

2304.03237 2204.03796 2204.03693

Electroweak Fits and Higgs Physics

	nature
CERNIX Years	Explore content \checkmark About the journal \checkmark Publish with us \checkmark
HIGGS boson	nature > articles > article
	Article Open Access A detailed m
	by the ATLA
	discovery <u>nature</u> > <u>articles</u> > article
July 4, 2022 CERN	The ATLAS Collaboration Article Open Access Published: 04 July 2022
QUANTUM PHYSICS OPINION	Aporti nature
10 Years after the Higgs,	Explore content Y About the journal Y Publish with us The CMS Col
Physicists Are Optimistic for)r nature > perspectives > article
More Discoveries	Perspective Published: 04 July 2022
	The Higgs boson turns ten
The Large Hadron Collider recently reopened after upgrades and is ready to exterritory	xplore new Gavin P. Salam, Lian-Tao Wang & Giulia Zanderighi 🖂
	<u>Nature</u> 607, 41–47 (2022) <u>Cite this article</u>
By Marcela Carena on July 5, 2022	29k Accesses 3 Citations 349 Altmetric Metrics

Post-Higgs Era: Precision Measurements and New Physics

Process	$\sigma({ m pb})$ @14 TeV			
ggF (N ³ LO QCD + NLO EW)	$54.72^{+4.28\%(\text{theory})+1.85\%(\text{PDF})+2.60\%(\alpha_s)}_{-6.46\%(\text{theory})-1.85\%(\text{PDF})+2.62\%(\alpha_s)}$			
VBF (NNLO QCD)	$4.260^{+.45\%(\text{scale})+2.1\%(\text{PDF}+lpha_s)}_{34\%(\text{scale})-2.1\%(\text{PDF}+lpha_s)}$			
Wh (NNLO QCD+NLO EW)	$1.498 \pm .51\% ({ m scale}) \pm 1.35\% ({ m PDF}+lpha_s)$			
Zh (NNLO QCD+NLO EW)	$.981^{+3.61\%(ext{scale})+1.90\%(ext{PDF}+lpha_s)}_{-2.94\%(ext{scale})-1.90\%(ext{PDF}+lpha_s)}$			
$t\bar{t}h$ (NLO QCD + NLO EW)	$.6128^{+6.0\%(ext{scale})+3.5\%(ext{PDF}+lpha_s)}_{-9.2\%(ext{scale})-3.5\%(ext{PDF}+lpha_s)}$			

Decay	Branching Ratio			
$h ightarrow b \overline{b}$	$.582^{+.65\%(\text{Theory})+.72\%(m_q)+.78\%(lpha_s)}_{65\%(\text{Theory})74\%(m_q)80\%(lpha_s)}$			
h ightarrow c ar c	$.02891^{+1.20\%(\text{Theory})+5.26\%(m_q)+1.25\%(\alpha_s)}_{-1.20\%(\text{Theory})98\%(m_q)-1.25\%(\alpha_s)}$			
$h ightarrow au^+ \overline{ au}^-$	$.06272^{+1.17\%(\text{Theory})+.98\%(m_q)+.62\%(\alpha_s)}_{-1.16\%(\text{Theory})99\%(m_q)62\%(\alpha_s)}$			
$h o \gamma \gamma$	$.00227^{+1.73\%(\text{Theory})+.93\%(m_q)+.61\%(\alpha_s)}_{-1.72\%(\text{Theory})99\%(m_q)62\%(\alpha_s)}$			
$h ightarrow ZZ ightarrow 4l(l=e,\mu, au)$	$.0002745 \pm 2.18\%$			
$h ightarrow WW ightarrow l^+ l^- u \overline{ u} (l = e, \mu, \tau)$	$.02338 \pm 2.18\%$			

Light Higgs Boson?

New Resonance?

B anomalies?

Muon g-2?

CDF-II W mass?

2023/10/14

1-CL_b

-1

-2

10

10

10

1. Post-Higgs Era

CMS-PAS-HIG-21-011

g

1. Post-Higgs Era

CMS Preliminary

" A new resonance? "

138 fb⁻¹ (13 TeV)

"A new resonance?"

10th of August, 2023

https://muon-g-2.fnal.gov/

CERN Accelerating science

BES-III NP @ Wuhan U.

Shots to prevent cancer show early promise p. 126 Science States and Sta

Three important questions:

Internal Consistency of the SM?

New Physics Scale ?

Possible New Physics Models ?

Internal Consistency of the SM :

2023/10/14

BES-III NP @ Wuhan U.

Oblique Parameters:

$$\left(M_w^2\right)_{\rm phys} = (M_w^{_{SM}})^2 \left[1 - \frac{\alpha S}{2(c_w^2 - s_w^2)} + \frac{c_w^2 \ \alpha T}{c_w^2 - s_w^2} + \frac{\alpha U}{4s_w^2}\right]$$

$$r \sim r \qquad z \sim r \qquad z \sim r \qquad r$$

$$z \sim r \sim z \qquad w \sim r \qquad w \sim r$$

• (1): The electroweak gauge group must be $SU_L(2) \times U_Y(1)$, with no new electroweal gauge bosons apart from the photon, the W^{\pm} and the Z.

- \cdot (2): The couplings of the new physics to light fermions are suppressed compared to it couplings to the gauge bosons.
- + (3): The intrinsic scale, M, of the new physics is large in comparison with M_w and M_z

$$\begin{aligned} \alpha S &= 4s_W^2 c_W^2 \left[\Pi_{ZZ}(0) - (c_W^2 - s_W^2) / (s_W c_W) \cdot \Pi'_{Z\gamma}(0) - \Pi'_{\gamma\gamma}(0) \right] \\ \alpha T &= \Pi_{WW}(0) / M_W^2 - \Pi_{ZZ}(0) / M_Z^2 \\ \alpha U &= 4s_W^2 \left[\Pi'_{WW}(0) - c_W^2 \Pi'_{ZZ}(0) - 2s_W c_W \Pi'_{Z\gamma}(0) - s_W^2 \Pi'_{\gamma\gamma}(0) \right] \end{aligned}$$

PRD 46 (1992) 381-409, Peskin and Takeuchi

- > Exception-1: NP is comparatively light.
- Exception-2: NP is comparatively large, but the lowenergy measurements become sufficiently accurate.

9306267, Maksymyk, Burgess, London

S, T and U:

<u> </u>	PD PD	PDG 2021			CDF 2022					
U = 0	Result	C	Corre	elation	Result	(Corre	lation		
$14 \mathrm{dot}$	$\mathrm{f}\left \chi^2_{\mathrm{min}}=15.4$	48	S	T	$\chi^2_{\rm min} = 17.$	82	S	T		
S	0.05 ± 0.0	08 1	.00	0.92	$0.15 \pm 0.$	08 1	.00	0.93		
T	0.09 ± 0.0	07		1.00	$0.27 \pm 0.$	06		1.00		
favor positive										
	PDG 2021			CDF 2022						
$13\mathrm{dof}$	Result	Co	Correlation		Result	C	Correlation			
	$\chi^2_{\rm min} = 15.42$	S	T	U	$\chi^2_{\rm min} = 15.44$	S	T	U		
S	0.06 ± 0.10	1.00	0.90	-0.57	0.06 ± 0.10	1.00	0.90	-0.59		
T	0.11 ± 0.12		1.00	-0.82	0.11 ± 0.12		1.00	-0.85		
U	-0.02 ± 0.09)		1.00	0.14 ± 0.09			1.00		
due to W width in fits										

New Physics scale:

Possible NP models:

How to make T larger: $\alpha T = \rho$

How to make S and U larger:

2023/10/14

i2HDM:

Discrete Z_2 symmetry ($H_1 \rightarrow H_1$ and $H_2 \rightarrow -H_2$)

$$H_1 = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}} \left(v + h + iG^0 \right) \end{pmatrix}, \quad H_2 = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}} \left(S + iA \right) \end{pmatrix}$$

$$V = \mu_1^2 |H_1|^2 + \lambda_1 |H_1|^4 + \mu_2^2 |H_2|^2 + \lambda_2 |H_2|^4 + \lambda_3 |H_1|^2 |H_2|^2 + \lambda_4 |H_1^{\dagger} H_2|^2 + \frac{\lambda_5}{2} \left\{ (H_1^{\dagger} H_2)^2 + h.c. \right\}$$

PRD 18 (1978) 2574, Deshpande, Ma

 $\gamma \longrightarrow \gamma \qquad z \longrightarrow \gamma$ $z \longrightarrow z \qquad w \longrightarrow w$

 $S = \frac{1}{2\pi} \left[\frac{1}{6} \log(\frac{m_S^2}{m_{H^{\pm}}^2}) - \frac{5}{36} + \frac{m_S^2 m_A^2}{3(m_A^2 - m_S^2)^2} + \frac{m_A^4(m_A^2 - 3m_S^2)}{6(m_A^2 - m_S^2)^3} \log(\frac{m_A^2}{m_S^2}) \right]$ "Spectrum" A/H^{+/-} $T = \frac{1}{32\pi^2 \alpha v^2} \left[F(m_{H^{\pm}}^2, m_A^2) + F(m_{H^{\pm}}^2, m_S^2) - F(m_A^2, m_S^2) \right]$ H^{+/-}/A S $= 32i\pi^2 \int \frac{d^4k}{(2\pi)^4} k^2 \frac{(m_+^2 - m_1^2)(m_+^2 - m_2^2)}{(k^2 - m_1^2)^2(k^2 - m_1^2)(k^2 - m_2^2)}$

3. Inert 2HDM

Oblique Parameter

3. Inert 2HDM

Relic Density of DM

• annihilation through Higgs into fermions

depends on g_{DMh} coupling; dominant channel for $M_{DM} < M_h/2$

• annihilation into gauge bosons (also into virtual states)

crucial for heavy masses; non-negligible for $M_h/2 < M_{DM} < M_W$

• coannihilation

very important when particles have similar masses

BES-III NP @ Wuhan U.

3. Inert 2HDM

Direct Detection

DM-scattering on nucleus through the Higgs exchange

$$\sigma_{DM-N} \propto \frac{g_{DMh}^2}{(M_{H_1} + M_N)^2}$$

Higgs invisible decay

Higgs invisible decays for $M_{DM} < M_h/2$

$$\Gamma(h \to H_1 H_1) = \frac{g_{DMh}^2 v^2}{32\pi M_h} \sqrt{1 - \frac{4M_{H_1}^2}{M_h^2}}$$

21

3. Inert 2HDM

It is very predictive, and can be tested soon!

BES-III NP @ Wuhan U.

4. Summary

Thank you!