

Charmonium weak decay searches at BESII

Tian-Zi Song (宋天资), Sun Yat-sen University

2023 BESIII New Physics Group Workshop, October 13~16, 2023, Wuhan

songtz@mail2.sysu.edu.cn

- > New physics researches at BESIII
- Charmonium hadronic weak decays
- Charmonium semi-leptonic decays
- FCNC decays
- > Summary

New physics searches at BESIII

Symmetry

- BNV & LNV processes
- ◆ LFV processes
- ◆ Other symmetry violation

Very rare

- ♦ FCNC processes
- Charmonium weak decays
- Other rare decays

Exotic

Dark photon
Invisible signatures
Light Higgs, Z'

Exotic resonances

Strategies

- Common statistic and standards
- Sharing methods, tools and codes
- Uniform semi-blind strategy and datasets (to avoid a possible bias)

Nation Science Review 8, nwab189 (2021), arXiv: 2102.13290
New Physics Program of BES, D.Y. Wang, in "30 Years of BES Physics"

- > New physics researches at BESIII
- Charmonium hadronic weak decays
- Charmonium semi-leptonic decays
- FCNC decays
- > Summary

Search for $\psi(3686) \rightarrow \Lambda_c^+ \overline{\Sigma}^- + c.c.$

- Searches for purely baryonic weak ψ(3686) decays involving Λ⁺_c have not been performed.
 In the SM theory, B(ψ(3686) → Λ⁺_cΣ⁻ + c.c.) should be 10⁻⁹~10⁻¹¹.
- > New physics mechanisms beyond the SM may enhance the BF significantly.
- $\succ \psi(3686) \rightarrow \Lambda_c^+ \overline{\Sigma}{}^-, \Lambda_c^+ \rightarrow p K^- \pi^+, \overline{\Sigma}{}^- \rightarrow \overline{p} \pi^0$
- > Two main backgrounds: $\psi(3686) \rightarrow K^*(892)^- p\bar{\Lambda}, \ \bar{\Lambda} \rightarrow \pi^+ \bar{p} \iff M(\pi^+ \bar{p})$
 - $\psi(3686) \rightarrow \overline{K}^{*0}(892)p\overline{\Sigma}^-, \ \overline{K}^{*0}(892) \rightarrow \pi^+K^- \longleftarrow M(K^-\pi^+)$

Search for $\psi(3686) \rightarrow \Lambda_c^+ \overline{\Sigma}^- + c.c.$

- > Using (448.1 \pm 2.9) × 10⁶ ψ (3686) events from BESIII.
- ➤ The signal yield of ψ(3686) → Λ⁺_c Σ⁻ is extracted from an unbinned maximum likelihood fit to the distribution of $M(pK^-\pi^+)$.
- In the fit, the lineshapes of the signal is modeled by the signal MC and the background is modeled by a first-order Chebyshev polynomial.

$$\succ \mathcal{B}(\psi(3686) \rightarrow \Lambda_c^+ \overline{\Sigma}^- + c. c.) < \mathbf{1}.\, \mathbf{4} \times \mathbf{10^{-5}} @90\% \text{ C. L.}$$

> Fitting the accepted candidates to the recoiling mass spectra for each decays.

➤ The Branching fraction at 90% C.L.:

Mode	B (90% C.L.)
$J/\psi ightarrow \overline{D}{}^0 \pi^0$	$< 4.7 \times 10^{-7}$
$J/\psi ightarrow \overline{D}{}^0\eta$	$< 6.8 \times 10^{-7}$
$J/\psi ightarrow \overline{D}{}^0 ho^0$	$< 5.2 \times 10^{-7}$
$J/\psi \to D^-\pi^+$	$< 7.0 \times 10^{-8}$
$J/\psi \to D^- \rho^+$	$< 6.0 \times 10^{-7}$

By Chengwei Wang et al. arXiv:2310.07277

songtz@mail2.sysu.edu.cn

100 150

50

Search for $J/\psi \to D_s(D^0)M$

In the SM B(J/ψ → DM) < 10⁻⁸, but some new physics models can enhance it to 10⁻⁶~10⁻⁵
 In previous work, N_{J/ψ} = 5.8 × 10⁷ or N_{J/ψ} = 2.25 × 10⁸, now we have 10¹⁰ J/ψ events.

 $\succ \text{ Event selection: Using } M(D_s), M(\rho), M(\phi), \\ E_e/P_e, E_{miss}, P_{miss}, U_{miss}...$

➤ Under internal review.

By Yonghua Zhan et al.

 $\gg J/\psi \rightarrow \overline{D}^{0}\overline{K}^{*0} + c.c.$ $\gg \overline{D}^{0} \rightarrow K^{+}e^{-}\overline{\nu}_{e}$ $\gg \overline{K}^{*0} \rightarrow K^{-}\pi^{+}$ $\stackrel{e}{=} Event selection: Using M^{2}(K^{-}\pi^{+}), M_{K^{-}\pi^{+}}^{recoil^{2}}, E_{e}/P_{e}, E_{\gamma}^{tot}, P_{miss}, U_{miss}...$

The latest progress was reported on the BESIII workshop.

Year	Number of J/ψ events (×10 ⁶)	Percentage of partial data (%)	Number of partial data $(\times 10^6)$
2009	224.04	30	67.21
2012	1088.50	10	108.85
2018	4583.41	10	458.34
2019	4191.10	10	419.11
Total	10087		About 1053

By Xiaokang Li et al.

9

- > New physics researches at BESIII
- Charmonium hadronic weak decays
- Charmonium semi-leptonic decays
- FCNC decays
- > Summary

Search for $J/\psi \rightarrow D^- e^+ \nu_e + c.c.$

- ➤ The inclusive branching fraction of J/ψ weak decays to a single charmed meson was predicted to be at the order of 10⁻⁸ or lower in the SM theory
- ≻ In some new physics models, the BF may reach to 10^{-5} . ≻ $J/\psi \rightarrow D^-e^+\nu_e$, $D^- \rightarrow K^+K^-\pi^-$
- > (1.0087 ± 0.0044) \times 10¹⁰ J/ψ events from BESIII
- ▷ Using a fit on U_{miss} (= $E_{miss} |P_{miss}|$) to extract the signal

 $> \mathcal{B}(J/\psi \to D^- e^+ \nu_e + c.c.) < 7.1 \times 10^{-8} @90\% C.L.$

> Puts a stringent constraint on the parameter spaces for different new physics models

Search for $J/\psi \rightarrow D^- \mu^+ \nu_\mu + c.c.$

- ➤ The inclusive branching fraction of J/ψ weak decays to a single charmed meson was predicted to be at the order of 10⁻⁸ or lower in the SM theory
- > (1.0087 ± 0.0044) × 10¹⁰ J/ψ events from BESIII $> J/\psi \rightarrow D^- \mu^+ \nu_\mu, D^- \rightarrow K^+ K^- \pi^-$
- ▷ Using a fit on U_{miss} (= E_{miss} $|P_{miss}|$) to extract the signal

 $> \mathcal{B}(J/\psi \to D^-\mu^+\nu_\mu + c.c.) < 5.6 \times 10^{-7} @90\% C.L.$

> The first search of a charmonium weak decay with a muon in the final state.

Background analysis method

- Although the *M*(*D*) distribution of signal events has a sharp peaking, we cannot avoid a lot of background events still mixed in.
- But now we have a mature method to veto background events efficiently, which can help us suppress it a lot.

background : $J/\psi \rightarrow K^+K^-\pi^+\pi^-$ Identified as : background : $J/\psi \rightarrow K^- K^+ \pi^- \pi^+$ $\bar{\nu}_{\mu}$ Identified as :

- The key to this approach is to identify the particles that are mis-identified.
- In this way, we can use hadronic decays instead of semi-leptonic decays to reconstruct hadrons.

By Zhijun Li et al.

arXiv:2307.02165

Search for $J/\psi \rightarrow D_s^- e^+ \nu_e^- + c.c.$

- ➤ The inclusive branching fraction of J/ψ weak decays to a single charmed meson was predicted to be at the order of 10⁻⁸ or lower in the SM theory
- \succ 4 tags to reconstruct *D_s* : (In these decays, *K*⁰_s → π⁺π⁻, π⁰ → γγ)

•
$$D_s^- \to K_s^0 K^-$$
 • $D_s^- \to K^+ K^- \pi^- \pi^0$
• $D_s^- \to K^+ K^- \pi^-$ • $D_s^- \to K_s^0 K^- \pi^+ \pi^-$

> Event selection: Using
$$M(D_s)$$
, E_e/P_e , E_{γ}^{tot} , $|P_e| + |P_{miss}|$, P_{miss} ...

≻ Using a fit on U_{miss} (= E_{miss} − $|P_{miss}|$) to extract the signal

	$ \begin{aligned} \phi &\to D_s^- e^+ \nu_e \\ &\to K^+ K^- \pi^- \end{aligned} $
\bigcirc	

 $\times 10^{-11}$

Decay mode	QCDSR [6]	LFQM [7]	BSW [8]	CCQM [9]	BSM [10]
$J/\psi \rightarrow D^- e^+ v_e + c.c.$	$0.73^{+0.43}_{-0.22}$	5.1 – 5.7	$6.0^{+0.8}_{-0.7}$	1.71	$2.03^{+0.29}_{-0.25}$
$J/\psi \rightarrow D^- \mu^+ \nu_\mu + c.c.$	$0.71_{-0.22}^{+0.42}$	4.7 – 5.5	$5.8^{+0.8}_{-0.6}$	1.66	$1.98\substack{+0.28\\-0.24}$
$J/\psi \rightarrow D_s^- e^+ v_e + c.c.$	18^{+7}_{-5}	53 - 58	$104.0^{+9.0}_{-7.5}$	33	$36.7^{+5.2}_{-4.4}$
$J/\psi \rightarrow D_s^- \mu^+ \nu_\mu + c.c.$	17^{+7}_{-5}	55 – 57	$99.3^{+9.5}_{-6.5}$	32	$35.4^{+5.0}_{-4.3}$

- > New physics researches at BESIII
- Charmonium hadronic weak decays
- Charmonium semi-leptonic decays
- **FCNC (Flavor Changing Neutral Current) decays**
- > Summary

Search for $J/\psi \rightarrow D^0 e^+ e^- + c.c.$ & ψ (3686) → $D^0e^+e^- + c.c.$

- In the SM model, FCNC is forbidden at the tree level due to the GIM mechanism, it can only occur at the loop level.
 By Yateng Zhang et al.
- > In the SM model, the BF of FCNC process is about $10^{-10} \sim 10^{-13}$. Phys. Rev. D 96, 111101(2017)
- ≻ In new physics models, the BF can be improved by 2~3 orders in magnitude.
- > 3 tags to reconstruct $D^0: D^0 \to K^-\pi^+, D^0 \to K^-\pi^+\pi^0, D^0 \to K^-\pi^+\pi^-\pi^+$.
- $\gg N_{J/\psi} = 1310.6 \times 10^6, N_{\psi(3686)} = 448.1 \times 10^6.$

Now we are using $N_{J/\psi} = 10087 \times 10^6$ to research $J/\psi \to D^0 e^+ e^- + c.c.$ and $J/\psi \to D^0 \mu^+ \mu^-$.

Search for $J/\psi \to \gamma D^0/\overline{D}^0$

- > In the SM model, the BF of FCNC process is about $10^{-10} \sim 10^{-13}$.
- \succ With out decay $\gamma \rightarrow e^+e^-$ compared to $J/\psi \rightarrow D^0e^+e^- + c.c.$.
- ➤ In new physics models, the BF can be improved by 2~3 orders in magnitude.
- > In the SM model, the BF of FCNC process is about $10^{-10} \sim 10^{-13}$.
- ≻ In new physics models, the BF can be improved by 2~3 orders in magnitude.
- ▶ 3 tags to reconstruct D^0 and \overline{D}^0 :

D^0	$ar{D}^0$	Br
$D^0 \rightarrow K^- \pi^+$	$\bar{D}^0 \to K^+ \pi^-$	$(3.950 \pm 0.030)\%$
$D^0 \rightarrow K^- \pi^+ \pi^0$	$\bar{D}^0 \rightarrow K^+ \pi^- \pi^0$	$(14.4 \pm 0.6)\%$
$D^0 \rightarrow K^- \pi^+ \pi^- \pi^+$	$\bar{D}^0 \to K^+ \pi^- \pi^+ \pi^-$	$(8.23 \pm 0.14)\%$

- $> M_D$ is used to extract the signal shape.
- Under internal review.

By Bo Wang et al.

Some published articles

Experiment	Decay mode	$N_{J/\psi}$	UL @ 90% CL	year
BESII	$J/\psi \rightarrow D_s^- \pi^+ + c.c.$	58×10^6	1.4×10^{-4}	2008
BESII	$J/\psi \to D^0 K^0 + c.c.$	58×10^6	1.7×10^{-4}	2008
BESIII	$J/\psi \to D_s^- \rho^+ + c.c.$	225.3×10^6	1.3×10^{-5}	2014
BESIII	$J/\psi \rightarrow D^0 K^{*0} + c.c.$	225.3×10^{6}	2.5×10^{-6}	2014
BESIII	$J/\psi \rightarrow D_s^- e^+ \nu_e + c.c.$	225.3×10^6	1.3×10^{-6}	2014
BESIII	$J/\psi \rightarrow D_s^{*-}e^+\nu_e + c.c.$	225.3×10^6	1.8×10^{-6}	2014
BESIII	$J/\psi \to D^0 e^+ e^- + c.c.$	1310.6×10^{6}	$8.5 imes 10^{-8}$	2017
BESIII	$J/\psi \to D^- e^+ \nu_e + c.c.$	10087×10^{6}	7.1×10^{-8}	2021
BESIII	$J/\psi \rightarrow D^- \mu^+ \nu_\mu + c.c.$	10087×10^6	5.6×10^{-7}	2023
BESIII	$J/\psi \to \bar{D}^0 \pi^0 + c.c.$	10087×10^6	4.7×10^{-7}	2023
BESIII	$J/\psi \to \bar{D}^0\eta + c.c.$	10087×10^6	$6.8 imes 10^{-7}$	2023
BESIII	$J/\psi \to \bar{D}^0 \rho^0 + c.c.$	10087×10^6	5.2×10^{-7}	2023
BESIII	$J/\psi \to D^-\pi^+ + c.c.$	10087×10^6	7.0×10^{-8}	2023
BESIII	$J/\psi \to D^- \rho^+ + c.c.$	10087×10^6	6.0×10^{-7}	2023
BESIII	$\psi(3686) \rightarrow D^0 e^+ e^-$	448.1×10^{6}	1.4×10^{-7}	2017
BESIII	$\psi(3686) \rightarrow \Lambda_c^+ \bar{p} e^+ e^-$	448.1×10^{6}	1.7×10^{-6}	2018
BESIII	$\psi(3686) \to \Lambda_c^+ \bar{\Sigma}^-$	448.1×10^{6}	1.4×10^{-5}	2022

- > New physics researches at BESIII
- Charmonium hadronic weak decays
- Charmonium semi-leptonic decays
- FCNC decays
- > Summary

- BESIII performed wide range studies of new physics, with many first searches or best limits.
- In the aspect of charmonium weak decay, the latest publishing result and some ongoing work are shown in this report.
- BESIII has great potentials with unique (and increasing) datasets and analysis techniques in searching for charmonium weak decays and new physics beyond the SM.

Thank you for listening.

songtz@mail2.sysu.edu.cn