

2023年CSNS反角白光中子实验装置(第七届)用户研讨会

基于时间投影室的快中子诱发Th-232裂变截面测量

白浩帆,崔增琪,胡益伟,刘杰,邬泽鹏,夏聪,任文凯,张国辉*

北京大学物理学院重离子物理研究所

樊瑞睿,易晗,李样,蒋伟,陈永浩,吕游,唐靖宇

中国科学院高能物理研究所

散裂中子源科学中心

CSNS反角白光中子源合作组

张志永,陈昊磊,陈朕,赵懋源,封常青,刘树彬等

中国科学技术大学

报告目录

- 1. 单能点裂变测量测试实验(2022)
- 2. 多能点裂变截面测量实验(2023)

1.1 实验布局

- TPC: CSNS Back-n研发
- 工作气体: Ar+CH₄ (90/10)
- Th-232样品: 产生待测的裂变事件
- 小裂变室:利用U-238的裂变事件监测绝对中子通量
- 液闪探测器:测量中子能谱,低能中子诱发裂变事件修正
- 实验时间: 2022.4

1.2 实验流程

1 无中子束流, Th-232 α衰变事件测量

2 有中子束流,选定长时间测量的电压

3 合适电压下长时间测量,目标得到裂变截面

1.3 Th-232 α衰变事件测量 (电压粗调)

- 基于α衰变事件测量进行实验电压的粗调
- 在较高电压下,使用Magboltz计算的漂移速率重建径迹,Costheta接近于均匀分布
- 为尽量减少 α 事件的干扰,在正式实验时应使得 α 事件保持低计数率
- 当电压低于VMesh=-280 V时, α 衰变事件计数率小于1 s⁻¹,该电压为电压细调的起点

1.4 Th-232 中子束流测试 (电压细调)

无束流, 阳极读出单元幅度分布谱

有束流, 阳极读出单元幅度分布谱

- 裂变事件贡献阳极读出单元幅度谱的高能部分
- 电压细调的原则为尽量减少超界的阳极读出单元信号,同时还要能够记录部分α事件
- 选取的正式实验电压为VMesh=-270 V, VCathode=-1215 V
- 模拟结果显示当丝网电压高于-220 V时, 触发效率基本不变。选定的正式实验电压合理

1.5 典型事件径迹

1.6 测量事件的二维谱分布情况

事件总信号幅度-径迹长度二维谱

事件总信号幅度-击中单元数二维谱

- 裂变碎片与α粒子的能量存在较大差异
- 裂变事件数的计算 $N_{Thf} = N_{Th}^A + N_{Th}^B + N_{Th}^C + N_{Th}^B$
- 对于A、B区事件以及未拟合出径迹参数的事件,主要依据径迹形状筛选裂变事件

1.7 A、B区事件展示

3D Track X-Y Plane **3D Track** X-Y Plane xpos (mm) xpos (mm) X-Z Plane Y-Z Plane X-Z Plane Y-Z Plane (mm) sodz (mm) sodz ypos (mm) xpos (mm) ypos (mm) xpos (mm) В区双α事件 A区裂变事件

• A区: 非裂变事件(大量)+裂变事件(少量)

B区: 裂变事件(大量)+ 非裂变事件(少量, 双α事件)

• C区: 裂变事件

1.8 裂变事件径迹参数分布谱

- 根据前篇所述方法挑选出所有裂变事件, TPC测量到的裂变事件总数为3518个
- 结合小裂变室的裂变计数和液闪探测器得到的中子能谱,对数据进行进一步分析,计算得到中子能量在5 MeV时的Th-232的裂变截面

1.9 裂变截面测量结果

$$\sigma_{\text{Th}} = \frac{1}{N_{\text{Th}}} \cdot \frac{N_{\text{Th,f}}}{\varepsilon_{\text{Th}}} \cdot \frac{1}{\Phi_{\text{Th}}}$$
 小 ϕ_{Kff} 本 ϕ_{Th} 和 ϕ_{Th} 本 ϕ_{Th} 和 ϕ_{\text

$$\sigma_{\mathrm{Th}} = \sigma_{\mathrm{U}} \frac{N_{\mathrm{U}} N_{\mathrm{Th,f}} \varepsilon_{\mathrm{f}}}{N_{\mathrm{Th}} N_{\mathrm{U,f}} \varepsilon_{\mathrm{Th}}} \rho^{\mathrm{low}} G$$

300 250 200 150 100 50	
0 500 1000 1500 2000 Anode (channel))
$\Phi_{\text{Th}} = \frac{\Phi_{\text{U}}}{G} = \frac{N_{\text{U,f}}}{\varepsilon_{\text{f}}} \cdot \frac{1}{\sigma_{\text{U}} N_{\text{U}}} \cdot \frac{1}{G}$	

Source	Magnitude (%)		
$\sigma_{ m U}$	1.5		
$N_{ m U}$	1.0		
$N_{ m Th}$	1.5		
$N_{ m Th,f}$	1.7		
$N_{ m U,f}$	0.6		
\mathcal{E}_{f}	1.0		
$\mathcal{E}_{\mathrm{Th}}$	2.0		
$ ho^{ m low}$	3.7		
G	8.6		
$E_{\rm n}$	3.8		
$\sigma_{\! m Th}$	10.1		

- 5 MeV中子能量下的Th-232裂变截面为0.135±0.014 b
- 使用TPC测量裂变截面的方案可行

2.1 实验布局

• 工作气体: Ar+CH₄ (90/10)

• 关键修改:将小裂变室固定在TPC前端,缩小两种样品的间距

• 测量能点: 4.50~5.40 MeV, 共5个能点

• 实验时间: 2023.5

2.2 每个能点下的实验流程

1 根据BluetSim模拟结果 选定实验电压 2 中子束流下短时测量,确保记录到裂变事件

3 长时间测量,得到该能 点下的裂变截面

2.3 基于Bluet模拟的电压选择

模拟裂变事件触发效率与丝网电压的关系曲线

- 倍增区增益系数与电压有关
- 信号足够大时才能引起探测器触发
- 丝网电压高于-220 V时, 裂变触发率趋近1
- 选定电压VMesh=-270 V, VCathode=-1215 V (与单能点实验--致)

2.4 测量事件的二维谱分布情况

5.0 MeV事件总信号幅度-径迹长度二维谱

5.0 MeV事件总信号幅度-击中单元数二维谱

$N_{\text{Th.f}} = N_{\text{Th}}^{\text{A}} + N_{\text{Th}}^{\text{B}} + N_{\text{Th}}^{\text{C}} + N_{\text{Th}}^{\text{R}}$

E / M-37	A.T	Proportion / %			
$E_{\rm n}/{ m MeV}$ $N_{ m Th,f}$	™ _{Th,f}	$N_{ m Th}^{ m A}$	$N_{ m Th}^{ m B}$	$N_{ m Th}^{ m C}$	$N_{ m Th}^{ m R}$
4.5	2636	0.83	10.17	88.13	0.87
4.7	2822	0.67	12.05	86.54	0.74
5.0	4340	0.48	11.29	87.17	1.06
5.2	3973	0.58	11.43	87.19	0.80
5.4	3002	0.67	10.09	88.24	1.00

2.5 裂变事件测量结果

- 在总信号幅度谱中, α事件区会延伸到2000道
- 基于TPC的径迹重建能力,可以通过径迹形状等参数,将低能的α事件和裂变事件进行区分
- ,需要通过模拟确定的非自吸收裂变事件份额显著减小

2.6 裂变截面测量结果

$$\sigma_{\text{Th}} = \sigma_{\text{U}} \frac{N_{\text{U}} N_{\text{Th,f}} \varepsilon_{\text{f}}}{N_{\text{Th}} N_{\text{U,f}} \varepsilon_{\text{Th}}} \rho^{\text{low}} G$$

不同能点液闪反解中子能谱

不同能点小裂变室阳极谱

Cross Section / b
0.148 ± 0.007
0.156 ± 0.007
0.149 ± 0.006
0.147 ± 0.007
0.149 ± 0.006

2.6 裂变截面测量结果

Source	Magnitude (%)		
$\sigma_{\! ext{U}}$	1.3 - 1.4		
$N_{ m U}$	1.0		
$N_{ m Th}$	1.5		
$N_{ m Th,f}$	1.5 - 2.0		
$N_{ m U,f}$	1.1 - 3.0		
\mathcal{E}_{f}	0.3		
\mathcal{E}_{Th}	1.4 - 2.2		
$ ho^{ m low}$	1.4 - 1.8		
G	1.3 - 1.8		
$E_{\rm n}$	1.0 - 2.6		
$\sigma_{\! m Th}$	4.1 - 4.7		
-			

- 在误差允许范围内, Th-232裂变截面测量结果与评价库结果保持一致
- 在修改实验布局后,截面测量不确定度显著减小
- 使用TPC进行高精度裂变截面测量具有广泛前景

总结展望

- 1、设计基于北京大学单能中子源,使用时间投影室(TPC)测量Th-232裂变截面的实验方案;
- 2、在5.0 MeV单能点下进行测试实验,验证了测量方案的可行性;
- 3、在4.5-5.4 MeV能量范围内测量5个能点下的裂变截面,得到低不确定度的截面结果;
- 4、随着时间投影室的发展, 裂变截面的精确测量有望实现新的突破, 误差有望降低至1%以内。

欢迎各位老师提出宝贵建议