Dark sector searches at Belle & Belle II

鄢文标(中国科学技术大学)

"2023年BESIII新物理研讨会",2023.10.15,武汉

Dark sector

- Dark matter (DM): existence established in astrophysics, e.g. rotation curves of spiral galaxies
- No dark matter candidate in the SM
 - ✓ convincing indication of new physics
- How to search for DM ?
 - ✓ Detect energy of nuclear/electron recoil

- ✓ Detect flux of visible produced by DM annihilation and decay
- ✓ DM weakly couples SM particle, can be produced in SM-particle annihilation

Dark sector

- **Belle II**: access mass range favored by light dark sectors, ~ O(MeV-GeV)
- The light DM weakly interacting to SM particles though a light mediators
- Mediator portals
 - ✓ Vector: dark photon A', Z' bosons
 - ✓ Pseudoscalar: axion-like particles (ALPs)
 - ✓ Scalar: dark Higgs/scalars
 - ✓ Neutrino: sterile neutrinos
- Signatures: depend on relation between DM mass, mediator mass, and SM particles mass

Dark Sector Candidates, Anomalies, and Search Techniques

SuperKEKB & Belle II

- Asymmetric e⁺e⁻ collider @ Tsukuba, Japan
- On searching for light dark matter or mediators
 - ✓ Hermetic detector and well known initial condition
 - ✓ Low background and excellent PID
 - ✓ specialized dark sector triggers for low multiplicity events: single track/muon/photon
- Collect 428 fb⁻¹ data sample: ~ BaBar; ~ half of Belle

L_{μ} - L_{τ} model & Z' decay

- Theory L_{μ} - L_{τ} model
 - ✓ JHEP 1612, 106 (2016); PRD89, 113004 (2014)
- Massive boson Z' interacting only with 2nd and 3rd generation of lepton
- This model could explain: dark matter puzzle, muon g-2 anomaly and b -> s $\mu^+ \mu^-$ anomaly
- Possible Z' decay
 - ✓ Light DM χ kinematically accessible, full invisible
- Invisible Z' decay
 - $\checkmark e^+ e^- \rightarrow \mu^+ \, \mu^-$ Z' and Z' invisible
 - \checkmark Signal: a narrow peak in recoil mass of $\mu^{\scriptscriptstyle +}\,\mu^{\scriptscriptstyle -}$

$$M_{recoil}^{2}(\mu\mu) = s + M(\mu\mu)^{2} - 2\sqrt{s}(E_{\mu^{+}}^{CMS} + E_{\mu^{-}}^{CMS})$$

$$\mathcal{L} = \sum_{\ell} \theta g' \bar{\ell} \gamma^{\mu} Z'_{\mu} \ell$$

$$M_{Z'} < 2M_{\tau} \implies BF[Z' \to \text{invisible}] \simeq 1/2,$$

$$M_{Z'} > 2M_{\tau} \implies BF[Z' \to \text{invisible}] \simeq 1/3.$$

$$\text{if } M_{Z'} > 2M_{\chi}$$

$$BF(Z' \to \chi \bar{\chi}) = 1$$

Invisible Z' decay

- Event signature
 - ✓ Two oppositely charged muons
 - ✓ Negligible activity in calorimeter
- Dominant QED background sources
 - $\checkmark~e^+~e^- \rightarrow e^+~e^-~\mu^+~\mu^-$, undetected $e^+~e^-$
 - $\checkmark e^+ e^- \rightarrow \mu^+ \, \mu^- \, n(\gamma),$ undetected gammas

- ✓ $e^+ e^- \rightarrow \tau^+ \tau^- (\gamma)$, leptonic τ decay & missing neutrinos, apply neural network
- No significant excess of data above expected background.
- Signal yield extraction: 2D fit in mass & θ of against a $\mu^+ \mu^-$ pair

Invisible Z' decay

- 90% C.L. upper limits on the cross section of $e^+ e^- \rightarrow \mu^+ \mu^- Z'$ and Z' invisible
- Cross section results are translated into 90% C.L. UL on coupling g'
- Update of first Belle II analysis with 300x dataset
 - ✓ Belle II 50 ab⁻¹: about 600 x 79.7 fb⁻¹
- For fully invisible L_{μ} - L_{τ} model, Z' with negligible and non-negligible width
 - \checkmark world-leading for direct searches of Z' with masses above 11.5 MeV/c²
 - ✓ $(g-2)_{\mu}$ favored region excluded for 0.8 < M(Z') < 5 GeV/c²

Search for $\tau^+\tau^-$ resonance in $e^+e^- \rightarrow \mu^+\mu^-\tau^+\tau^-$

- $e^+ e^- \rightarrow \mu^+ \mu^- X & X \rightarrow \tau^+ \tau^-$:
 - \checkmark X = Z', ALP, leptophilic scalar
- Event signature
 - ✓ Two oppositely charged muons
 - ✓ τ decay: 1 charged particle + ≥ 0 neutral
 - \checkmark Recoil mass of $\mu^{\scriptscriptstyle +} \ \mu^{\scriptscriptstyle -} \ pair \rightarrow$ search for
 - Z', leptophilic scalar and ALP
- Challenging because of neutrinos and background
 - \checkmark < 6 GeV/c²: four lepton simulation with ISR effect²⁵⁰
 - $\checkmark > 9 \text{ GeV/c}^2$: two-photon $e^+ e^- \rightarrow e^+ e^- h$
 - ✓ Smooth background
- Signal yield extraction: fit of recoil mass of $\mu^+ \mu^-$
 - ✓ Signal: two CB function with same mean value
 - Background: a constant
- 90% C.L. upper limits on the cross section of $e^+~e^- \to \mu^+~\mu^-~\tau^+~\tau^-$

Search for $\tau^+\tau^-$ resonance in $e^+e^- \rightarrow \mu^+\mu^-\tau^+\tau^-$

- Cross section results are translated into upper limits ALP a on the coupling $\Gamma(a 1)$
- First limits at 90% CL for a leptophilic dark scalar S with $m_S > 6.5 \text{ GeV/c}^2$
- \bullet First direct limits at 90% CL for axion-like particle $ALP \rightarrow \tau^+ \, \tau^-$

$$\Gamma(a \to \ell^+ \ell^-) = \frac{m_a m_\ell^2}{8\pi f^2} c_{\ell\ell}^2(m_a) \sqrt{1 - \frac{4m_\ell^2}{m_a^2}} \,,$$

Leptophilic scalar Φ_L

$$\mathcal{L} = -\xi \sum_{\ell=e,\mu, au} rac{m_\ell}{v} ar{\ell} \phi_L \ell$$

Search for $\mu^+\mu^-$ resonance in $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^-$

 e^+

- $e^+ e^- \rightarrow \mu^+ \mu^- X & X \rightarrow \mu^+ \mu^-$:
 - \checkmark X = Z', muonphilic dark scalar S
 - \checkmark Look for peak in in opposite charge $\mu^{\scriptscriptstyle +} \, \mu^{\scriptscriptstyle -}$ mass
- Event signature
 - ✓ Four charged tracks, at least three identified muon
 - ✓ Mass(4 track) $\approx \sqrt{s}$
 - ✓ No extra energy
- Dominant SM background $e^+ e^- \rightarrow \mu^+ \mu^- \mu^+ \mu^-$
 - ✓ Smooth background
- Signal yield: fit of invariant mass of $\mu^+ \mu^-$ of
- \rightarrow obtain cross section of $e^+ \: e^- \to \mu^+ \: \mu^- \: X, \: X \to \mu^+ \: \mu^-$

μ-, τ-

 μ^+ , τ^+

μ, τ.

Search for $\mu^+\mu^-$ resonance in $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^-$

- Cross section results are translated into UL on coupling
- Competitive 90% CL upper limits on g' of Z' with BaBar (> 500 fb⁻¹) and Belle (> 600 fb⁻¹)
 - ✓ aggressive background suppression
- First 90% CL upper limits for muonphilic scalar model

Search for long-lived scalar particle in $b \rightarrow s$

- Search for a new scalar S in $b \rightarrow s$ transitions
- scalar S can mix SM Higgs with mixing angle θ
- scalar S is long-lived particle (LLP) at small θ
 - ✓ Performance in LLP vertex reconstruction
- 8 exclusive "visible" channels
 - $\checkmark \ B^{\scriptscriptstyle +} \to K^{\scriptscriptstyle +} \ S \ and \ B^0 \to K^{*0} \ S \to K^{\scriptscriptstyle +} \ \pi^{\scriptscriptstyle -} \ S$
 - $\checkmark S \rightarrow e^+e^-/\mu^+\mu^-/\pi^+\pi^-/K^+K^-$
 - ✓ Explore S lifetime 0.001 cm < $c\tau$ < 100 cm
- Background
 - ✓ Combined background: reconstructed B
 - ✓ K⁰_s background: mass veto
 - ✓ Large displacement requirement
- Signal extraction: fit to the LLP reduced mass, separately for each channel and lifetime

Search for long lived scalar particle in $b \rightarrow s$

- First model independent 95% CL upper limits
 First limits for hadron (π⁺π⁻/K⁺K⁻)
- translate into model independent limits on $\sin\theta$ vs. m_s

Search for inviable boson α in LFV τ decay

- Search for ALP particles in τ decay
- Process $e^+ e^- \rightarrow \tau^+ \tau^-$
 - $\checkmark Tag \ \tau \rightarrow h^{\text{-}} \ h^{\text{+}} \ h^{\text{-}} \ \nu_{\tau} \ (h = \pi, K)$
 - ✓ Signal $\tau \rightarrow l \alpha$ ($l = e, \mu$)
- Irreducible background $\tau \rightarrow l \nu_{\tau} \nu_{l}$
- Signal τ rest frame: **no** due to neutrinos
 - ✓ Pseudo-rest-frame by tagged τ
- Search for a peak in normalized lepton energy
 - ✓ No significant excess observed

Search for inviable boson α in LFV τ decay

Search for dark Higgs & dark photon

- Dark photon A'
 - \checkmark Kinetic mixing with photon with strength ϵ
 - ✓ Mass produced by Higgs mechanism involving a dark Higgs boson
- Dark Higgs h'
 - ✓ Coupling to A' with $\alpha_D D$
 - ✓ Does not mix with SM Higgs
- Dark Higgsstrahlung $e^+ e^- \rightarrow A'^* \rightarrow A' h'$
- Different signatures depend on A' mass

 ✓ M_{h'} > M_{A'}: h' visible, Belle & BaBar
 ✓ M_{h'} < M_{A'}: h' long-lived, invisible, KLOE
- $e^+ e^- \rightarrow A' h'$
 - $\checkmark A' \rightarrow \mu^+ \mu^- \&$ invisible h'

Search for dark Higgs & dark photon

 10^{4}

10³

10²

10¹

 10^{0}

Candidates

- $e^+ e^- \rightarrow A' h': A' \rightarrow \mu^+ \mu^- \&$ invisible h'
- Experimental signature
 - $\checkmark \mu^+ \mu^-$ plus missing energy
 - ✓ peak in two dimensional distribution of recoil mass and dimuon mass
- Dominant backgrounds: $(\gamma) \mu^+ \mu^-, (\gamma) \tau^+ \tau^-,$
- $e^+ e^- \mu^+ \mu^-$ and $(\gamma) \pi^+ \pi^-$
- 90% CL upper limit on cross section & $\varepsilon^2 \times \alpha_D$

Belle II

M_{recoil} [GeV/c²]

0

 $\int \mathcal{L}dt = 3 \mathbf{PR} \mathbf{I}_{10} \mathbf{130} \mathbf{071804} (2023)$

Search for leptophilic scalar in τ decay

- Search for dark scalar from τ decay
- Leptophilic scalar $\Phi_L e^+ e^- \rightarrow \tau^+ \tau^- \Phi_L \& \Phi_L \rightarrow e^+ e^- / \mu^+ \mu^-$
- $\Phi_{\rm L}$ decay
 - $\sqrt[]{\Phi}_{L} \rightarrow e^{+}e^{-}$ for $m(\Phi_{L}) < 2m_{\mu}$: low mass region
 - $\checkmark \Phi_L \rightarrow \mu^+ \mu^-$ for m(Φ_L) > 2m_µ: high mass region
- Strategy
 - \checkmark Require 1-prong τ final states
 - ✓ 4 track with 0 net charge
 - ✓ peak of invariant of $m(l^+l^-)$, l = e, µ
- Define BDT score to suppress background
- Signal extraction: fit to m(l+l) distribution

Search for leptophilic scalar in τ decay

- No significant excess obtained in low/high mass region
- 90% CL upper limits on strength ξ vs. m(Φ_L)
 - ✓ Comparable or more stringent limits than BaBar
 - \checkmark Exclude wide range of parameter space of model favored by (g-2)_u

 $\mathcal{L} = -\xi \sum_{\ell=e,\mu, au} rac{m_\ell}{v} ar{\ell} \phi_L \ell$

Summary

- The Belle & Belle II experiment are exploring light dark matter or mediators at the luminosity frontier.
- New dark sector triggers enable to target unique low multiplicity final states
- Interesting results are obtained with a subset of the full available data
- A lot of dark sector searches with more Belle II data are in progress.

