Invisible decays at BESIII

Peicheng Jiang (On behalf of the BESIII Collaboration)

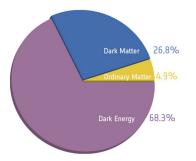
Peking University

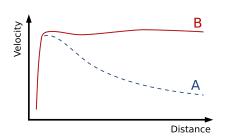
October 14, 2023 New Physics Workshop, Wuhan, 2023

Outline

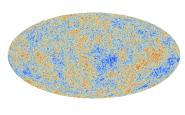
- Introduction
- BESIII experiment
- Invisible decays at BESIII
 - Search for invisible decays of a dark photon
 - lacksquare Search for a massless dark photon in $\Lambda_c^+ o p \gamma'$ decay
 - Search for invisible decays of the Λ baryon

Summary

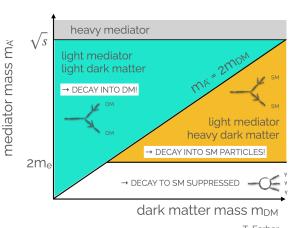

PLB 839, 137785 (2023)


PRD 106, 072008 (2022)

PRD 105, L071101(2022)

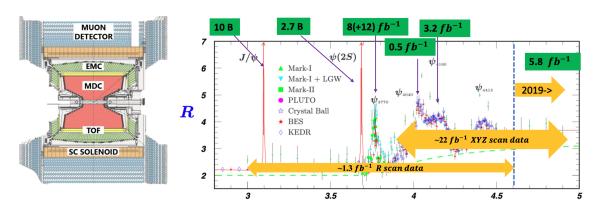

Dark matter

- Existence of dark matter
 - Galaxy rotation curves
 - Gravitational lensing
 - Cosmic microwave background

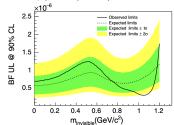


Invisible decays

- Dark matter may interact with Standard Model through "portal" interactions
 - Vector portal (dark photon)
 - Pseudo-scalar portal (axion-like particle)
 - Scalar portal (dark Higgs)
 - Neutrino portal (heavy neutrinos)

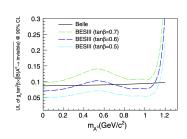

 Search for dark sector particles with invisible signatures

T. Ferber

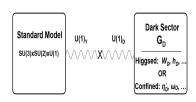

BESIII experiment

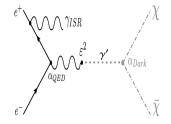
- BESIII experiment is a symmetric electron positron collider running at tau-charm region
- BESIII has collected the largest data samples of 10 billion J/ψ , 2.7 billion ψ (3686) on threshold in the world, and 20 fb⁻¹ ψ (3770) data samples are comming soon

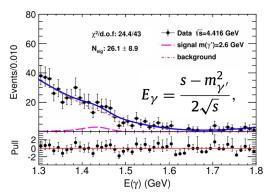
Earlier invisible decay searches at BESIII


- Invisible decays of η/η' mesons
 - 225M J/ψ sample
 - $\mathcal{B}(\eta \to \text{invisible}) < 1.01 \times 10^{-4} \text{ at } 90\% \text{ CL}$
 - $\mathcal{B}(\eta' \to \text{invisible}) < 5.21 \times 10^{-4}$ at 90% CL
- Invisible decays of ω/ϕ mesons
 - 1.3B J/ψ sample
 - $\mathcal{B}(\omega \to \text{invisible}) < 7.3 \times 10^{-5} \text{ at } 90\% \text{ CL}$
 - $\mathcal{B}(\phi \to \text{invisible}) < 1.7 \times 10^{-4} \text{ at } 90\% \text{ CL}$
- Search for the decay $J/\psi \rightarrow \gamma + \text{invisible}$
 - 448M ψ (3686) sample

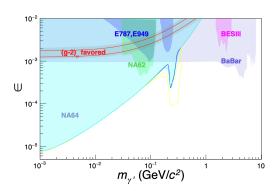
PRD 87, 012009 (2013)


PRD 98, 032001 (2018)

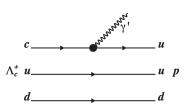

PRD 101, 112005 (2020)


Massive dark photon

- A spin-one boson associated with a new Abelian gauge symmetry $U(1)_D$ spontaneously broken, massive kind
- Proposed as a force carrier connected to dark matter
- The dark photon couples weakly to a SM photon through kinetic mixing with a mixing parameter $\epsilon \sim 10^{-3}$
- The dark photon (γ') would predominately decay into a pair of DM particles $\gamma' \to \chi \bar{\chi}$ if $m_{\chi} < m_{\gamma'}/2$
- Search for the dark photon in the radiative annihilation process $e^+e^- \to \gamma\gamma'$, followed by an invisible decay of the γ'



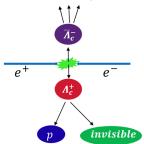
- Data samples: 14.9 fb⁻¹ e^+e^- annihilation data at $\sqrt{s} = 4.13 \sim 4.60$ GeV
- lacksquare Search for single photon signals in $1.3 < \mathrm{E}(\gamma) < 1.8$ GeV corresponding to $1.5 < m_{\gamma'} < 2.9$ GeV
 - Low $E(\gamma)$ region \rightarrow low trigger efficiency & high background level
 - High $E(\gamma)$ region \rightarrow saturation of the EMC electronics
 - A simultaneous likelihood fit on the photon energy spectra is performed to all data sets
 - \blacksquare No obvious signal observed, the the maximum global significance, is determined to be 2.2σ

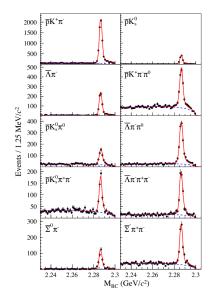


- The 90% CL upper limits of coupling ϵ are $(1.6-5.7) \times 10^{-3}$
- The exclusion limits are consistent with what already excluded by BaBar PRL 119 (2017) 131804
- BESIII will produce more competitive results with 20 fb⁻¹ data taken at 3.77 GeV in the future

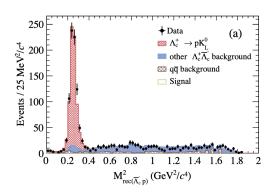
Massless dark photon

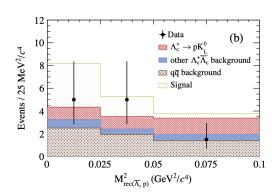
- A spin-one boson associated with a new Abelian gauge symmetry $U(1)_D$ unbroken, massless kind
- FCNC process is highly suppressed by the GIM mechanism in the charm sector less than 10⁻⁹ in SM, Phys. Rev. D 98, 030001 (2018)
- A massless dark photon could induce FCNC process through higher dimensional operators, allowing $\mathcal{B}\left(\Lambda_c^+ \to p \gamma'\right)$ up to 1.6×10^{-5} Phys. Rev. D 102, 115029 (2020)
- The missing energy due to the dark photon is the feature of the signal processes

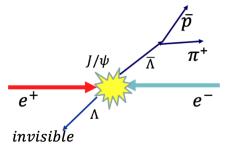


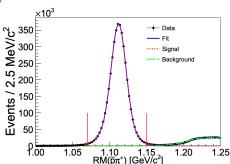

■ Data samples: 4.5 fb⁻¹ e^+e^- annihilation data at $\sqrt{s} = 4.6 \sim 4.7$ GeV

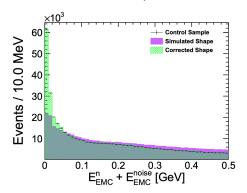
■ Double Tag Method

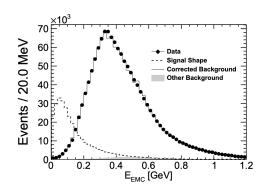

- Tag side: reconstruct $\bar{\Lambda}_c^-$ with ten hadronic decay modes. Tag yields: 105244 ± 384
- Signal side: $\Lambda_c^+ \to p \gamma'$
- $\blacksquare \ \mathcal{B}\left(\Lambda_c^+ \to p \gamma'\right) = \frac{N_{\rm obs} N_{\rm bkg}}{\sum_{ij} N_{ij}^{\rm ST} \cdot \left(\epsilon_{ij}^{\rm DT} / \epsilon_{ij}^{\rm ST}\right)}$


10 hadronic decay modes


- Search for an invisible signature on the square of the recoil mass spectrum $M_{\text{rec}(\bar{\Lambda}_{c}^{-}p)}^{2}$
 - Signal region is defined as $(0.0,0.1)\,\mathrm{GeV^2/c^4}$ in the $M^2_{\mathrm{rec}(\bar{\Lambda}_c^-\,\mathrm{p})}$
 - No significant signal observed, $\mathcal{B}\left(\Lambda_c^+ \to p \gamma'\right) < 8.0 \times 10^{-5}$ at 90% CL
 - Currently consistent with the theoretical UL prediction: 1.6×10^{-5} PRD 102, 115029 (2020)
 - \blacksquare A more stringent constraint is expected with larger Λ_c^+ samples at BESIII




- Dark matter may be represented by baryon matter with invisibles, and many theories suggest a potential correlation between baryon symmetry and dark sector Phys. Rev. D 105, 115005 (2022)
 - B-Mesogenesis mechanism
- Discrepancy of neutron lifetime in beam method and the storage methods $\rightarrow \mathcal{B}(n \rightarrow p + X) \approx 99\%$ Phys. Rev. D 99, 035031 (2019)
- Data samples: $10B J/\psi$ events
- Double Tag Method: reconstruct $\bar{\Lambda}$ with $\bar{\Lambda} \to \bar{p}\pi^+$ decay


$$\mathcal{B}(\Lambda o ext{invisible}) = rac{ extstyle N_{ ext{sig}}}{ extstyle N_{ ext{tag}} \cdot (arepsilon_{ ext{sig}}/arepsilon_{ ext{tag}})}$$

- Search for signal on total energy in EMC E_{EMC} (not charged tracks)
 - Dominating background: $\Lambda \to n\pi^0$, $E_{\rm EMC} = E_{\rm EMC}^{\pi^0} + E_{\rm EMC}^n + E_{\rm EMC}^{\rm noise}$
 - \blacksquare $E_{\rm EMC}^{\pi^0}$: based on the MC simulations
 - $E_{\rm EMC}^n + E_{\rm EMC}^{\rm noise}$: based on control sample $J/\psi \to \Lambda (n\pi^0) \bar{\Lambda} (\bar{p}\pi^+)$
 - No obvious signal observed, $\mathcal{B}(\Lambda \to \text{invisible}) < 7.4 \times 10^{-5}$ at 90% CL
 - Consistent with the prediction of 4.4×10^{-7} from the mirror model arXiv:2006.10746

Summary

- Search for invisible decays has become an intriguing idea for understanding dark matter, and also for looking into new physics beyond SM
- BESIII plays an active role in invisible decay searches, with many first searches or best limits
 - Search for dark photon invisible decays (competitive results)
 - Search for a massless dark photon in Λ_c^+ decays (first FCNC search of charmed baryon)
 - Search for Λ invisible decays (first search for invisible baryon decays)
- With more data available, more exciting results are coming soon

STAY TUNED