

Search for invisible decay of K_S^0

Xiaoxuan Ding¹, Dayong Wang¹, Yajun Mao¹

1 Peking University

Oct 14, Wuhan (Online)

NPG Workshop 2023

Outline

Motivation

Analysis strategy

• Data sets

•Event selection

Background analysis

Summary

Motivation

Why search $K_S^0 \rightarrow$ invisible?

SM prediction

• In SM, the rate of neutral mesons $K_S^0, K_L^0 \rightarrow \overline{\nu}\nu$ decays is predicted to be extremely small, because it's forbidden kinematically by angular momentum conservation.

PRD 91, 015004 (2015)

- $\Gamma(M^0 \to v \overline{v}) \sim (\frac{m_v}{m_{M^0}})^2 \le 10^{-16}$
- Any observation of $K_S^0 \rightarrow$ invisible would signal the presence of new physics.

Experimental limits

• $\Gamma_{K_L(K_S)} = \sum_i \Gamma_i(K_L(K_S) \rightarrow visible) + K_L(K_S) \rightarrow invisible$

Sum of all the possible modes of K_S^0 based on PDG

$$\implies \sum_{i} \operatorname{Br}_{i}(K_{S} \to \operatorname{visible}) = 1.00068 \pm 0.00048$$

PRD 91, 015004 (2015)

 $V \longrightarrow V$ $K_S^0 \rightarrow V\overline{V}$ Initial state: $\vec{S} = 0$ Final state: $\vec{S} = \pm 1$ forbidden

 $Br(K_S \rightarrow invisible) < 1.1 \times 10^{-4} (95\% \text{ C.L.}),$

Motivation

Why search $K_S^0 \rightarrow$ invisible?

Theoretical limitsarXiv:2006.10746

- Mirror matter model (M³ model), assuming that there exists an almost exact mirrored copy (n') of the known ordinary particles (n), n' can not be detected, and they can only interact with each other gravitationally.
- Mirror world Normal world *G' G n n*

• Consider a gauge symmetry $G \otimes G'$ for the two worlds, we assume that the mirror symmetry $M(G \leftrightarrow G')$ is spontaneously broken by the Higgs vacuum. $\longrightarrow n - n$

► Invisible decay rate:
$$B_{inv} = \frac{1}{2} \sin^2(2\theta) \frac{(\Delta \tau)^2}{1 + (\Delta \tau)^2}.$$

• Long lived hadrons can have relative large branching fractions, which are detectable at existing accelerator facilities $Br(K_s^0 \rightarrow invisible) = 1.8 \times 10^{-6}$

But no direct measurement for $K_S^0 \rightarrow$ invisible decay yet!

n – n' oscillations

Neutral hadrons	K_L^0	(K_S^0)	π^0
Life time(s)	5.12×10 ⁻⁸	8.96×10 ⁻¹¹	8.52 ×10 ⁻¹⁷
\mathcal{B}_{inv}	9.9×10 ⁻⁶	1.8×10 ⁻⁶	6×10 ⁻¹⁸

Data sets

Boss version: 708

> Inclusive MC: 10B J/ψ inclusive MC

- Understand the potential backgrounds
- Optimize the event selection criteria.

> Signal MC:

- $600 \text{K} J/\psi \rightarrow \phi K_S^0 K_S^0, K_S^0 \rightarrow invisible$
- Obtain the detection efficiency

≻Blind analysis

- Avoid analyst bias towards the physical result
- Use MC simulation samples to determine event selection criteria.
- Open 10% of the data to verify consistency with MC samples. Once the analysis strategy is finalized, open all the data

≻Semi-blind data

- 30% data @2009
- 10% data @2012, 2018, 2019

Blind analysis result

Search for invisible decay of K⁰_S

Analysis strategy

Analysis strategy

- Using $J/\psi \to \phi K_S^0 K_S^0$ as tag mode
- $K_S^0 \rightarrow invisible$ is searched in the system recoil against ϕK_S^0
- ➤ Tag mode:

 $\Rightarrow J/\psi \rightarrow \phi K_S^0 K_S^0, \phi \rightarrow K^+ K^-, K_S^0 \rightarrow \pi^+ \pi^-, K_S^0 \rightarrow anything(100\%)$

$$N_{tag} = N_{J/\psi} \times \mathcal{B}(J/\psi \to \phi K_S^0 K_S^0) \times \mathcal{B}_{inter} \times \varepsilon^{tag}$$

$$B_{\text{inter}} = \mathcal{B}(K_{\text{S}}^{0} \to \pi^{+}\pi^{-}) \times \mathcal{B}(\phi \to K^{+}K^{-}) = 0.34$$

➢ Signal mode:

$$\Rightarrow J/\psi \to \phi K_S^0 K_S^0, \phi \to K^+ K^-, K_S^0 \to \pi^+ \pi^-, K_S^0 \to inv$$

$$N_{sig} = N_{J/\psi} \times \mathcal{B}(J/\psi \to \phi K_S^0 K_S^0) \times \mathcal{B}_{inter} \times \mathcal{B}(K_S^0 \to inv) \times \varepsilon^{sig}$$

$$\mathcal{B}(K_S^0 \to inv) = \frac{N_{sig} \times \varepsilon^{tag}}{N_{tag} \times \varepsilon^{sig}}$$

Potential systematic uncertainty can be canceled

$$\succ \mathcal{B}(J/\psi \to \phi K_S^0 K_S^0)$$

- $\succ N_{J/\psi}$
- Intermediate branching fraction
- Tracking, PID uncertainty of pion & kaon

Selection of tag side

Good charged tracks

• Loose selection: $|\cos \theta| < 0.93$ $|V_z| < 20 \text{cm}$ $N_{loose}^+ \ge 2, N_{loose}^- \ge 2$ • Tight selection: $|\cos \theta| < 0.93$

➢ K PID (TOF +dE/dx)

 $L_K > L_{\pi}$

$> K_S^0$ reconstruction

dingxx@stu.pku.edu.cn

PID on $\pi^+\pi^-$: $L_\pi > L_K \& L_\pi > L_K$ 2^{nd} vertex fit : $L/\sigma_L > 2$ $0.486 < M_{\pi^+\pi^-} < 0.510$ GeV/ c^2 $n_{K_S^0} = 1$

 $|V_{xy}| < 1cm; |V_Z| < 10cm$

$\blacktriangleright \Phi \text{ reconstruction}$ 1.00 < $M_{K^+K^-}$ < 1.04 GeV/ c^2

\succ Recoil side of the selected ϕK_S^0

 $cos \theta_{Recoil} < 0.8$ to ensure the recoiling K_S^0 flies withing the acceptance of detector

Selection of tag side

\succ Recoil mass of ϕK_S^0 system

$$E_{Recoil} = E_{beam} - E_{\phi} - E_{K_S^0}$$
$$\vec{p}_{recoil} = \vec{p}_{Lab} - \vec{p}_{K_S^0} - \vec{p}_{\phi}$$
$$RM(\phi K_S^0) = \sqrt{E_{recoil}^2 - \vec{p}_{recoil}^2}$$

We require the recoil mass distribution $RM(\phi K_S^0)$ should within 40 MeV/ c^2 around the nominal mass of K_S^0

≻Tag yields are determined through binned maximum likelihood fit

 $\Rightarrow N_{tag} \sim 3 \times 10^4$ is expected for the semi-blind data

Selection of $K_S^0 \rightarrow inv$

- > To select the signal candidates of the invisible K_S^0 decays, we further require:
 - \Rightarrow Four charged tracks with net charge equals zero
 - \Rightarrow No other charged track in the candidate events

 $M_{recoil}(\phi) > 1.08 \text{ GeV}/c^2$

- Since the invisible K_S^0 decay will not deposit any energy in the EMC, the energy sum of all the showers (E_{EMC}) not associated with any charged tracks, can be used to distinguish signal and background
 - Good shower requirement:

Isolation angle $\theta > 10^{\circ}$ $t_{TDC} \in [0, 14] (\times 50 \text{ ns})$

- Dominant background
 - $\checkmark K_S^0 \rightarrow anything$
 - $J/\psi \rightarrow \phi K^0_S K^0_S, K^0_S \rightarrow \pi^0 \pi^0$
 - $J/\psi \rightarrow \phi f_2', f_2' \rightarrow K_S^0 K_S^0, K_S^0 \rightarrow \pi^0 \pi^0$
 - $J/\psi \rightarrow \phi K^0_S K^0_S$, $K^0_S \rightarrow \pi^+ \pi^-$
 - ✓ Non ϕ contribution
 - $J/\psi \rightarrow K^+ K^- K^0_S K^0_S$
 - $J/\psi \rightarrow K^+ K^- K^0_S K^0_L$

\checkmark Continuum contribution

✓ Others backgrounds

dingxx@stu.pku.edu.cn

No.	Decay Chain	nEvt
1	$J/\psi \rightarrow \phi K^0_S K^0_S, K^0_S \rightarrow \pi^+\pi^-, \phi \rightarrow K^+K^-, K^0_S \rightarrow \pi^0\pi^0,$	86668
2	$J/\psi ightarrow \phi f_2', \phi ightarrow K^+ K^-, f_2' ightarrow K_S^0 K_S^0, K_S^0 ightarrow \pi^+ \pi^-, K_S^0 ightarrow \pi^0 \pi^0,$	29232
3	$J/\psi \to \phi \bar{K^0} \bar{K^0}, \phi \to K^+ \bar{K^-}, K^0 \to \bar{K^0}_S, \bar{\bar{K}}^0 \to K^0_S, K^0_S \to \pi^+ \pi^-, K^0_S \to \pi^0 \pi^0,$	16116
4	$J/\psi \to K^+ K^- K^0_S K^0_S, K^0_S \to \pi^+ \pi^-, K^0_S \to \pi^0 \pi^0,$	4457
5	$J/\psi \rightarrow K^+K^-f_2', f_2' \rightarrow K_S^0K_S^0, K_S^0 \rightarrow \pi^+\pi^-, K_S^0 \rightarrow \pi^0\pi^0,$	3270
6	$J/\psi \to \phi f_2(1270), f_2(1270) \to K_S^0 K_S^0, K_S^0 \to \pi^+\pi^-, K_S^0 \to \pi^0\pi^0,$	643
7	$J/\psi \to \phi f_0(980), \phi \to K^+ \bar{K}^-, f_0(980) \to K^0_S K^0_S, \bar{K}_S \to \pi^+ \pi^-, \bar{K}_S \to \pi^0 \pi^0,$	634
8	$J/\psi ightarrow \pi^+\pi^-\eta K^+K^-, \eta ightarrow \gamma\gamma,$	62
rest	$J/\psi \rightarrow $ others (81 in total)	1834

Control sample study of $K_S^0 \to \pi^0 \pi^0$

Among the $K_S^0 \rightarrow anything$ background, $K_S^0 \rightarrow \pi^0 \pi^0$ is the dominant backgrounds:

\succ Select $K_S^0 \rightarrow \pi^0 \pi^0$ control samples

- Study the consistency between data and MC shape
- For further systematic uncertainty analysis.

Event selections

✓ Charged tracks selection

Same as the nominal analysis

✓ Showers selection

Isolation angle $\theta > 10^{\circ}$

 $t_{TDC} \in [0, 14] (\times 50 \, ns)$

$$n_{\gamma} \ge 2$$

$\checkmark \pi^0$ reconstruction

 $M_{\gamma\gamma} \in [0.115, 0.150] \text{ GeV}/c^2$

✓1C kinematic fit

Mass constraints on the missing track, $M_{Miss} = M_{\pi^0}$ Energy momentum constraints on $K^+K^-K^0_S\gamma_1\gamma_2$ track_{miss}

 $\chi^{2} < 100$

\checkmark Apply with the same veto cuts as the nominal analysis

> The control sample with high purity is selected ($\sim 95.1\%$)

> The MC shape consistent with data for the control sample

- > The Non- ϕ contribution consists of :
 - $J/\psi \rightarrow K^+ K^- K^0_S K^0_S$
 - $J/\psi \rightarrow K^+ K^- K^0_S K^0_L$
- At the early stage of the analysis, a discrepancy between the data and MC is observed, particularly for the energy deposited around zero
 Fake signal?
- The components in MC, as listed in the topology, have been normalized with the PDG value
- The event display is used for checking the fake signal
 No hint

No.	Decay Chain	nEvt
1	$J/\psi ightarrow \phi K^0_S K^0_S, K^0_S ightarrow \pi^+\pi^-, \phi ightarrow K^+ K^-, K^0_S ightarrow \pi^0\pi^0,$	86668
2	$J/\psi \to \phi f'_2, \phi \to K^+ K^-, f'_2 \to K^0_S K^0_S, K^0_S \to \pi^+ \pi^-, K^0_S \to \pi^0 \pi^0,$	29232
3	$J/\psi \to \phi \tilde{K^0} \bar{K}^0, \phi \to K^+ \tilde{K^-}, K^0 \xrightarrow{\circ} \tilde{K}^0_S, \ \bar{K}^0 \to K^0_S, K^0_S \xrightarrow{\circ} \pi^+ \pi^-, K^0_S \to \pi^0 \pi^0,$	16116
4	$J/\psi \rightarrow K^+ K^- K^0_{\rm S} K^0_{\rm S}, K^0_{\rm S} \rightarrow \pi^+ \pi^-, K^0_{\rm S} \rightarrow \pi^0 \pi^0,$	4457
5	$J/\psi \rightarrow K^+K^-f_2', f_2' \rightarrow K_S^0K_S^0, K_S^0 \rightarrow \pi^+\pi^-, K_S^0 \rightarrow \pi^0\pi^0,$	3270
6	$J/\psi \to \phi f_2(1270), f_2(1270) \to K_S^0 K_S^0, K_S^0 \to \pi^+\pi^-, K_S^0 \to \pi^0\pi^0,$	643
7	$J/\psi \to \phi f_0(980), \phi \to K^+ \bar{K}^-, f_0(980) \to K_S^0 K_S^0, \bar{K}_S \to \pi^+ \pi^-, \bar{K}_S \to \pi^0 \pi^0,$	634
8	$J/\psi o \pi^+\pi^-\eta K^+K^-, \eta o \gamma\gamma,$	62
rest	$J/\psi \rightarrow $ others (81 in total)	1834

Table 3: The topology results for inclusive MC after the event selections

Non- ϕ contribution

- ▶ However, we do find hint on the fake signal events on the mass distributions of $M(K^+K^-)!$
 - ✓ The peak component seems to have a flat distributions in ϕ signal region

 $\Rightarrow K^+K^- K^0_S + K^0_L?$

Decay Mode	Branching ratio
$J/\psi \to \pi^+ \pi^- K^0_S K^0_L$	$(3.8 \pm 0.6) \times 10^{-3}$
$J/\psi \to \pi^+ \pi^- K^0_S K^0_S$	$(1.68 \pm 0.19) \times 10^{-3}$
$J/\psi \to K^+ K^- K^0_S K^0_S$	$(4.2 \pm 0.7) \times 10^{-4}$
$J/\psi \to K^+ K^- K^0_S K^0_L$?

 \Rightarrow The process $J/\psi \rightarrow K^+K^-K^0_S K^0_L$ has not been measured yet

- $\Rightarrow But we can extrapolate the BF from <math>J/\psi \to K^+K^-K_S^0K_S^0$, since the $K^0 \to K_S$ / K_L is already known
- $\checkmark \ \mathcal{B}_{expt}(J/\psi \to K^+ K^- K^0_S K^0_L) = (8.4 \pm 1.4) \times 10^{-4}$

Events/(2.0 MeV 80 Semi-blind data Signal MC 60 40 20 **0.98** 1.02 1.04 1.06 1.08 $M(\phi)(GeV/c^2)$ Events/(16.4 MeV) Semi-blind dat Signal MC 500 300 200 100 0 1.2 1.4 1.6 $M(\phi)(GeV/c^2)$

With $E_{EMC} < 0.1$ cuts

- > The contribution from $K^+K^-K^0_SK^0_L$
 - ✓ Can be described by the E_{EMC} shape of data in the ϕ sideband region
 - ➡ Signal region : $M(K^+K^-) \in [1.0, 1.04]$ GeV/ c^2
 - ➡ Sideband region : $M(K^+K^-) \in [1.1, 1.14] \text{ GeV}/c^2$
 - ✓ The shape of E_{EMC} remains stable for the alternative choice of sideband region

- Since the invisible K_S^0 decay will not deposit any energy in the EMC, the energy sum of all the showers (E_{EMC}) not associated with any charged tracks, can be used to distinguish signal and background
 - ✓ *Good shower* requirement
- Dominant background
 - $\checkmark K_S^0 \rightarrow anything \qquad \text{Normalized to PDG value}$
 - $J/\psi \rightarrow \phi K_S^0 K_S^0$, $K_S^0 \rightarrow \pi^0 \pi^0$
 - $J/\psi \rightarrow \phi K_S^0 K_S^0, K_S^0 \rightarrow \pi^+ \pi^-$
 - $J/\psi \rightarrow \phi f'_2, f'_2 \rightarrow K^0_S K^0_S, K^0_S \rightarrow \pi^0 \pi^0$
 - ✓ Non ϕ contribution
 - $J/\psi \rightarrow K^+K^- K^0_S K^0_S$ Normalized to PDG value
 - $J/\psi \rightarrow K^+K^- K^0_S K^0_L \checkmark$ Shape described by sideband region Yields normalized to expected BF
 - ✓ Continuum, estimated by data collected at \sqrt{s} =3.080 GeV
 - ✓ Others backgrounds ← Normalized to luminosity

dingxx@stu.pku.edu.cn

> We have done:

 \checkmark Semi-blind data is opened to check the consistency between data and MC

✓ Control samples $K_S^0 \to \pi^0 \pi^0$ with high purity are selected

 \checkmark The origin of fake signals are studied

 \checkmark The method to describe the fake signals are developed

We will do next:

- **E**stimate the systematic uncertainty
- Estimate the Upper limit of $K_S^0 \rightarrow inv$ (The expected UL ~10⁻⁴ for the semi-blind data)
- □ release the memo soon...

Backup

Event display

Run 27460 Event 296855			BesOis .
Estime:338.2ns date: 2012-04-19	stat:111 time: 11:20:47	quality:1.0	
MC=No	Time Type: 43581440		

