2023年BESIII新物理研讨会,武汉大学,2023/10/15

CP asymmetries in $\tau \rightarrow K_S \pi \nu_{\tau}$ decays

based on:

Feng-Zhi Chen, Xin-Qiang Li, Shi-Can Peng, Ya-Dong Yang, Hong-Hao Zhang, JHEP 01 (2022) 108
Feng-Zhi Chen, Xin-Qiang Li, Ya-Dong Yang, JHEP 05 (2020) 151
Feng-Zhi Chen, Xin-Qiang Li, Ya-Dong Yang, Xin Zhang, PRD 100 (2019) 113006

Outline

□ Introduction

\Box CP asymmetries in $\tau \rightarrow K_S \pi \nu_{\tau}$ decays within the SM

 A^{I}

\Box CP asymmetries in $\tau \rightarrow K_S \pi \nu_{\tau}$ decays within a general EFT

□ Summary

$$\Gamma_{\rm CP}^{\rm rate} \equiv \frac{\Gamma(\tau^+ \to [\pi^+ \pi^-] \, {}^{"}_{K_S} \, {}^{"}_{S} \pi^+ \bar{\nu}_{\tau}) - \Gamma(\tau^- \to [\pi^+ \pi^-] \, {}^{"}_{K_S} \, {}^{"}_{S} \pi^- \nu_{\tau})}{\Gamma(\tau^+ \to [\pi^+ \pi^-] \, {}^{"}_{K_S} \, {}^{"}_{S} \pi^+ \bar{\nu}_{\tau}) + \Gamma(\tau^- \to [\pi^+ \pi^-] \, {}^{"}_{K_S} \, {}^{"}_{S} \pi^- \nu_{\tau})}$$

BaBar Collaboration, PRD 85 (2012) 031102

- commonly discussed decay-rate asymmetry
- > CP asymmetry in the angular distribution

$$A_{CP}^{i} = \frac{\int_{s_{1,i}}^{s_{2,i}} \int_{-1}^{1} \cos \alpha \left[\frac{d^{2} \Gamma(\tau^{-} \to K_{S} \pi^{-} \nu_{\tau})}{ds \, d \cos \alpha} - \frac{d^{2} \Gamma(\tau^{+} \to K_{S} \pi^{+} \bar{\nu}_{\tau})}{ds \, d \cos \alpha} \right] ds \, d \cos \alpha}{\frac{1}{2} \int_{s_{1,i}}^{s_{2,i}} \int_{-1}^{1} \left[\frac{d^{2} \Gamma(\tau^{-} \to K_{S} \pi^{-} \nu_{\tau})}{ds \, d \cos \alpha} + \frac{d^{2} \Gamma(\tau^{+} \to K_{S} \pi^{+} \bar{\nu}_{\tau})}{ds \, d \cos \alpha} \right] ds \, d \cos \alpha}$$

Belle Collaboration, PRL 107 (2011) 131801

Tau lepton physics

 $\Box \tau$: discovered in 1975 by Martin Perl *et al.* (SLAC-LBL)

- > Mass: $m_{\tau} = 1776.86 \pm 0.12$ MeV;
- > Lifetime: $\tau_{\tau} = (2.903 \pm 0.005) \times 10^{-13} \text{s}$

□ In SM, tau decays via charged-current weak interaction:

- > purely leptonic: $\tau \rightarrow \nu_{\tau} \ell \bar{\nu}_{\ell}, \tau \rightarrow \nu_{\tau} \ell \bar{\nu}_{\ell} \gamma$,
- > semi-leptonic: $\tau \rightarrow \nu_{\tau}\pi$, $\tau \rightarrow \nu_{\tau}K\pi$, ...
- rare and forbidden: LFV, LNV, BNV, ...

The only lepton heavy enough to **decay into hadrons:** Br $\simeq 66\%!$

2023/10/15

61.8

17.4

μνν

Semi-leptonic tau decays

Can be used to extract the fundamental SM parameters: $\alpha_s(m_{\tau})_r m_{sr} |V_{us}|, ...$

 $\alpha_s(m_\tau) = 0.3235^{+0.0138}_{-0.0126}$ RGE 2203.08271 $\alpha_s(m_Z) = 0.1191 \pm 0.0016$

□ An ideal low-energy QCD-testing laboratory: how various QCD currents hadronized, further information about various hadronic resonance parameters (M_R, Γ_R) , ...

□ Offer several possibilities of studying the CPV effects [I. I. Bigi, 1210.2968; 2111.08126]

Semi-leptonic tau decays

□ Two kinds of decay modes: strangeness-conserving & strangeness-changing processes

Cabibbo-allowed decays ($\mathcal{B} \sim \cos^2 \theta_c$) Cabibbo-suppressed decays ($\mathcal{B} \sim \sin^2 \theta_{\rm c}$) $\mathcal{B}(S=0) = (61.85 \pm 0.11)\%$ (PDG) $\mathcal{B}(S = -1) = (2.88 \pm 0.05)\%$ (PDG) $\mathcal{M}(\tau \to H\nu_{\tau}) = \frac{G_F}{\sqrt{2}} V_{CKM} [\overline{u}_{\nu_{\tau}} \gamma^{\mu} (1 - \gamma_5) u_{\tau}] H_{\mu}$ QCD Jorge Portolés, talk @ tau04 $E \ll M_{o}$ $\boldsymbol{H}_{\boldsymbol{\mu}} = \langle \boldsymbol{H} | (\boldsymbol{\mathcal{V}}_{\boldsymbol{\mu}} - \boldsymbol{\mathcal{A}}_{\boldsymbol{\mu}}) \mathrm{e}^{i \boldsymbol{\mathcal{L}}_{QCD}} | \boldsymbol{0} \rangle$ $E \gg M_{o}$ **Chiral Symmetry** Form factor Perturbative QCD $SU_{I}(N_{F}) \otimes SU_{R}(N_{F})$ $= \sum_{i} (\dots \dots)^{i}_{\mu} F_{i}(q^{2}, \dots)$ Large Lorentz structure Asymptotic behaviour of **Chiral Perturbation Theory** spectral functions N_C Main tasks: determine the hadronic FFs $E \sim M_{o}$ Analytic functions **Chiral Resonance Theory** $V_{\mu}(1^{--})$ $\mathcal{L}_{eff}^{QCD} = \sum \lambda_i \mathcal{O}_i(V_\mu, A_\mu, \Pi)$ **Dispersion relations** $A_{11}(1^{++})$ Unitarity **Properties at different Spectral functions** energy scales are related Vector meson dominance 2023/10/15 CP asymmetries in tau -> K S pi nu decays 5 华中师大

Why $\tau \rightarrow K_S \pi \nu_{\tau}$ decays

□ Have the largest Br among semi-lep. decays with 1 kaon [D. Epifanov et al. [Belle], PLB 654 (2007) 65]

$e^{-} \qquad \tau^{+} \qquad e^{+} \qquad e^{+$

 $Br(\tau \rightarrow K_S \pi \nu_{\tau}) = (0.404 \pm 0.002(stat.) \pm 0.013(syst.))\%$

> The hadronic current parametrized by two form factors:

$$J^{\mu} = F_{V}(q^{2}) \left(g^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{q^{2}} \right) (q_{1} - q_{2})_{\nu} + F_{S}(q^{2})q^{\mu}, \ q^{\mu} = q_{1}^{\mu} + q_{2}^{\mu}$$

• F_{V} : $K^{*}(892)^{\pm}, K^{*}(1410)^{\pm}, K^{*}(1680)^{\pm};$
• F_{S} : $K^{*}(800)^{\pm}(\kappa), K^{*}(1430)^{\pm};$

- > The $K^*(892)$ alone not sufficient to describe the $K\pi$ spectrum
- Fitted result with $K^*(892) + K^*(800) + K^*(1410)$ model reproduces data well

 \Box Searches for CPV in $\tau \rightarrow K_S \pi v_{\tau}$ very promising ^{0.8}

Why $\tau \rightarrow K_S \pi \nu_{\tau}$ decays

 \Box Decay-rate asymmetry in $\tau \rightarrow K_S \pi \nu_{\tau}$ decays

$$\mathcal{A}_{\rm CP}^{\rm rate} \equiv \frac{\Gamma(\tau^+ \to [\pi^+ \pi^-] \, {}^{"}_{K_S} \, {}^{"}_{K_S} \pi^+ \bar{\nu}_{\tau}) - \Gamma(\tau^- \to [\pi^+ \pi^-] \, {}^{"}_{K_S} \pi^- \nu_{\tau})}{\Gamma(\tau^+ \to [\pi^+ \pi^-] \, {}^{"}_{K_S} \pi^+ \bar{\nu}_{\tau}) + \Gamma(\tau^- \to [\pi^+ \pi^-] \, {}^{"}_{K_S} \pi^- \nu_{\tau})}$$

2.8 σ 偏差 $\begin{cases} A_{\rm CP}^{\rm Exp} = (-3.6 \pm 2.3 \pm 1.1) \times 10^{-3} \\ A_{\rm CP}^{\rm SM} = (3.6 \pm 0.1) \times 10^{-3} \end{cases}$

BaBar Collaboration, PRD 85 (2012) 031102I. Bigi and A. I. Sanda PLB 625 (2005) 47Y. Grossman and Y. Nir, JHEP 04 (2012) 002

\Box CP asymmetry in the angular distribution of $\tau \rightarrow K_S \pi \nu_{\tau}$ decays

$\int_{s_{1}}^{s_{2,i}} \int_{-1}^{1} \cos \alpha \left[\frac{d^{2} \Gamma(\tau^{-} \to K_{S} \pi^{-} \nu_{\tau})}{ds d \cos \alpha} - \frac{d^{2} \Gamma(\tau^{+} \to K_{S} \pi^{+} \bar{\nu}_{\tau})}{ds d \cos \alpha} \right] ds d \cos \alpha$	\sqrt{s} [GeV]	$A_{{ m SM},i}^{CP}$ [10 ⁻³]	$A_{{ m exp},i}^{CP}$ [10 ⁻³]
$A_{CP}' = \frac{\frac{d^2 \Gamma(\tau^{-} \to K_{S} \pi^{-} \nu_{\tau})}{1 \Gamma^{s_{2}} \Gamma^{s_{2}} \Gamma^{1} \Gamma^{s_{2}} \Gamma^{1} \Gamma^{s_{2}} \Gamma^$	0.625 - 0.890	$\textbf{0.39}\pm\textbf{0.01}$	$7.9\pm3.0\pm2.8$
$\frac{1}{2} \int_{s_{1,i}}^{2,i} \int_{-1} \left[\frac{ds d \cos \alpha}{ds d \cos \alpha} + \frac{ds d \cos \alpha}{ds d \cos \alpha} \right] ds d \cos \alpha$	0.890 - 1.110	0.04 ± 0.01	$1.8\pm2.1\pm1.4$
Belle Collaboration, PRL 107 (2011) 131801	1.110 - 1.420	0.12 ± 0.02	$-4.6\pm7.2\pm1.7$
compatible with zero with a sensitivity of $\mathcal{O}(10^{-3})$	1.420 - 1.775	0.27 ± 0.05	$-2.3 \pm 19.1 \pm 5.5$

 \Box Can be used to test CPV mechanism and to probe BSM effects: H^{\pm} , Leptoquark, ...

New physics associated with tau lepton

\Box Current hints from $R(D^{(*)})$ anomalies indicate non-universal BSM physics

 10^{-9} 10^{-17} 10^{-15} 10^{-13} 10^{-11}

 10^{-9}

 $\mathcal{B}(\tau \rightarrow \mu \phi)$

 10^{-7}

Very interesting to probe these relevant decay modes

Experimental facilities for tau physics

Many dedicated facilities, with large tau samples [C. Z. Yuan, talk @ IAS Program on HEP 2021]

Experiment	Integrated luminosity (fb ⁻¹)	Cross section (nb)	Number of produced τ pairs (10 ⁹)	Typical tag efficiency	Tagged τ pairs (10 ⁹)	Fraction of Non-τ background
BESIII	50	$0\sim 3.6$	~ 0.15	10%	0.015	<1%
BaBar+Belle	1,500	0.9	1.35	33%	0.45	8%
LEP (ALEPH, DELPHI, L3, OPAL)	0.20×4	1.5	0.0012	79% (ALEPH), 92% within cosθ <0.90	0.0007	1.2% (ALEPH)
STCF/SCT	10,000	2.5	25	10%=BESIII	1.5	<1%=BESIII
Belle II	50,000	0.9	45	33%=Belle	15	8%=Belle
CEPC	45,000	1.5	70	87% (^10% over ALEPH)	60	<1.2%@ALEPH
FCC-ee	115,000	1.5	170	87% (^10% over ALEPH)	150	<1.2%@ALEPH

□ Lots of tau physics programs with these large tau samples: see *biennial tau workshops!*

$\tau \rightarrow K_S \pi \nu_{\tau}$ decays within the SM

□ Feynman diagrams at the tree level in weak interaction within the SM:

 \Box According to the well-known $\Delta S = \Delta Q$ rule, τ^- can only decay into \overline{K}^0 , while τ^+ into K^0

□ Within the SM, V_{us} is real (no weak phase) & the same strong phase between the two CP-related processes $\mathcal{A}(\tau^+ \to K^0 \pi^+ \bar{\nu}_{\tau}) = \mathcal{A}(\tau^- \to \bar{K}^0 \pi^- \nu_{\tau})$

$\tau \rightarrow K_S \pi \nu_{\tau}$ decays within the SM

□ Caution: due to $K^0 - \overline{K}^0$ mixing, the exp. reconstructed kaons are the mass $(|K_S\rangle, |K_L\rangle)$ rather than the flavor $(|K^0\rangle, |\overline{K}^0\rangle)$ eigenstates

$$|K_{S}^{0}\rangle = \frac{(1+\epsilon)|K^{0}\rangle + (1-\epsilon)|\bar{K}^{0}\rangle}{\sqrt{2(1+|\epsilon|^{2})}}, \qquad |K^{0}\rangle = \frac{\sqrt{2(1+|\epsilon|^{2})}}{2(1+\epsilon)} \left[|K_{S}^{0}\rangle + |K_{L}^{0}\rangle\right], \qquad \epsilon = 2.3 \times 10^{-3}$$

characterizes
$$|K_{L}^{0}\rangle = \frac{(1+\epsilon)|K^{0}\rangle - (1-\epsilon)|\bar{K}^{0}\rangle}{\sqrt{2(1+|\epsilon|^{2})}}, \qquad |\bar{K}^{0}\rangle = \frac{\sqrt{2(1+|\epsilon|^{2})}}{2(1-\epsilon)} \left[|K_{S}^{0}\rangle - |K_{L}^{0}\rangle\right].$$

kaon system

Once CPV in $K^0 - \overline{K}^0$ **mixing included**, **non-zero CP asymmetries appear in the decays:**

 \square When $\langle K_{S,L} |$ intermediate states involved, the so-called reciprocal basis more efficient

$$\begin{pmatrix} |K_L\rangle \\ |K_S\rangle \end{pmatrix} = \begin{pmatrix} p & -q \\ p & q \end{pmatrix} \begin{pmatrix} |K^0\rangle \\ |\bar{K}^0\rangle \end{pmatrix} = \mathbf{X}^T \begin{pmatrix} |K^0\rangle \\ |\bar{K}^0\rangle \end{pmatrix}$$
$$\mathbf{X}^{-1}\mathbf{H}\mathbf{X} = \begin{pmatrix} \mu_L & 0 \\ 0 & \mu_S \end{pmatrix}, \quad \mathbf{X} = \begin{pmatrix} p & p \\ -q & q \end{pmatrix}$$

$$\exp(-i\boldsymbol{H}t) = e^{-i\mu_{S}t}|K_{S}\rangle\langle\tilde{K}_{S}| + e^{-i\mu_{L}t}|K_{L}\rangle\langle\tilde{K}_{L}|$$

 $egin{aligned} &\langle ilde{\mathcal{K}}_{S,L}| = rac{1}{2} \left(p^{-1} \langle \mathcal{K}^0 | \pm q^{-1} \langle ar{\mathcal{K}}^0 |
ight) \ & ext{completeness} & ext{orthornormality} \ &\langle ilde{\mathcal{K}}_S | \mathcal{K}_S
angle = \langle ilde{\mathcal{K}}_L | \mathcal{K}_L
angle = 1 \,, & \langle ilde{\mathcal{K}}_S | \mathcal{K}_L
angle = \langle ilde{\mathcal{K}}_L | \mathcal{K}_S
angle = 0 \,, \ & |\mathcal{K}_S
angle \langle ilde{\mathcal{K}}_S | + | \mathcal{K}_L
angle \langle ilde{\mathcal{K}}_L | = 1 \,. \end{aligned}$

J. P. Silva, PRD 62 (2000) 116008

v

$\tau \rightarrow K_S \pi \nu_{\tau}$ decays within the SM

 \Box Experimentally, the K_S intermediate state is reconstructed via a $\pi^+\pi^-$ final state

 \Box Complete time-dependent decay amplitudes of $\tau^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm}\nu_{\tau}$ decays (omitting $\langle \pi \nu_{\tau} |$):

 $\mathcal{A}(\tau^- \to K_{S,L} \to \pi^+ \pi^-) = \langle \pi^+ \pi^- | T | K_S \rangle e^{-i\mu_S t} \langle \tilde{K}_S | T | \tau^- \rangle + \langle \pi^+ \pi^- | T | K_L \rangle e^{-i\mu_L t} \langle \tilde{K}_L | T | \tau^- \rangle$

 $= \frac{1}{2q} \Big[\langle \pi^+ \pi^- | T | K_S \rangle e^{-i\mu_S t} - \langle \pi^+ \pi^- | T | K_L \rangle e^{-i\mu_L t} \Big] \langle \bar{K}^0 | T | \tau^- \rangle,$

 $\mathcal{A}(\tau^+ \to K_{S,L} \to \pi^+ \pi^-) = \langle \pi^+ \pi^- | T | K_S \rangle e^{-i\mu_S t} \langle \tilde{K}_S | T | \tau^+ \rangle + \langle \pi^+ \pi^- | T | K_L \rangle e^{-i\mu_L t} \langle \tilde{K}_L | T | \tau^+ \rangle$ $= \frac{1}{2p} \Big[\langle \pi^+ \pi^- | T | K_S \rangle e^{-i\mu_S t} + \langle \pi^+ \pi^- | T | K_L \rangle e^{-i\mu_L t} \Big] \langle K^0 | T | \tau^+ \rangle,$

 \succ the kaon decays are independent of the τ decays

□ When the kaon decay time is long enough, the $\pi^+\pi^-$ final state can arise not only from K_{S} , but also from K_L ;

The interference effect between the $K_S \& K_L$ amplitudes important for CPV!

 $\Delta S = \Delta Q$ rule

□ Time-dependent, doubly differential decay widths:

$$\frac{d^2\Gamma(\tau^- \to K_{S,L}\pi^-\nu_\tau \to [\pi^+\pi^-]\pi^-\nu_\tau)}{ds\,d\cos\alpha} = \frac{d^2\Gamma(\tau^- \to \bar{K}^0\pi^-\nu_\tau)}{ds\,d\cos\alpha} \frac{\Gamma(\bar{K}^0(t) \to \pi^+\pi^-)}{\pi^+\pi^-},$$
$$\frac{d^2\Gamma(\tau^+ \to K_{S,L}\pi^+\bar{\nu}_\tau \to [\pi^+\pi^-]\pi^+\bar{\nu}_\tau)}{ds\,d\cos\alpha} = \frac{d^2\Gamma(\tau^+ \to K^0\pi^+\bar{\nu}_\tau)}{ds\,d\cos\alpha} \frac{\Gamma(K^0(t) \to \pi^+\pi^-)}{\pi^+\pi^-},$$

s: the $K\pi$ invariant mass squared;

 α : the angle between the directions of *K* and τ seen in the $K\pi$ rest frame

 $\Delta m = M_I - M_S$

\Box Time-dependent $K(t) \rightarrow \pi^+\pi^-$ decay widths:

$$\Gamma(\bar{K}^{0}(t) \to \pi^{+}\pi^{-}) = \frac{|\langle \pi^{+}\pi^{-}|T|K_{S}\rangle|^{2}}{4|q|^{2}} \Big[e^{-\Gamma_{S}t} + |\eta_{+-}|^{2} e^{-\Gamma_{L}t} - 2|\eta_{+-}| e^{-\Gamma t} \cos(\phi_{+-} - \Delta mt)\Big]$$

$$\Gamma(K^{0}(t) \to \pi^{+}\pi^{-}) = \frac{|\langle \pi^{+}\pi^{-}|T|K_{S}\rangle|^{2}}{4|p|^{2}} \Big[e^{-\Gamma_{S}t} + |\eta_{+-}|^{2} e^{-\Gamma_{L}t} + 2|\eta_{+-}| e^{-\Gamma t}\cos(\phi_{+-} - \Delta mt) \Big]$$

$$\Gamma = \frac{\Gamma_L + \Gamma_S}{2}$$

$$\eta_{+-} = \frac{\langle \pi^+ \pi^- | T | K_L \rangle}{\langle \pi^+ \pi^- | T | K_S \rangle}$$

$$|\eta_{+-}| = (2.232 \pm 0.011) \times 10^{-3}$$

$$\phi_{+-} = (43.51 \pm 0.05)^\circ$$

Time-dep. CP asymmetry in the angular distribution:

 $(d\omega = dsd\cos\alpha)$

$$A_{i}^{CP}(t_{1},t_{2}) = \frac{\int_{s_{1,i}}^{s_{2,i}} \int_{-1}^{1} \cos \alpha \left[\frac{d\Gamma^{\tau^{-}}}{d\omega} \int_{t_{1}}^{t_{2}} F(t) \bar{\Gamma}_{\pi^{+}\pi^{-}}(t) dt - \frac{d\Gamma^{\tau^{+}}}{d\omega} \int_{t_{1}}^{t_{2}} F(t) \Gamma_{\pi^{+}\pi^{-}}(t) dt \right] d\omega}{\frac{1}{2} \int_{s_{1,i}}^{s_{2,i}} \int_{-1}^{1} \left[\frac{d\Gamma^{\tau^{-}}}{d\omega} \int_{t_{1}}^{t_{2}} F(t) \bar{\Gamma}_{\pi^{+}\pi^{-}}(t) dt + \frac{d\Gamma^{\tau^{+}}}{d\omega} \int_{t_{1}}^{t_{2}} F(t) \Gamma_{\pi^{+}\pi^{-}}(t) dt \right] d\omega}$$

bin choice $[s_{1,i}, s_{2,i}]$, time interval $[t_1, t_2]$, exp.-dep. effects parametrized by F(t)

□ The difference of the decay

rates weighted by $\cos \alpha$:

$$\begin{split} A_{i}^{CP}(t_{1},t_{2}) &= \frac{\int_{s_{1,i}}^{s_{2,i}} \int_{-1}^{1} \cos \alpha \left[\frac{d\Gamma^{\tau^{-}}}{d\omega} \int_{t_{1}}^{t_{2}} F(t) \bar{\Gamma}_{\pi^{+}\pi^{-}}(t) \, dt - \frac{d\Gamma^{\tau^{+}}}{d\omega} \int_{t_{1}}^{t_{2}} F(t) \bar{\Gamma}_{\pi^{+}\pi^{-}}(t) \, dt \right] d\omega}{\frac{1}{2} \int_{s_{1,i}}^{s_{2,i}} \int_{-1}^{1} \left[\frac{d\Gamma^{\tau^{-}}}{d\omega} \int_{t_{1}}^{t_{2}} F(t) \bar{\Gamma}_{\pi^{+}\pi^{-}}(t) \, dt + \frac{d\Gamma^{\tau^{+}}}{d\omega} \int_{t_{1}}^{t_{2}} F(t) \Gamma_{\pi^{+}\pi^{-}}(t) \, dt \right] d\omega} \\ &= \frac{\left(\langle \cos \alpha \rangle_{i}^{\tau^{-}} + \langle \cos \alpha \rangle_{i}^{\tau^{+}} \right) A_{K}^{CP}(t_{1},t_{2}) + \left(\langle \cos \alpha \rangle_{i}^{\tau^{-}} - \langle \cos \alpha \rangle_{i}^{\tau^{+}} \right)}{1 + A_{K}^{CP}(t_{1},t_{2}) \cdot A_{\tau,i}^{CP}} \end{split}$$

 \Box As the kaon decays independent of the τ decays, the 2nd line are obtained:

$$\langle \cos \alpha \rangle_{i}^{\tau^{+}} + \langle \cos \alpha \rangle_{i}^{\tau^{+}} = \frac{\int_{s_{1,i}}^{s_{2,i}} \int_{-1}^{1} \cos \alpha \left[\frac{d\Gamma^{\tau^{-}}}{d\omega} + \frac{d\Gamma^{\tau^{+}}}{d\omega} \right] d\omega}{\frac{1}{2} \int_{s_{1,i}}^{s_{2,i}} \int_{-1}^{1} \left[\frac{d\Gamma^{\tau^{-}}}{d\omega} + \frac{d\Gamma^{\tau^{+}}}{d\omega} \right] d\omega}{\frac{1}{2} \int_{s_{1,i}}^{s_{2,i}} \int_{-1}^{1} \cos \alpha \left[\frac{d\Gamma^{\tau^{-}}}{d\omega} - \frac{d\Gamma^{\tau^{+}}}{d\omega} \right] d\omega}{\frac{1}{2} \int_{s_{1,i}}^{s_{2,i}} \int_{-1}^{1} \left[\frac{d\Gamma^{\tau^{-}}}{d\omega} - \frac{d\Gamma^{\tau^{+}}}{d\omega} \right] d\omega}{\frac{1}{2} \int_{s_{1,i}}^{s_{2,i}} \int_{-1}^{1} \left[\frac{d\Gamma^{\tau^{-}}}{d\omega} + \frac{d\Gamma^{\tau^{+}}}{d\omega} \right] d\omega}}{\frac{1}{2} \int_{s_{1,i}}^{s_{2,i}} \int_{-1}^{1} \left[\frac{d\Gamma^{\tau^{-}}}{d\omega} + \frac{d\Gamma^{\tau^{+}}}{d\omega} \right] d\omega}}{\frac{1}{2} \int_{s_{1,i}}^{s_{2,i}} \int_{-1}^{1} \left[\frac{d\Gamma^{\tau^{-}}}{d\omega} + \frac{d\Gamma^{\tau^{+}}}{d\omega} \right] d\omega}}{\frac{1}{2} \int_{s_{1,i}}^{s_{2,i}} \int_{-1}^{1} \left[\frac{d\Gamma^{\tau^{-}}}{d\omega} + \frac{d\Gamma^{\tau^{+}}}{d\omega} \right] d\omega}}$$
I Within the Mitting the Mittin

Results within the SM:

• $A_{\kappa}^{CP}(t_1, t_2)$: CPV in $K^0 - \bar{K}^0$ mixing

$$A_i^{CP}(t_1, t_2) = 2 \left\langle \cos \alpha \right\rangle_i^{\tau^-} A_K^{CP}(t_1, t_2)$$

$$|\eta_{+-}| \approx \frac{2\Re e(\epsilon_K)}{\sqrt{2}}, \ \phi_{+-} \approx 45^{\circ}$$

 $\Gamma \approx \frac{\Gamma_S}{2}, \ \text{and} \ \Delta m \approx \frac{\Gamma_S}{2}$

Thus easily reproduce Grossman-Nir result!

 $A_{K}^{CP}(t_{1} \ll \Gamma_{S}^{-1}, \Gamma_{S}^{-1} \ll t_{2} \ll \Gamma_{L}^{-1}) \approx -2\text{Re}(\epsilon_{K}) = -(3.32 \pm 0.06) \times 10^{-3} \Rightarrow$ $F(t) = \begin{cases} 1 & t_{1} < t < t_{2} \\ 0 & \text{otherwise.} \end{cases}$ Y. Grossman and Y. Nir, JHEP 04 (2012) 002

• $\langle \cos \alpha \rangle^{\tau^-} = \frac{2}{3} \mathsf{A}_{\mathrm{FB}}^{\tau^-}$ L. Beldjoudi and T. N. Truong, PLB 351 (1995) 357368

$$A_{\text{FB}}^{\tau^{-}}(s) = \frac{\int_{0}^{1} \frac{d^{2}\Gamma^{\tau^{-}}}{ds \, d \cos \alpha} d \cos \alpha - \int_{-1}^{0} \frac{d^{2}\Gamma^{\tau^{-}}}{ds \, d \cos \alpha} d \cos \alpha}{\int_{0}^{1} \frac{d^{2}\Gamma^{\tau^{-}}}{ds \, d \cos \alpha} d \cos \alpha + \int_{-1}^{0} \frac{d^{2}\Gamma^{\tau^{-}}}{ds \, d \cos \alpha} d \cos \alpha}$$

Even within the SM, non-zero CPA in the angular distributions due to $K^0 - \overline{K}^0$ mixing

forward-backward asymmetry

2.8 σ

偏差
$$\begin{cases} A_{\rm CP}^{\rm Exp} = (-3.6 \pm 2.3 \pm 1.1) \times 10^{-3} \\ A_{\rm CP}^{\rm SM} = (3.6 \pm 0.1) \times 10^{-3} \end{cases}$$

using the efficiency function F(t)provided by the BaBar collaboration! [BaBar, PRD 85 (2012) 031102]

2023/10/15

□ Puzzle still

exists:

Results within the SM:

 $A_i^{CP}(t_1, t_2) = 2 \left\langle \cos \alpha \right\rangle_i^{\tau^-} A_K^{CP}(t_1, t_2)$

 $A_K^{\text{CP}}(t_1 \ll \Gamma_S^{-1}, \Gamma_S^{-1} \ll t_2 \ll \Gamma_L^{-1}) \approx -2\text{Re}(\epsilon_K) = -(3.32 \pm 0.06) \times 10^{-3}$ as input!

Let's now evaluate $\langle \cos \alpha \rangle_{i}^{\tau^{\pm}}$: $\mathcal{H}_{eff} = \frac{G_{F}}{\sqrt{2}} V_{us} [\bar{\tau} \gamma_{\mu} (1 - \gamma_{5}) \nu_{\tau}] [\bar{u} \gamma^{\mu} (1 - \gamma_{5}) s] + h.c.$

$$\frac{d^{2}\Gamma^{\tau^{-}}}{ds\,d\cos\alpha} = \frac{G_{F}^{2}|F_{+}(0)V_{us}|^{2}m_{\tau}^{3}S_{\rm EW}}{512\pi^{3}s^{3}} \left(1 - \frac{s}{m_{\tau}^{2}}\right)^{2}\lambda^{1/2}(s,M_{K}^{2},M_{\pi}^{2}) \\ \times \left\{ \left|\tilde{F}_{+}(s)\right|^{2} \left(\frac{s}{m_{\tau}^{2}} + \left(1 - \frac{s}{m_{\tau}^{2}}\right)\cos^{2}\alpha\right)\lambda(s,M_{K}^{2},M_{\pi}^{2}) + \Delta_{K\pi}^{2}\left|\tilde{F}_{0}(s)\right|^{2} - 2\Delta_{K\pi}\Re e[\tilde{F}_{+}(s)\tilde{F}_{0}^{*}(s)]\lambda^{1/2}(s,M_{K}^{2},M_{\pi}^{2})\cos\alpha\right\}, \qquad \begin{array}{c} \text{normalized FFs} \\ \tilde{F}_{+,0}(s) = F_{+,0}(s)/F_{+}(0) \end{array}$$

D Hadronic FFs: $\left\langle \bar{K}^0(p_K)\pi^-(p_\pi) \left| \bar{s}\gamma^\mu u \right| 0 \right\rangle = \left[(p_K - p_\pi)^\mu - \frac{\Delta_{K\pi}}{s} q^\mu \right] F_+(s) + \frac{\Delta_{K\pi}}{s} q^\mu F_0(s)$

For hadronic FFs, we adopt the state-ofthe-art results:

The Breit-Wigner form
violates Watson's theorem,
and thus not physical and
not applicable for CPV

• Vector form factor the thrice-subtracted dispersion representation D.R. Boito, R. Escribano and M. Jamin, Eur. Phys. J. C59 (2009) 821

$$F_+(s) = \exp\left\{\lambda'_+rac{s}{M_{\pi^-}^2} + rac{1}{2}(\lambda''_+ - \lambda'^2_+)rac{s^2}{M_{\pi^-}^4} + rac{s^3}{\pi}\int_{s_{K\pi}}^{s_{cut}} ds'rac{\delta_+(s')}{(s')^3(s'-s-i\epsilon)}
ight\}\,,$$

• Scalar form factor the coupled-channel dispersive representation M. Jamin, J.A. Oller and A. Pich, Nucl. Phys. B622 (2002) 279

$$F_0^1(s) = \frac{1}{\pi} \sum_{j=1}^3 \int_{s_j}^{\infty} ds' \frac{\sigma_j(s') F_0^j(s') t_0^{1 \to j}(s')^*}{s' - s - i\epsilon}, (1 \equiv K\pi, 2 \equiv K\eta, \text{ and } 3 \equiv K\eta')$$

D Angular observable: differential decay width weighted by $\cos \alpha$

$$\begin{split} \langle \cos \alpha \rangle^{\tau^{-}}(s) &= \frac{\int_{-1}^{1} \cos \alpha \left(\frac{d^{2} \Gamma^{\tau^{-}}}{ds \, d \cos \alpha}\right) d \cos \alpha}{\int_{-1}^{1} \left(\frac{d^{2} \Gamma^{\tau^{-}}}{ds \, d \cos \alpha}\right) d \cos \alpha} \\ &= \frac{-2\Delta_{K\pi} \Re e[\tilde{F}_{+}(s)\tilde{F}_{0}^{*}(s)]\lambda^{1/2}\left(s, M_{K}^{2}, M_{\pi}^{2}\right)}{\left|\tilde{F}_{+}(s)\right|^{2} \left(1 + \frac{2s}{m_{\tau}^{2}}\right)\lambda\left(s, M_{K}^{2}, M_{\pi}^{2}\right) + 3\Delta_{K\pi}^{2} \left|\tilde{F}_{0}(s)\right|^{2}} \end{split}$$

\Box Results for $A_i^{CP}(t_1, t_2)$ in four mass bins:

$\sqrt{s} \; [\text{GeV}]$	$A_{{ m SM},i}^{ m CP}~[10^{-3}]$	$A_{\exp,i}^{\rm CP} \ [10^{-3}]$	$n_i/N_s~[\%]$
0.625 - 0.890	0.39 ± 0.01	$7.9\pm3.0\pm2.8$	36.53 ± 0.14
0.890 - 1.110	0.04 ± 0.01	$1.8\pm2.1\pm1.4$	57.85 ± 0.15
1.110 - 1.420	0.12 ± 0.02	$-4.6 \pm 7.2 \pm 1.7$	4.87 ± 0.04
1.420 - 1.775	0.27 ± 0.05	$-2.3 \pm 19.1 \pm 5.5$	0.75 ± 0.02

SM predictions still below Belle detection sensitivity of $O(10^{-3})$, but expected to be detectable at Belle II, with $\sqrt{70}$ times more sensitive results!

□ Two more predictions:

as large as SM prediction for the decay-rate asymmetry

 $A_i^{CP}(t_1, t_2) = \begin{cases} (3.06 \pm 0.06) \times 10^{-3}, & 0.70 \,\text{GeV} < \sqrt{s} < 0.75 \,\text{GeV} \\ (1.38 \pm 0.18) \times 10^{-3}, & 1.40 \,\text{GeV} < \sqrt{s} < 1.50 \,\text{GeV} \end{cases}$

□ Can Belle II and STCF measure the CP-violating angular observables in such two mass intervals?

 $\tau^{\pm} \rightarrow K^0(\overline{K}^0)\pi^{\pm}\overline{\nu}_{\tau}(\nu_{\tau})$ in a general EFT

□ When NP presents

in tau decays:

$$\frac{d\Gamma^{\tau^{+}}}{d\omega} \neq \frac{d\Gamma^{\tau^{-}}}{d\omega} \Longrightarrow A^{CP}_{\tau,i} \neq 0, \quad \langle \cos \alpha \rangle^{\tau^{-}}_{i} \neq \langle \cos \alpha \rangle^{\tau^{+}}_{i}$$

CP-violating observables:

 \Box The most general $SU(3)_{c} \otimes U(1)_{em}$ -invariant low-energy effective Lagrangian:

 $\mathcal{A}(au^+ o K^0 \pi^+ ar{
u}_ au)
eq \mathcal{A}(au^- o ar{K}^0 \pi^-
u_ au)$

$$\mathcal{L}_{ ext{eff}} = - \, rac{\mathcal{G}_{ extsf{F}} oldsymbol{V}_{us}}{\sqrt{2}} \left\{ ar{ au} \gamma_{\mu} (1 - \gamma_5)
u_{ au} \cdot ar{u} \left[\gamma^{\mu} - (1 - 2 \, \hat{\epsilon}_{ extsf{R}}) \gamma^{\mu} \gamma_5
ight] oldsymbol{s}$$

 $+ \bar{\tau}(1-\gamma_5)\nu_{\tau}\cdot\bar{u}\left[\hat{\epsilon}_S - \hat{\epsilon}_P\gamma_5\right]s + 2\,\hat{\epsilon}_T\,\bar{\tau}\sigma_{\mu\nu}(1-\gamma_5)\nu_{\tau}\cdot\bar{u}\sigma^{\mu\nu}s\Big\} + \text{h.c.}$

 \Box Decay amplitude for $\tau^- \rightarrow \overline{K}^0 \pi^- \nu_{\tau}$: $\mathcal{M} = \mathcal{M}_V + \mathcal{M}_S + \mathcal{M}_T$

scalar operator + tensor operator

$$=\frac{G_F V_{us}}{\sqrt{2}} \left[L_{\mu} H^{\mu} + \hat{\epsilon}_S^* L H + 2\hat{\epsilon}_T^* L_{\mu\nu} H^{\mu\nu}\right]$$

Tensor form factors

Leptonic currents:

 $L = \bar{u}(p_{\nu_{\tau}})(1 + \gamma_{5})u(p_{\tau}),$ $L_{\mu} = \bar{u}(p_{\nu_{\tau}})\gamma_{\mu}(1 - \gamma_{5})u(p_{\tau}),$ $L_{\mu\nu} = \bar{u}(p_{\nu_{\tau}})\sigma_{\mu\nu}(1 + \gamma_{5})u(p_{\tau}),$

\square *K* π tensor FF: due to lack of enough exp. data, the once-subtracted dispersion representation

for $F_T(0)$: obtained from the lowest chiral order of χPT with tensor source

• $\mathcal{L}_{4}^{\chi \mathsf{PT}} = \Lambda_1 \langle t_+^{\mu\nu} f_{+\mu\nu} \rangle - i\Lambda_2 \langle t_+^{\mu\nu} u_\mu u_\nu \rangle + \Lambda_3 \langle t_+^{\mu\nu} t^{+\mu\nu} \rangle + \Lambda_4 \langle t_+^{\mu\nu} \rangle^2$

□ Hadronic matrix elements:

 $H = \langle \pi^{-} \overline{K}^{0} \mid \overline{s}u \mid 0 \rangle = F_{S}(s)$

 $H^{\mu}=\langle\pi^{-}\overline{K}^{0}\mid\overline{s}\gamma^{\mu}u\mid0
angle=Q^{\mu}F_{+}(s)+rac{\Delta_{K\pi}}{s}q^{\mu}F_{0}(s)$

 $F_T(s) = F_T(0) \exp\left\{\frac{s}{\pi} \int_{s_{K_{\pi}}}^{\infty} ds' \frac{\delta_T(s')}{s'(s'-s-i\epsilon)}\right\}$

 $H^{\mu\nu} = \langle \pi^- \overline{K}^0 \mid \overline{s} \sigma^{\mu\nu} u \mid 0 \rangle = i F_T(s) \left(p_K^\mu p_\pi^\nu - p_\pi^\mu p_K^\nu \right)$

O. Cata and V. Mateu, JHEP 09 (2007) 078

$$\left\langle \bar{K}^{0}(p_{K})\pi^{-}(p_{\pi}) \left| \frac{\delta L_{4}^{\chi \text{PT}}}{\delta \bar{t}_{\mu\nu}} \right| 0 \right\rangle = i \frac{\Lambda_{2}}{F_{\pi}^{2}} (p_{K}^{\mu} p_{\pi}^{\nu} - p_{K}^{\nu} p_{\pi}^{\mu}) \Longrightarrow \quad F_{T}(0) = \Lambda_{2} / F_{\pi}^{2}, \text{ with } \Lambda_{2} = (11.1 \pm 0.4) \text{MeV}$$

I. Baum et al., PRD 84 (2011) 074503

Tensor form factors

□ With $s \in [(M_K + M_\pi)^2, m_\tau^2]$, light resonances to FFs must be included to give *s*-dep. of FFs

□ As spin-1 resonances described equivalently by vector or anti-symmetric tensor fields, resonance contributions to $F_+(s)$ & $F_T(s)$ are both dominated by $K^*(892)$ & $K^*(1410)$

> $F_T(s)$ obtained with $R\chi T$ including spin-1 resonances:

•
$$\mathcal{L}_{6}^{\mathsf{R}\chi\mathsf{T}} = \mathcal{L}_{kin}(\hat{V}_{\mu}) - \frac{1}{2\sqrt{2}} \left(f_{V} \langle \hat{V}_{\mu\nu} f_{+}^{\mu\nu} \rangle + ig_{V} \langle \hat{V}_{\mu\nu} [u^{\mu}, u^{\nu}] \rangle \right) - f_{V}^{T} \langle \hat{V}_{\mu\nu} t_{+}^{\mu\nu} \rangle$$

Ecker, J. Gasser, H. Leutwyler, A. Pich, and E. de Rafael, PLB 223 (1989) 425

$$F_{T}(s) = \frac{\Lambda_{2}}{F_{\pi}^{2}} \left[1 + \frac{\sqrt{2}f_{V}^{T}g_{V}}{\Lambda_{2}} \frac{s}{M_{K^{*}}^{2} - s} + \frac{\sqrt{2}f_{V}^{T'}g_{V}'}{\Lambda_{2}} \frac{s}{M_{K^{*'}}^{2} - s} \right] \qquad \tilde{F}_{T}(s) = F_{T}(s)/F_{T}(0)$$

$$= \frac{\Lambda_{2}}{F_{\pi}^{2}} \left[\frac{M_{K^{*}}^{2} + \beta s}{M_{K^{*}}^{2} - s} - \frac{\beta s}{M_{K^{*'}}^{2} - s} \right] \qquad \text{energy-dep. width } \gamma_{n}(s) \qquad = \frac{m_{K^{*}}^{2} - \kappa_{K^{*}}\tilde{H}_{K\pi}(0) + \beta s}{D(m_{K^{*}}, \gamma_{K^{*}})} - \frac{\beta s}{D(m_{K^{*'}}, \gamma_{K^{*'}})}$$

 $\beta = \frac{\sqrt{2}f_V^{I}g_V}{\Lambda_2} - 1 \simeq \pm 0.75\gamma$: characterizes relative weight of

the two resonances, and plays the same role as γ for $F_+(s)$

Feng-Zhi Chen, Xin-Qiang Li, Ya-Dong Yang, Xin Zhang, PRD 100 (2019) 113006

2023/10/15

新强 华中师大 CP asymmetries in tau -> K_S pi nu decays

Tensor form factors

Combining χPT @ low s + RχT @ intermediate s
 + asymptotic behaviors @ high s, we obtain the once-subtracted dispersion representation:

$$F_T(s) = F_T(0) \exp\left\{\frac{s}{\pi} \int_{s_{K\pi}}^{\infty} ds' \frac{\delta_T(s')}{s'(s'-s-i\epsilon)}\right\}$$

$$\delta_T(s) = \begin{cases} \arctan[\frac{\Im m \tilde{F}_T(s)}{\Re e \tilde{F}_T(s)}], & s_{K\pi} < s < s_{cut} \\ n_T \pi, & s \ge s_{cut} \end{cases}$$

$$asymptotic 1/s as dictated by pQCD$$

> in elastic region (below ~ 1.2 GeV), $\delta_T(s) = \delta_+(s)$

as required by Watson's theorem [K. M. Watson, Phys. Rev. 95 (1954) 228]

> in inelastic region (above ~ 1.2 GeV), $\delta_T(s)$ and $\delta_+(s)$ start to behave differently due to the different relative weights of the two resonances $K^*(892)$ & $K^*(1410)$

CP-violating observables in general EFT

Decay-rate asymmetry:

 $A_{\rm CP}^{\rm rate}(\tau \to K \pi \nu_{\tau}) = \frac{\Gamma(\tau^+ \to K^0 \pi^+ \bar{\nu}_{\tau}) - \Gamma(\tau^- \to \bar{K}^0 \pi^- \nu_{\tau})}{\Gamma(\tau^+ \to K^0 \pi^+ \bar{\nu}_{\tau}) + \Gamma(\tau^- \to \bar{K}^0 \pi^- \nu_{\tau})}$

only vector-tensor interference as the only possible mechanism $\Gamma(\tau^{+} \to K^{0} \pi^{+} \bar{\nu}_{\tau}) + \Gamma(\tau^{-} \to K^{0} \pi^{-} \nu_{\tau})$ $= \frac{\operatorname{Im}[\hat{\epsilon}_{T}] G_{F}^{2} |V_{us}|^{2} S_{\mathrm{EW}}}{128 \pi^{3} m_{\tau}^{2} \Gamma(\tau \to K_{S} \pi \nu_{\tau})} \int_{s_{K\pi}}^{m_{\tau}^{2}} ds \left(1 - \frac{m_{\tau}^{2}}{s}\right)^{2} \lambda^{\frac{3}{2}} \left(s, M_{K}^{2}, M_{\pi}^{2}\right)$ $\times |F_{T}(s)| |F_{+}(s)| \sin \left[\delta_{T}(s) - \delta_{+}(s)\right] ,$

CPA in angular distribution:

both from scalar-vector and scalar-tensor interferences

$$egin{aligned} &A_{CP}^i\simeq&\Delta_{K\pi}\,S_{\mathrm{EW}}\,rac{N_s}{n_i}\int_{s_{1,i}}^{s_{2,i}}\left\{-rac{\mathrm{Im}[\hat{\epsilon}_S]}{m_ au(m_s-m_u)}\,\mathrm{Im}\left[F_+(s)F_0^*(s)
ight]-rac{2\mathrm{Im}[\hat{\epsilon}_T]}{m_ au}\,\mathrm{Im}\left[F_ au(s)F_0^*(s)
ight]
ight. \ &+\left[\left(rac{1}{s}+rac{\mathrm{Re}[\hat{\epsilon}_S]}{m_ au(m_s-m_u)}
ight)\,\mathrm{Re}\left[F_+(s)F_0^*(s)
ight]-rac{2\mathrm{Re}[\hat{\epsilon}_T]}{m_ au}\,\mathrm{Re}[F_ au(s)F_0^*(s)
ight]
ight.
ight. \ &+\left[\left(rac{1}{s}+rac{\mathrm{Re}[\hat{\epsilon}_S]}{m_ au(m_s-m_u)}
ight)\,\mathrm{Re}\left[F_+(s)F_0^*(s)
ight]-rac{2\mathrm{Re}[\hat{\epsilon}_T]}{m_ au}\,\mathrm{Re}[F_ au(s)F_0^*(s)
ight]
ight.
ight.
ight. \ &+\left[\left(rac{1}{s}+rac{\mathrm{Re}[\hat{\epsilon}_S]}{m_ au(m_s-m_u)}
ight)\,\mathrm{Re}\left[F_+(s)F_0^*(s)
ight]-rac{2\mathrm{Re}[\hat{\epsilon}_T]}{m_ au}\,\mathrm{Re}[F_ au(s)F_0^*(s)
ight]
ight.
ight.
ight.
ight.
ight.
ight.
ight. \ &+\left[\left(rac{1}{s}+rac{\mathrm{Re}[\hat{\epsilon}_S]}{m_ au(m_s-m_u)}
ight)\,\mathrm{Re}\left[F_+(s)F_0^*(s)
ight]-rac{2\mathrm{Re}[\hat{\epsilon}_T]}{m_ au}\,\mathrm{Re}[F_ au(s)F_0^*(s)
ight]
ight.
ight.$$

 \Box Constraints on Re[$\hat{\epsilon}_{S,T}$]: more stringent from decay rates of various exclusive τ decays

 $\operatorname{Re}[\hat{\epsilon}_{S}] = (0.8^{+0.8}_{-0.9} \pm 0.3)\%, \operatorname{Re}[\hat{\epsilon}_{T}] = (0.9 \pm 0.7 \pm 0.4)\%$ S. Gonzàlez-Solís, A. Miranda, J. Rendón and P. Roig, Phys. Lett. B 804 (2020) 135371

 \Box Constraints on Im[$\hat{\epsilon}_{S,T}$]: more sensitive to these CP-violating observables

CP-violating observables in general EFT

 \Box Fit results on Im[$\hat{\epsilon}_{S,T}$] from \mathcal{B}_{exp}^{τ} and four bins of $A_{exp,i}^{CP}$:

- \succ remarkably negative correlation between Im[$\hat{\epsilon}_{s}$] & Im[$\hat{\epsilon}_T$], as both vector & tensor FFs dominated by $K^*(892)$ and $K^*(1410)$, and thus have almost the same phases, especially in elastic region
- > bound on $\text{Im}[\hat{\epsilon}_{s}]$ consistent with $|\text{Im}(\eta_{s})| < 0.026$ @ 90% C.L. obtained by Belle [PRL 107 (2011) 131801]
- > upper bound on $\text{Im}[\hat{\epsilon}_T]$ only of $\mathcal{O}(10^{-1})$, much weaker than $2|\text{Im}[\hat{\epsilon}_T]| \leq 10^{-5}$ from neutron EDM & $D^{0} - \overline{D}^{0}$ mixing [V. Cirigliano *et al.*, PRL 120 (2018) 141803]

CP-violating observables in general EFT

$\square A_i^{CP}$ in the presence of non-standard scalar & tensor interactions

- > with best-fit values of $\text{Im}[\hat{\epsilon}_S]$ and $\text{Im}[\hat{\epsilon}_T]$, the CPA distributions have almost the same magnitude but opposite in sign in whole $K\pi$ invariant-mass region
- > the maximum absolute values are reached at around $\sqrt{s} = 1.2 \text{ GeV}$ for both cases
- the non-standard scalar & tensor contributions about one order of magnitude larger than SM prediction

□ We strongly suggest to make more precise measurement of CP asymmetry in the angular distributions, especially at Belle II & SCTF,

Belle-II, *PTEP* **2019** (2019) 123C01; H. Sang, X. Shi, X. Zhou, X. Kang and J. Liu, *CPC* **45** (2021) 053003

Summary

□ With large τ samples from exp. facilities, precision τ -lepton physics very promising □ Semi-leptonic τ decays: an ideal laboratory for low-energy QCD-testing & BSM probes

 $\Box \tau \rightarrow K_S \pi \nu_\tau$ decays: large branching ratio & very promising CPV observables

- ▶ within the SM, there exist both decay-rate asymmetry & CP asymmetry in angular distribution due to CPV in $K^0 \overline{K}^0$ mixing, with results of $O(10^{-3})$ and detectable @ Belle II & STCF, ...
- With a general EFT, only vector-tensor interference produces a direct decay-rate asymmetry, while both scalar-vector & scalar-tensor interferences possible for CPA in angular distribution

□ Bounds on $\text{Im}[\hat{\epsilon}_{S,T}]$: $\text{Im}[\hat{\epsilon}_S] = -0.008 \pm 0.027$, $\text{Im}[\hat{\epsilon}_S] \in [-3.1, 1.6] \times 10^{-4}$ @ 2σ

$$\begin{split} \mathrm{Im}[\hat{e}_T] &= 0.03 \pm 0.12, \qquad |\mathrm{Im}[\hat{e}_T]| \lesssim 4 \times 10^{-6} \\ \tau \text{ decays give much less stringent} \\ \mathrm{than \ from \ } d_n \ \& \ D^0 - \overline{D}^0 \ \mathrm{mixing} \end{split}$$

 $\begin{array}{c} & \overline{c} & \overline{u} \\ & & \overline{c} & \overline{u} \\ & & & \overline{c} & \overline{u} \\ & & & & \overline{c} \\ \hline & & & & & \overline{c} \\ \hline & & & & & & \overline{c} \end{array}$

2023/10/15

李新强 华中师大 CP asymmetries in tau -> K_S pi nu decays

26

Summary

 \Box With other bounds considered, 2.8 σ deviation for A_{CP}^{rate} not easily explained by heavy NP

□ Predictions for CP asymmetry in the angular distribution in three different cases:

□ We strongly suggest to measure these observables more precisely @ Belle II & STCF!

Thank you for your attention!

Backup

Vector & scalar FFs for $\tau \rightarrow K_S \pi \nu_{\tau}$ **decays**

D Form factors with $\chi PT + R\chi T$ including the two resonances $K^*(892)$ and $K^*(1410)$:

