
- 进而可计算中子的飞行时间,和能量。

$$TOF_n = T_{hit} - T_0$$

$$E_n = m_{n,0} \cdot \left(\frac{1}{\sqrt{1 - \beta^2}} - 1\right)$$

$$\beta = \frac{L}{TOF_n \cdot c}$$

3.2 中子能量与次级粒子能量沉积关系

3.3.1 讨论-低能段偏差

Data of this work

Data from ENDF

- 在<100 eV能段出现偏差。
- 本次实验不是独立进行, 束流受到前面的闪烁体测试的装置影响。
- 该能段的中子被前端装置吸收。

PAGE 14

Cross Section (A.U.)

3.3.2 讨论-抗辐照性能

图a. 实验不同阶段探测器采集信号分布

图b. 实验不同阶段探测器信号均值变化

- · 等效中子通量总计 1.1×10¹⁰, 探测器性能并未发生明显变化。
- · LGAD的抗辐照性能满足零度角探测器的需求。

目

灵

- 1 研究背景
- 2 实验原理及装置
- 3 数据分析与讨论
- 4 结论与总结

4. 结论与讨论

- 通过实验,验证了LGAD探测器可用于核数据测量的零度角探测器。
 - ▶ 能承受等效中子通量1.1×10¹⁰的辐照,抗辐照性能满足需求。
 - ▶ 能充分响应MeV能量级的轻裂变碎片,并通过飞行时间法测量中子能量。
 - \triangleright 经 $^{6}Li(n,T)\alpha$ 截面测量实验验证,可用于零度角的截面数据测量。
- · LGAD探测器,以其造价便宜,耐辐照,性能稳定,时间分辨性能好的特点,在核数据测量的零度角探测方面具有优势。
- 相关paper已投出,等待评审。

致谢

承蒙厚爱 感谢倾听 Thanks!