

Search for new physics at Super Tau-Charm Facility

Yu Zhang (University of South China) for the STCF working group NPG Workshop 13/10/2023

Outline

- Introduction
 - Experiment facility
 - Expected data samples
 - Oppotunities of (new) physics studies
- Tau LFV studies
- Rare and forbidden decays
- CP violation studies
- Summary and prospects

Super Tau-Charm Facility in China

- Peak luminosity >0.5×10³⁵ cm⁻²s⁻¹ at 4 GeV
- Energy range E_{cm} = 2-7 GeV
- Potential to increase luminosity & realize beam polarization
- R&D project (0.42B RMB), total cost: 4.5B RMB
- 1 ab⁻¹ data expected per year
- Rich of physics program, unique for physics with c quark and τ leptons,
- Important playground for study of QCD, exotic hadrons, flavor physics and search for new physics.

STCF Detector

Inner Tracker (ITK)

- \blacktriangleright ~0.15% X₀ / layer
- $\succ ~\sigma_{xy}\sim 50~\mu m$

Out Tracker (MDC)

- \succ σ_{xy}~130 µm, σ_p/p~0.5%@1GeV/c
- \rightarrow d $\vec{E}/dx \sim 6\%$

PID system (RICH)

> π/K (K/P) 3-4 σ separation up to 2 GeV/c

D ECal

- ➢ Range: 0.02 − 3 GeV
- Resolution (1GeV): 2.5% (barrel) and 4% (endcap)

D Muon system

▶ Pion suppression power: >10 and as low as 0.4 GeV/c

Expected data samples at STCF

- STCF is expected to have higher detection efficiency and low background with productions near threshold
- STCF is designed to have excellent resolution, kinematic constraining
- Opportunities at 5-7 GeV which is experimentally blank before

Physics programs of STCF

STCF CDR: Volume 1 -- Physics & Detector arXiv:2303.15790

Fast simulation tools

Studying the physics sensitivity, guiding the optimization of Detector design

- Based on BESIII BOOST framework, same as BESIII analysis procedures
- Implementing all the expected
 performance for the STCF detector.
- The input performances are flexible and adjustable for detector optimization
- □ Acceptable CPU and storage consumption

Friendly to BESIII users

Lepton Flavor Conservation

- In quark sector: flavor mixing is well established
- Neutrino mixing: =>lepton flavor symmetry is violated (a sign of LFV beyond the SM!)

How about charged lepton sector??

- The charged LFV processes can occur through oscillations in loops
- Immeasurable small rates (10-54-10-49) for all the LFV μ and τ decays

$$\mathfrak{B}(l_1 \to l_2 \gamma) \propto \alpha(\frac{\Delta m^2}{m_W^2})^2$$

Any observation of LFV in charged lepton will be a signature of NP !

LFV: a gateway to BSM

Many extensions of SM naturally introduces cLFV at order ~10⁻⁷ – 10⁻¹⁰ (an crucial place to test BSM)

Model Ref. $\tau \rightarrow \mu \gamma$ $\tau \rightarrow \mu \mu \mu$
SM + heavy majorana PRD 66.034008 10 ⁻⁹ 10 ⁻¹⁰
Non-universal Z' PLB 547(3)252 10 ⁻⁹ 10 ⁻⁸
SUSY + seesaw PRL 89:241802 10 ⁻¹⁰ 10 ⁻⁷
SM + 4 th generation arXiv.1006.530 10 ⁻⁸ 10 ⁻⁸

Different cLFV experiments are necessary (as a part of 'global' programme): l_i → l_jγ, l_i → l_jl_kl_k, τ → lh...

τ LFV searches

- τ —the heaviest charged lepton:
 - Various decay modes for LFV search, include decay to hadron
 - Strength of interaction relate to new physics is naively expected to be mass-dependent
 - $\tau \rightarrow l\gamma$ and $\tau \rightarrow lll$ are golden mode, which are expected to have largest branching fraction

Evolution of limits

- Very rich experimental programme with substantial improvements expected in near future.
- Remarkable progress expected on Muon LFV searches.
- B factories expected to be the most powerful for tau LFV.

How about LFV at Super tau-charm factory?

τ lepton studies at STCF

3.5 × 10⁹ τ lepton pairs /ab at 4.26 GeV

electronic muonic pionic 1-prong others

- Double tag method
- Signal side: full reconstruction
- Tag side: decays with netrino(s)

 $\tau \rightarrow e v \overline{v}, \ \mu v \overline{v}, \ \pi v + n \pi^0$ (total branching fraction $\approx 82\%$)

$\tau \rightarrow 3l$ decays

Signal side	Tag side							
$\begin{cases} 6 \text{ decays } \mu^+ \mu^- \mu^-, e^+ e^- e^-, e^+ e^- \mu^-, \\ \mu^+ \mu^- e^-, \mu^+ e^- e^-, e^+ \mu^- \mu^- \end{cases}$	1-prong ($\pi/e/\mu$ +neutrals+neutrinos) (82% of total BF)							
γ -conversion background $\langle e^+e^- \rangle > 5$ degrees, $M_{ee} > 0.5$ GeV/ c^2	Hadronic mode $M_{\rm miss}^2 < 0.2 \ {\rm GeV}^2/c^4$							
Multiple candidates smallest $\chi^2_{\tau \text{ mass}} + \chi^2_{\Delta E}$	Hadronic mode $M_{\rm miss}^2 < 2 {\rm GeV}^2/c^4$							
Signal Extraction Beam energy and mass difference	Total momentum of the 1-prong side larger than 0.4 GeV/ <i>c</i>							
Angle between the 1 prong and 3 prong decay less than 175 degrees								

$\tau \rightarrow 3l$ decays

- The PID efficiency in fast simulation is obtained from BESIII, using dE/dx and TOF information. (The mis-ID rate of π/μ can be as large as 30%).
- By scaling the π/μ mis-ID rate to 10%, 3%, 1% at 1GeV, different π/μ PID efficiencies are used.
- Following are the distributions of π/μ PID efficiencies and their mis-ID rates (the mis-ID rates to *e*, *K*, *P* are not changed in this analysis).

$\tau \rightarrow 3l$ decays

- The number of survived events N_{BG} using 1 ab⁻¹ simulated sample @ 4.26 GeV are obtained for the six decay modes of $\tau \rightarrow 3l$, with scaling π/μ mis-ID rate to 10%, 3%, 1%.
- The MC selection efficiency are also obtained by varying π/μ mis-ID rate from 10% to 1%.

 At STCF, 3.5×10⁹ tau pairs @ 4.26 GeV per year. If π/μ mis-ID rate is 1% at 1 GeV, the upper limit is predicted to be:

$$\mathcal{B}_{UL}^{90}(\tau \to 3l) < \frac{N_{UL}^{90}}{2\varepsilon N_{\tau\tau}} \sim 1.4 \times 10^{-8}$$

- If taken 10 years data, the best upper limit for $\tau \rightarrow 3l$ will reach 10^{-9} level
- $\tau \rightarrow \mu \mu \mu$ is the most sensitive decay

$\tau \rightarrow \gamma \mu$ decay

tag mode	selection criteria	$N_{\rm bkg}$ (ε) before	$N_{\rm bkg}$ (ε) after
$e^+ v_e \bar{v}_{\tau}$	$\cos heta_{ m sig_\gamma,tag_charged} < -0.2$ $p_{ m tag_charged} > 0.5 { m GeV/c}$ $E_{ m miss} < 1.7 { m GeV}$	$1.5 \times 10^2 (2.6\%)$	0 (1.1 %)
$\pi^+ ar{ u}_ au$	$E_{ m miss} > 0.7 m GeV$ $ \cos heta_{ m miss} < 0.6$ $E_{ m sig}_{\gamma} > 0.8 m GeV$ $M_{ m miss}^2 < 0.050 m GeV^2/c^4$	$1.4 \times 10^4 (4.0\%)$	0.3 (0.5 %)
$\pi^+\pi^0ar{ u}_ au$	$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$	$1.2 \times 10^3 (2.6\%)$	1.2 (1.5%)
total		$1.6 \times 10^4 (9.2\%)$	1.5 (3.1%)

Tag 54% of total tau decay BF

arXiv:2305.00483

Not using decays with muons to avoid huge di-muon background Not using decays with multiple $\pi^0 s$ due to low efficiency and large combinatorial background

 $\tau \rightarrow \gamma \mu$ decay

- Optimized with the Punzi FOM
- Bkg suppressed to only a few, with ~3% signal efficiency
- *evv* tag bkg: SM muonic decays and randomly choosen photon
- $\pi(\pi^0)v$ tag bkg: 1/2-prong with multiple π^0 s and μ/π misID

$\tau \rightarrow \gamma \mu$ decay

 π/μ mis-ID rate: 3%, 1.7%, 1% at 1 GeV photon position resolution: 6mm, 4.2mm, 3mm photon energy resolution: 2.5%, 2.25%, 2%

- 3.5 × 10⁹ tau pairs @ 4.26 GeV per year
- π/μ mis-ID rate is 1% at 1 GeV
- 3 mm and 2% for photon position and energy resolutions
 - The upper limit is predicted to be: $\mathcal{B}_{III}^{90}(\tau \rightarrow \gamma \mu) < 1.8 \times 10^{-8}$
 - 5.7×10^{-9} for ten-year data taking

Sensitivity of rare/forbidden decays

Sensitivity of rare/forbidden decays from STCF measurements would be able to verify various beyond SM model predictions.

CPV in *A* decay with polarized electron beam

$$\begin{split} \mathcal{F}_{0}(\xi) &= 1 + \alpha_{\psi} \cos^{2}\theta, \\ \mathcal{F}_{1}(\xi) &= \sin^{2}\theta \sin\theta_{1}\cos\varphi_{1}\sin\theta_{2}\cos\varphi_{2} - \cos\theta^{2}\cos\theta_{1}\cos\theta_{2}, \\ \mathcal{F}_{2}(\xi) &= \sin\theta\cos\theta(\sin\theta_{1}\cos\theta_{2}\cos\varphi_{1} - \cos\theta_{1}\sin\theta_{2}\cos\varphi_{2}), \\ \mathcal{F}_{3}(\xi) &= \sin\theta\cos\theta\sin\theta_{2}\sin\varphi_{2}, \\ \mathcal{F}_{4}(\xi) &= \sin\theta\cos\theta\sin\theta_{1}\sin\varphi_{1}, \\ \mathcal{F}_{5}(\xi) &= \sin^{2}\theta\sin\theta_{1}\sin\varphi_{1}\sin\theta_{2}\sin\varphi_{2} - \cos\theta_{1}\cos\theta_{2}, \\ \mathcal{F}_{6}(\xi) &= P_{e}(\gamma_{\varphi}\sin\theta\sin\theta_{1}\cos\varphi_{1} - (1 + \alpha_{\psi})\cos\theta\cos\theta_{1}), \\ \mathcal{F}_{7}(\xi) &= P_{e}(\gamma_{\varphi}\sin\theta\sin\theta_{2}\cos\varphi_{2} + (1 + \alpha_{\psi})\cos\theta\cos\theta_{2}), \\ \mathcal{F}_{8}(\xi) &= P_{e}\beta_{\varphi}\sin\theta(\cos\theta_{1}\sin\theta_{2}\sin\varphi_{2} + \sin\theta_{1}\sin\varphi_{1}\cos\theta_{2}). \end{split}$$

Electron beam polarization provide additional observables

BESIII: -0.0025±0.0046±0.0012 SM: 10⁻⁵ STCF: ?

CPV in *A* decay with polarized electron beam

Probe CP violation at tau-charm factory

More sensitivity studies are ongoing

Summary

- STCF is the next generation tau-charm factory, one of the crucial precision frontiers aiming for understanding QCD, testing EW models and probing new physics.
- Many activities of sensitivity studies are going on.
- Physics reaches are still highly extendable, including probing new physics.

Те	ntative plan	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032- 2042	2043- 2046
	Form collaboration																
	Conception design CDR														5) (8 3) (8		
	R&D (TDR)					2 2											
	Construction																
20	Operation																
	Upgrade																

Backups

Muon g-2: HVP contribution

- SM prediction: $a_{\mu}^{SM} = a_{\mu}^{QED} + a_{\mu}^{Weak} + a_{\mu}^{Had}$ •
- The $\pi^+\pi^-$ channel accounts for 75% of the full • a_{μ}^{Had}
 - Typical uncertainty around 0.6%-1.0% • $N_{\pi\pi\gamma} \cdot (1 + \delta_{\rm FSR}^{\pi\pi})$ $\sigma^{\mathrm{bare}}_{\pi\pi(\gamma_{\mathrm{FSR}})}$ ππγ

 $\cdot H(s) \cdot \delta_{\rm vac}$

Discrepancies between experiments now over $(3-5)\sigma$ need to be understood/resolved!

Muon g-2: Lattice HVP

- Programs to be improved on a_{μ}^{Had} by 2025: refer to Aida X. El-Khadra
 - Data-driven HVP: ~0.3%
 - Lattice HVP: ~0.5%
 - Dispersive HLbL: ~10%
 - Lattice HLbL: ~10%
- At STCF, 1 ab-1 $\psi(3770)$ data, by the ratio method $\sigma_{\pi\pi(\gamma_{\text{FSR}})}^{\text{bare}} = \frac{N_{\pi\pi\gamma}}{N_{\mu\mu\gamma}} \cdot \frac{\epsilon_{\text{global}}^{\mu\mu\gamma}}{\epsilon_{\text{global}}^{\pi\pi\gamma}}$
 - The statistical uncertainty would be negligible
 - Systematic uncertainties due to the luminosity, radiator function, and VP are canceled
 - The systematic uncertainty due to the track reconstruction and particle identification need to be carefully studies

 $\delta^{\mu\mu}_{\rm FSR}$

 $\cdot \sigma^{\text{bare}}$

 $\mu\mu$