

Search for Charged Lepton Flavor Violation decays at BESIII

Jing-Shu Li

Sun Yat-sen University

NPG Workshop 2023 BESIII新物理研讨会

Outline

- New physics searches at BESIII
- Motivation
- Search for charged lepton flavor violating decay $Jl\psi \rightarrow e\tau$
- Search for charged lepton flavor violating decay $J/\psi \rightarrow e\mu$
- Ongoing CLFV analyses
- Summary

New Physics Searches at BESIII

- Uniform blinding strategy and datasets
- Common statistic and standards
- ◆Sharing methods, tools and codes

Symmetry

- ◆BNV & LNV processes
- **♦**LFV processes
- Other symmetry violation.
- ◆FCNC processes
- Charmonium weak decays!
- ♦ Other rare decays

Very rare

Very rare decays

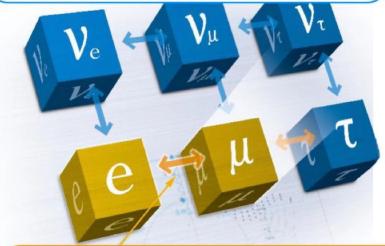
Physics

Common

standards

& tools

Exotic searches

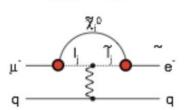

◆Dark photon

Exotic

- ♦ Invisible signatures
- ◆Light Higgs, Z'
- Exotic resonances

- New Physics Searches at the BESIII Experiment, S.J. Chen and S. Olsen, Nation Science Review 8, nwab189 (2021), arXiv: 2102.13290
- New Physics Program of BES, D.Y. Wang, in "30 Years of BES Physics"

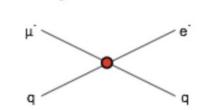
Neutrino Flavor Violation is observed!

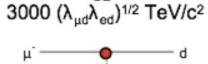

charged Lepton Flavor Violation !? (cLFV)

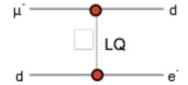
Models may enhance LFV effects up to a detectable level, such as leptoquark, Compositeness, Supersymmetry, Heavy Z' and Anomalous boson Coupling model.

Motivation

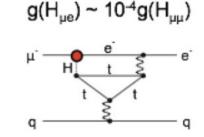
- ◆ Since LFV decay is forbidden in the SM, the observation of any LFV decay would be a signal of new physics beyond SM.
- In SM, Lepton Flavor is conserved for zero degenerate ν masses and now we have clear indication that \mathbf{v} s have non-zero mass.

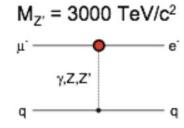

Supersymmetry


rate ~ 10-15


Compositeness

 $\Lambda_c \sim 3000 \text{ TeV}$


Leptoquark



Heavy Neutrinos

Second Higgs Doublet

Heavy Z' Anomal. Z Coupling

Motivation

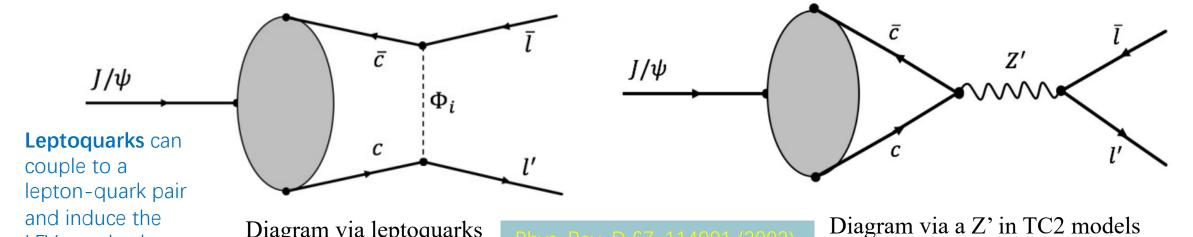

In the charged lepton sector, LFV is heavily suppressed in the Standard Model.

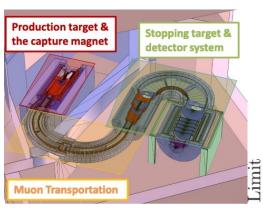
Diagram via leptoquarks

$$BR(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U_{\mu i}^* U_{ei} \frac{\Delta m_{1i}^2}{M_W^2} \right|^2 < 10^{-54}$$

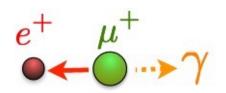
lacktriangle Both experimental searches and upper-limit predictions, including μ , τ LFV decays, π , K LFV decays and ϕ , J/ψ two-body LFV decays, etc.

decays of J/ψ . Jing-Shu Li

LFV two-body

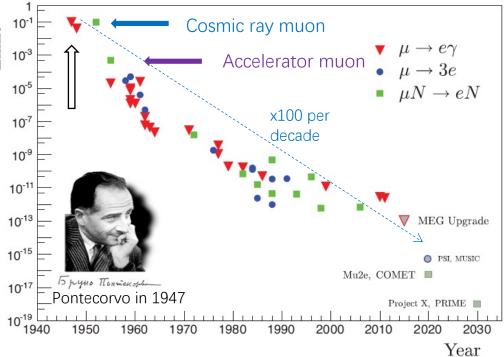

Search for charged lepton flavor violation at BESIII

CLFV


- $\mathcal{B}(\mu^+ \to e^+ \gamma) < 4.2 \times 10^{-13}$ @ 90% C.L. MEG
- $\mathcal{B}(\tau^+ \to e^+ \gamma) < 3.3 \times 10^{-8} @ 90\% \text{ C.L. } BABAR$
- ◆ $\mathcal{B}(\mu \to 3e) < 1.0 \times 10^{-12}$ @ 90% C.L. SINDRUM
- ◆ $\mathcal{B}(Z \to e^{\pm}\mu^{\mp})$ <7.5×10⁻⁷ @ 95% C.L. ATLAS
- $\mathcal{B}(\phi \to e^{\pm}\mu^{\mp}) < 2 \times 10^{-6} @ 90\% \text{ C.L.}$ SND
- $\mathcal{B}(J/\psi \to e^{\pm}\tau^{\mp}) < 7.1 \times 10^{-8}$ @ 90% C.L. BESIII
- $\mathcal{B}(J/\psi \to e^{\pm}\mu^{\mp})$ <4.5×10⁻⁹ @ 90% C.L. **BESIII**

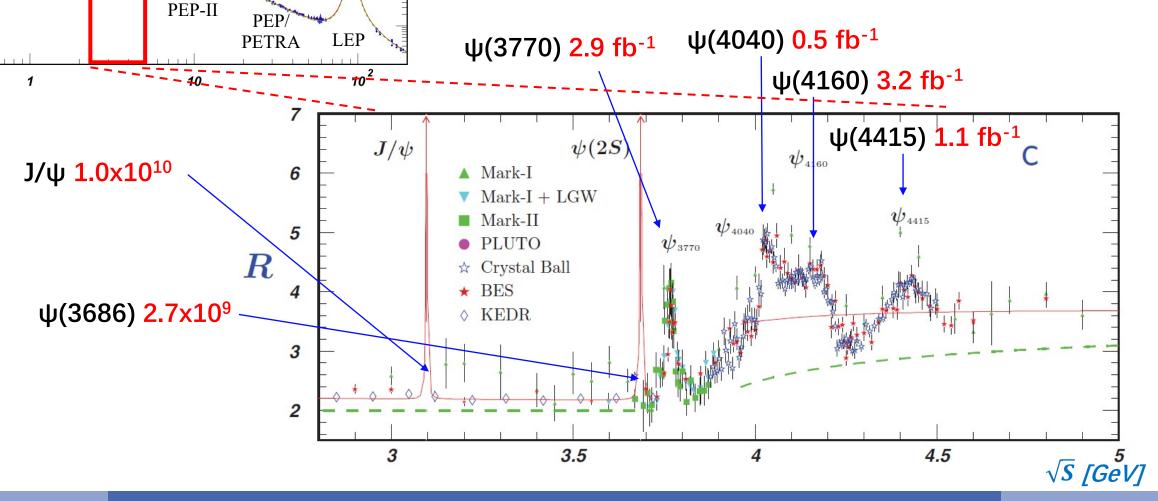
Eur. Phys. J. C 76, 434 (2016)
Phys. Rev. Lett. 104, 021802 (2010)
Nucl. Phys. B 299, 1 (1988).
Phys. Rev. D 90, 072010 (2014)
Phys. Rev. D 81, 057102 (2010)
Phys. Lett. B 598, 172 (2004)
Phys. Rev. D 103, 112007 (2021)
Sci. Chin. Mech. Astron. 66 2 (2023)

Current best limit



COMET

MEGII process


- ♦ Mu2e and COMET will search for CLFV with μN→eN Improve the current limit by a factor of 10⁴ Next goal <6x10⁻¹⁷ (90%C.L.) Search for New Physics with energy scale up to 10⁴ TeV
- ◆ MEGII and Mu3e has similar beam requirements. Intensity O(10⁸ muon/s), low momentum p = 28 MeV/c MEGII was started in 2021 and will continue to run until 2026 aiming at a sensitivity down to 6x10⁻¹⁴ (90%C.L.)

BESIII data samples

10

10 -3

10 -4

10 -7

10 -8

DAФNE

VEPP-II

ADONE

 $\psi(:S)$

KEKB

BEPCII

Motivation

The cLFV decays of vector mesons $V \rightarrow l_i l_j$ are also predicted in various of extension models of SM:

$$\mathcal{B}(J/\psi \to e\mu)$$
 to $10^{-16} \sim 10^{-9}$ @ 90% C.L.

$$\mathcal{B}(J/\psi \to e(\mu)\tau)$$
 to $10^{-10} \sim 10^{-8}$ @ 90% C.L.

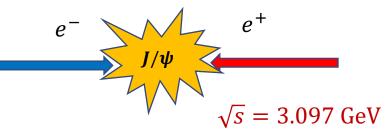
Experimental results before:

Decay mode	BESII UL (90%)	BESIII UL (90%)
Number of J/ψ	58×10^6	225.3×10^6
$\mathcal{B}(J/\psi \to e\mu)$	$< 1.1 \times 10^{-6}$	$< 1.6 \times 10^{-7}$
$\mathcal{B}(J/\psi \to e \tau)$	$< 8.3 \times 10^{-6}$	-
$\mathcal{B}(J/\psi \to \mu \tau)$	$< 2.0 \times 10^{-6}$	_

Phys. Lett. B 561, 112007 Phys. Lett. B 598, 172 Phys. Rev. D 87, 112007

Search for charged lepton flavor violating decay $J/\psi \rightarrow e\tau$

Data samples


◆Based on 10 billion data set: 1310.6M collected @2009+2012 (sample I), 8774.01M collected @2017-2019 (sample II).

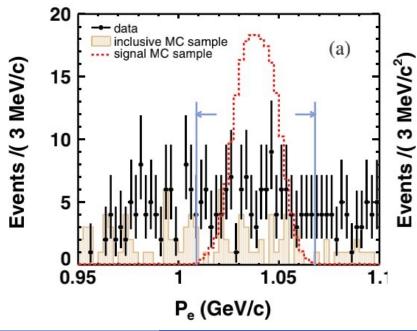
Decay chain	Generator	Generated
$J/\psi \to \omega f_2(1270), \omega \to \pi^0 \gamma, f_2(1270) \to \pi^+ \pi^-$	PHSP, VSP_PWAVE, TSS	5.8M
$J/\psi ightarrow \eta nar{n}, \eta ightarrow \gamma \gamma$	PHSP	5.8M
$J/\psi o \pi^+\pi^-\pi^0$	OMEGA-DALITZ	29M
$J/\psi o ho\pi$	HELAMP	29M
$J/\psi o \pi^0 e^+ e^-$	PHSP	29M
$J/\psi ightarrow ar p n \pi^+$	PHSP	5.8M
$J/\psi \to K^* \bar{K^0}(K^* \to K^+ \pi^-) + c.c.$	HELAMP, VSS	11.6M

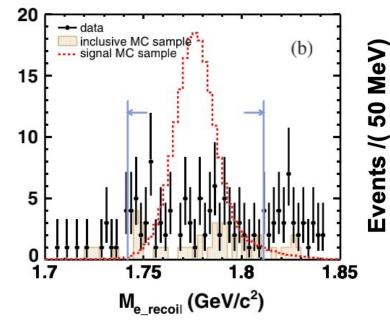
Generator and number of events list for exclusive MC samples of 2009 and 2012

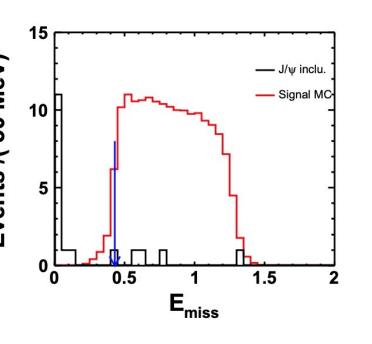
Decay chain	Generator	Generated
$J/\psi \to \omega f_2(1270), \omega \to \pi^0 \gamma, f_2(1270) \to \pi^+ \pi^-$	PHSP, VSP_PWAVE, TSS	19M
$J/\psi \to \rho \pi$ (include direct $\pi^+\pi^-\pi^0$)	HELAMP, OMEGA-DALITZ	190 M
$J/\psi ightarrow ar p n \pi^+$	PHSP	38M

Generator and number of events list for exclusive MC samples of 2018 and 2019

- ◆ Inclusive samples:
 - 225 million @ 2009
 - 1000 million @ 2012
 - 4600 million @ 2018
 - 4100 million @ 2019
- 1 million τ inclusive events with $J/\psi \to e\tau$ and τ inclusive decays to any decay channels

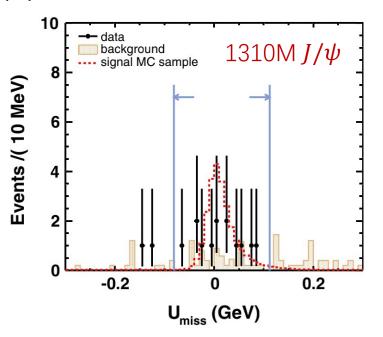

Event Selection

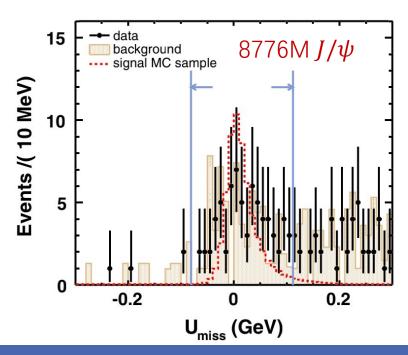



•
$$J/\psi \rightarrow e\tau, \tau \rightarrow \pi\pi^0\nu$$

- ◆ Select one electron and one charged pion
- lacktriangle At least two photon showers and one π^0

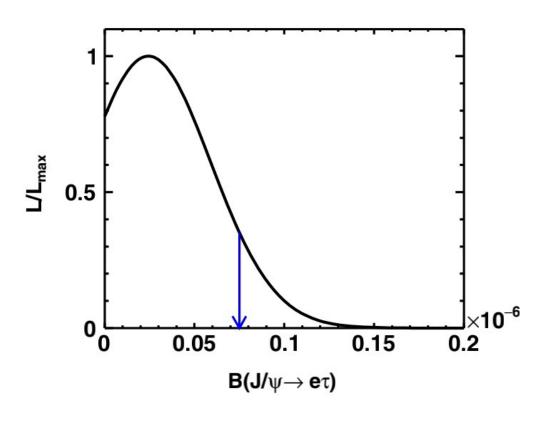
- $E_{\text{miss}} = E_{\text{CMS}} E_e E_{\pi} E_{\pi^0}$ $\vec{p}_{\text{miss}} = \vec{p}_{J/\psi} - \vec{p}_e - \vec{p}_{\pi} - \vec{p}_{\pi^0}$
- ◆The final-state electron from the process $J/\psi \to e\tau$ is monochromatic, therefore the momentum of the electron P_e and the recoiling mass against the electron M_{e_recoil}
- •One undetected neutrino with missing energy $E_{\text{miss}} > 0.43 \text{GeV}$





Background study

- ◆ The dominant background contaminations stem from the continuum process (e.g. radiative Bhabha) and from hadronic J/ψ decays such as $J/\psi \to \pi^+\pi^-\pi^0$
- $\bullet U_{miss} = E_{miss} c |\vec{P}_{miss}|$, The areas between the arrows represent the signal region.
- ♦ In total, **6**. **9** \pm **1**. **9** (**63**. **6** \pm **13**. **2**) background events are expected for the data sample I (II).


Results

◆ Determination of upper limit at 90% confidence level (C.L.) with Bayesian method. Combined result:

$$\mathcal{B}(J/\psi \to e\tau) < 7.5 \times 10^{-8}$$
 @ 90% C.L.

- The 1st submitted paper based on full 10 billion J/ψ data of BESIII
- ◆This result improves the previous published limits by two orders of magnitude and is comparable with the theoretical predictions.

Phys. Rev. D 103, 112007 (2021)

Search for charged lepton flavor violating decay $J/\psi \rightarrow e\mu$

Data samples

Data size $09+17-19(10^6)$

$$ightharpoonup$$
 Data: Full J/ψ $\psi(3770)$ $\chi_{c1}(1P)$

$$ightharpoonup$$
 Signal MC: $J/\psi \rightarrow e\mu$

$$J/\psi \to ee$$

$$J/\psi \to \mu\mu$$

$$J/\psi \to \pi\pi$$

$$J/\psi \to KK$$

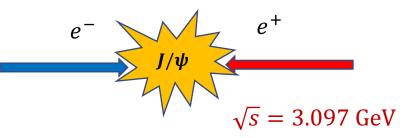
$$J/\psi \to pp$$

Continuum MC:

$$ee \rightarrow ee(\gamma)$$

 $ee \rightarrow \mu\mu(\gamma)$

 \triangleright Inclusive MC: Full J/ψ


$$2.93 \text{ fb}^{-1}$$
 458.21 pb^{-1}

$$168.58 \text{ pb}^{-1}$$

$$0.1 + 0.1 + 0.1$$

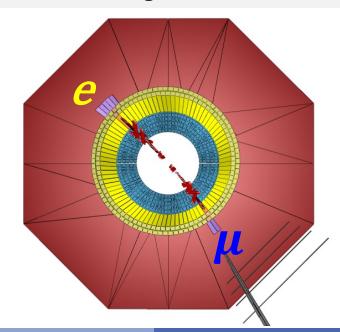
$$0.3 + 1.9$$

230+8774

PHOTOS VLL

PHOTOS VLL
PHOTOS VLL
VSS
VSS
J2BB1

Babayaga Babayaga


Evtgen & LundCharm

Preliminary Selection

Good charged track:

- $|V_r| < 1.0 \ cm$;
- $|V_z| < 10.0 \ cm$;
- $|\cos\theta| < 0.93$;
- $N_{charge}^{good} = 2, \Sigma Q = 0;$
- Two charged tracks $\Delta T \leq 1.0 \ ns$

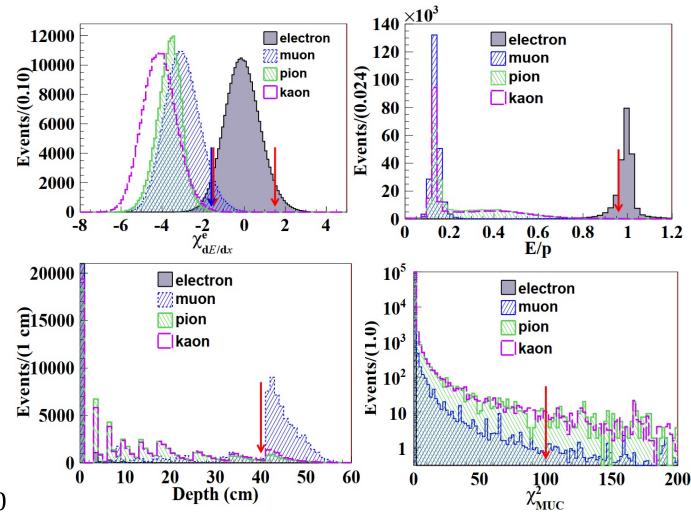
➤ Good photon:

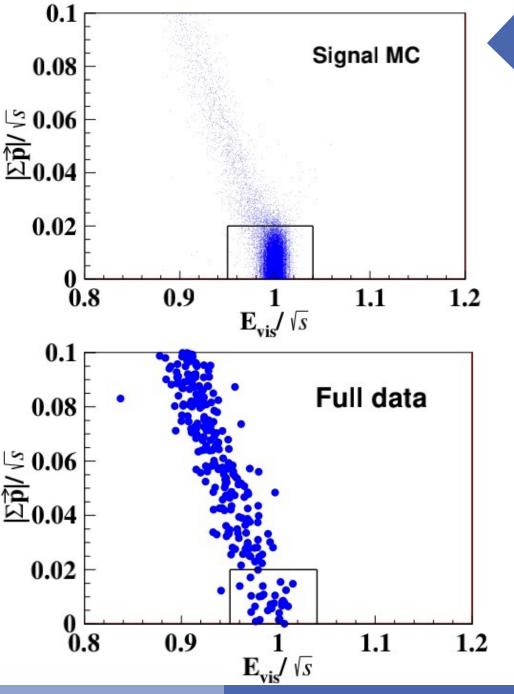
- Barrel ($|\cos\theta| < 0.80$) $E_{\gamma 1} > 25 \, MeV$;
- Endcap $(0.86 < |\cos\theta| < 0.92) E_{v2} > 50 \text{ MeV};$
- Gap $(0.80 < |\cos\theta| < 0.86) E_{\gamma 3} > 50 MeV$;
- TDC time window [0, 700] ns;
- Angle with nearest charged track $> 20^{\circ}$;
- Reject the events with $N_{\gamma} > 0$

> Particle ID:

- π : prob $(\pi) \ge 0$ && prob $(\pi) \ge \text{prob}(K)$;
- $K: \operatorname{prob}(K) \ge 0 \&\& \operatorname{prob}(K) \ge \operatorname{prob}(\pi);$
- $p: \operatorname{prob}(p) \ge 0 \&\& \operatorname{prob}(p) \ge \operatorname{prob}(K) \&\& \operatorname{prob}(p) \ge \operatorname{prob}(\pi)$

Event Selection


Each J/ψ candidate is reconstructed with two back-to-back good charged tracks, which will be further identified as electron and muon.


Electron identification:

- Not associated in the MUC
- $-1.5 < \chi^e_{dE/dx} < 1.5$ ($\chi^e_{dE/dx}$ is defined as the difference between measured and expected dE/dx under the electron hypothesis normalized by the dE/dx resolution)
- E/p > 0.96 (E is the deposite energy in the EMC and p is the modulus of the momentum from the MDC)

Muon identification:

- $0.1 < E < 0.3 \text{ GeV}, \chi^e_{dE/dx} < -1.6$
- The penetration depth of the track in the MUC $> 40~\mathrm{cm}$
- Each candidate track must penetrate more than three layers in the MUC, and $\chi^2_{MUC} < 100$

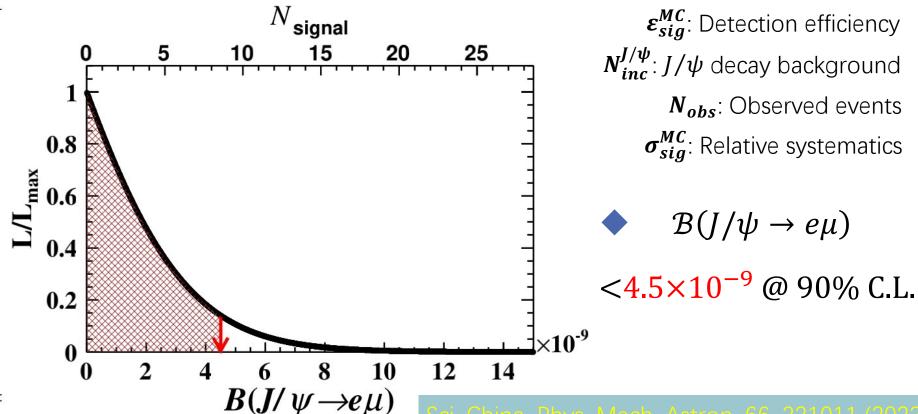
Selection and Background study

- ◆ The signal region is defined with $|\sum \vec{p}|/\sqrt{s} \le$ 0.02 and 0.95 $\le E_{vis}/\sqrt{s} \le$ 1.04
 - $\bullet |\Sigma \vec{p}|$: the magnitude of the vector sum of the momenta
 - $lacklosim E_{vis}$: the total reconstructed energy of e and μ in the event
- J/ψ MC events J/ψ decay background (N_{bkg1})
- $\psi(3770)$, $\chi_{c1}(1P)$ and 3.080 *GeV* data \rightarrow Continuum background (N_{bkq2})
- The normalized background is estimated to be $N_{bkg1}^{norm} = 24.8 \pm 1.5$ and $N_{bkg2}^{norm} = 12.0 \pm 3.7$.
- By analyzing the full data, 29 candidate events are observed, consistent with background estimation.

Systematic uncertainty

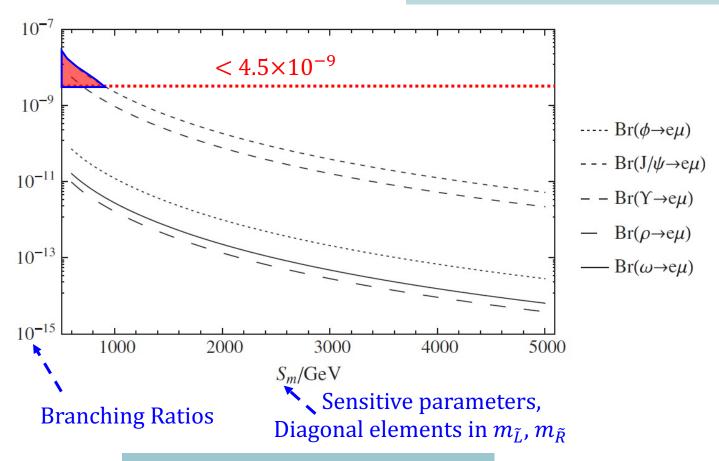
Sources	Δ_{sys} [%]
Tracking and PID	13
TOF timing	0.52
Photon veto	0.83
$ \Delta heta $ and $ \Delta \phi $	2.6
Total	14

- Control samples $J/\psi(e^+e^-) \to e^+e^-$ and $J/\psi \to \mu^+\mu^-$ are used to estimate the systematic uncertainties of tracking and PID of electron and muon, TOF timing, γ veto, and $|\Delta\theta|$ and $|\Delta\phi|$ requirement.
- ◆ They are added in quadrature to the total efficiency-related systematic uncertainty of 14%.


Upper limit

$$L = P(N_{obs}|N_{J/\psi} \cdot \mathcal{B} \cdot \hat{\varepsilon}_{sig} + \widehat{N}_{bkg1} + \widehat{N}_{bkg2}) \cdot G(\hat{\varepsilon}_{sig}|\varepsilon_{sig}^{MC}, \varepsilon_{sig}^{MC} \cdot \sigma_{sig}^{MC})$$
$$\cdot P(N_{inc}^{J/\psi-MC}|\widehat{N}_{bkg1} \cdot f_1) \cdot \prod_{k} P(N_{cont}^{k}|\widehat{N}_{bkg2} \cdot f_2) \cdot G(N_{J/\psi}|N_{J/\psi}^{data}, \delta N_{J/\psi}^{data})$$

Parameter	Value
$\overline{N_{ m obs}}$	29
$N_{J/\psi}^{ m data}$	8.998×10^{9}
$\delta N_{J/\psi}^{ m data}$	0.040×10^9
$\epsilon_{ m sig}^{ m MC}$	21%
$\sigma_{ m sig}^{ m EFF}$	14%
$N_{ m bkg1}^{J/\psi- m MC}$	275
$N_{ m cont}^{3.773}$	10
$N_{ m cont}^{3.510}$	1
$N_{ m cont}^{3.080}$	0
f_1	0.09090
$f_2^{3.773}$	1.3416
$f_2^{3.510}$	7.4390
$f_2^{3.080}$	15.553

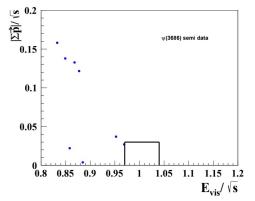

 N_{cont}^{k} : Continuum background at different energy points

Comparison with theory

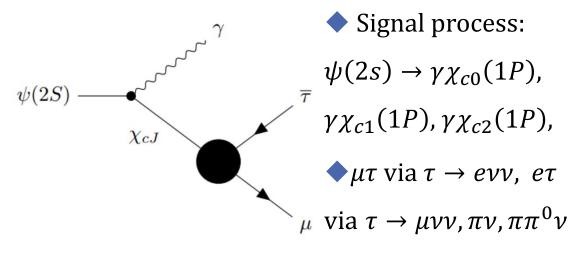
$$\mathcal{B}(J/\psi \to e\mu) < 4.5 \times 10^{-9} @ 90\% \text{ C.L.}$$

Phys. Rev. D 97, 056027 (2018)

- ◆ Excluding the parameter space of some models, such as BLMSSM model, a supersymmetric model where baryon (B) and lepton (L) numbers are local gauge symmetries.
- ◆Improves the previous published limits by a factor of more than 30 and comparable with the theoretical predictions
- ◆ The most precise result of CLFV search in heavy quarkonium systems


Ongoing CLFV analyses

Search for CLFV decay $\psi' \rightarrow e\mu$ and $\chi_{CJ} \rightarrow \tau e, \tau \mu$


$$\psi' \rightarrow e\mu$$

- For the decay $\psi(3686) \rightarrow e\mu$, a variety of new physics models could enhance the BF to $(10^{-16} \sim 10^{-13})$
- lacktriangle Based on semi-blind $\psi(3686)$ data, 2.578×10^8 events
- Using $|\sum \vec{p}|/\sqrt{s}$ and E_{vis}/\sqrt{s} to define signal box

lacklost Expected sensitivity is $\mathcal{O}(10^{-8})$ with full dataset

$\chi_{CI} \rightarrow \tau e, \tau \mu$

- Cut optimization is done based on the τ mass signal region using the Punzi Figure of Merit.
- ◆ Upper limit is set using counting and the Rolke method
- Expected sensitivity is $\mathcal{O}(10^{-8} \sim 10^{-7})$ with full dataset.

Search for CLFV decays of some quarkonium

- ◆ To unify different models and experimental results, effective field theory can be used to describe CLFV.
- ◆ CLFV decays of quarkonium with different quantum numbers are sensitive to different Wilson coefficients.
- ◆CLFV of quarkonium with different quantum numbers have been search a lot, but not for scalar states, which are sensitive to fewer operators, thus give better constraints.

$$\mathcal{L}_{\ell q} = -\frac{1}{\Lambda^{2}} \sum_{q} \left[\begin{pmatrix} C_{VR}^{q\ell_{1}\ell_{2}} \ \overline{\ell}_{1} \gamma^{\mu} P_{R} \ell_{2} + C_{VL}^{q\ell_{1}\ell_{2}} \ \overline{\ell}_{1} \gamma^{\mu} P_{L} \ell_{2} \end{pmatrix} \ \overline{q} \gamma_{\mu} q \right] \psi, \Upsilon$$

$$+ \left(\begin{pmatrix} C_{AR}^{q\ell_{1}\ell_{2}} \ \overline{\ell}_{1} \gamma^{\mu} P_{R} \ell_{2} + C_{AL}^{q\ell_{1}\ell_{2}} \ \overline{\ell}_{1} \gamma^{\mu} P_{L} \ell_{2} \end{pmatrix} \ \overline{q} \gamma_{\mu} \gamma_{5} q \right) \eta, \eta', \eta_{b}, \eta_{c}$$

$$+ \begin{pmatrix} m_{2} m_{q} G_{F} \left(C_{SR}^{q\ell_{1}\ell_{2}} \ \overline{\ell}_{1} P_{L} \ell_{2} + C_{SL}^{q\ell_{1}\ell_{2}} \ \overline{\ell}_{1} P_{R} \ell_{2} \right) \ \overline{q} q \right) \chi_{b0}, \chi_{c0}$$

$$+ \begin{pmatrix} m_{2} m_{q} G_{F} \left(C_{PR}^{q\ell_{1}\ell_{2}} \ \overline{\ell}_{1} P_{L} \ell_{2} + C_{PL}^{q\ell_{1}\ell_{2}} \ \overline{\ell}_{1} P_{R} \ell_{2} \right) \ \overline{q} \gamma_{5} q \right)$$

$$+ \begin{pmatrix} m_{2} m_{q} G_{F} \left(C_{TR}^{q\ell_{1}\ell_{2}} \ \overline{\ell}_{1} \sigma^{\mu\nu} P_{L} \ell_{2} + C_{TL}^{q\ell_{1}\ell_{2}} \ \overline{\ell}_{1} \sigma^{\mu\nu} P_{R} \ell_{2} \right) \ \overline{q} \sigma_{\mu\nu} q + h.c. \ \right].$$

$$\chi_{CI} \rightarrow e\mu$$

- ◆Background: $\chi_C \to \pi\pi$, $\chi_C \to KK$, $\psi(2s)$ inclusive MC excluding $\chi_C \to \pi\pi/KK$, $\psi(3770)$ data
- Have been searched for the first time
- Expected sensitivity is $\mathcal{O}(10^{-8} \sim 10^{-7})$ with full dataset.

$$\eta'/\eta_c/h_c \to e\mu/e\tau/\mu\tau(\gamma)$$

(Beginning)

• Expected sensitivity is $\mathcal{O}(10^{-8} \sim 10^{-6})$ with full dataset.

Summary

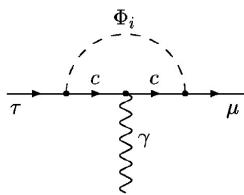
- ◆BESIII has great potentials with unique (and increasing) datasets and analysis techniques, performed wide range study of new physics, with many first searches or best limits.
- ◆Some new physics models can inspire the CLFV decay rate up to a detectable level.
- ◆The latest searching results and ongoing analyses for CLFV decays are reported.
- The UL is set to be $\mathcal{B}(J/\psi \to e\tau) < 7.5 \times 10^{-8}$ @ 90% CL.
- ◆The UL is set to be $\mathcal{B}(J/\psi \to e\mu) < 4.5 \times 10^{-9}$ @ 90% CL, which is the most stringent CLFV result in heavy quarkonium sector up to now.

Thank you

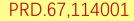
Back up

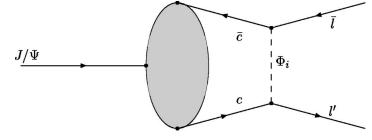
Leptoquark model

Lagrangian:
$$\mathcal{L}_{\text{eff}}^{\text{leptoquark}} = \bar{c}(\lambda_L^A P_L + \lambda_R^A P_R) \mu \Phi_A + \bar{c}(\lambda_L^A P_L + \lambda_R^A P_R) \tau \Phi_A$$


+H.c.,

$$\Phi_1: [\lambda_{ij}^{(1)} \bar{Q}_{Lj} e_{Ri} + \tilde{\lambda}_{ij}^{(1)} \bar{u}_{Rj} L_{Li}] \Phi_1,$$


$$\Phi_3: [\lambda_{ij}^{(3)} \bar{Q}_{Lj}^c L_{Li} + \tilde{\lambda}_{ij}^{(3)} \bar{u}_{Rj}^c e_{Ri}] \Phi_3.$$


$$\Gamma(J/\psi \to \mu \tau) = \frac{|\mathbf{p}|}{32\pi^2 M_{J/\psi}} \int |\mathcal{M}|^2 d\Omega$$

$$= \frac{g_{J/\psi}^2}{96\pi} \frac{m_{\tau}^2}{M_{J/\psi}} \left(1 + 2 \frac{M_{J/\psi}^2}{m_{\tau}^2} \right) \times \left(1 - \frac{m_{\tau}^2}{M_{J/\psi}^2} \right)^2 \cdot \frac{|\lambda_L^{c\mu} \lambda_L^{c\tau}|^2 + |\lambda_R^{c\mu} \lambda_R^{c\tau}|^2}{M_{\Phi}^4},$$

$$\frac{|\lambda_L^{c\mu}\lambda_L^{c\tau}|^2 + |\lambda_R^{c\mu}\lambda_R^{c\tau}|^2}{M_{\Phi}^4} < 1.5 \times 10^{-10}.$$

$$Br(J/\psi \to \mu \tau) = \frac{9}{2^9 \pi^2 \alpha^2} m_{\tau}^2 M_{J/\psi}^2 \left(1 + 2 \frac{M_{J/\psi}^2}{m_{\tau}^2} \right)$$

$$\times \left(1 - \frac{m_{\tau}^2}{M_{J/\psi}^2}\right)^2 \left[\frac{|\lambda_L^{c\mu} \lambda_L^{c\tau}|^2 + \lambda_R^{c\mu} \lambda_R^{c\tau}|^2}{M_{\Phi}^4} \right]$$

$$\times \operatorname{Br}(J/\psi \to e^+e^-)$$
.

$$\Gamma(J/\psi \rightarrow e^+e^-) = \frac{16\pi}{27} \alpha^2 \frac{g_{J/\psi}^2}{M_{J/\psi}^3},$$

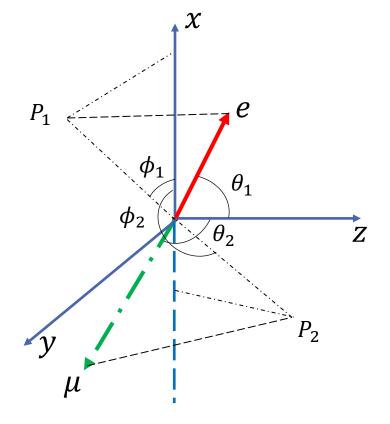
$$\operatorname{Br}(\tau \to \mu \gamma) = \frac{3}{2^9 \pi^2 G_F^2} \left[\frac{|\lambda_L^{c\mu} \lambda_L^{c\tau}|^2 + \lambda_R^{c\mu} \lambda_R^{c\tau}|^2}{M_{\Phi}^4} \right]$$

$$\mathcal{B}(J/\psi \rightarrow e\mu) < 3.5 \times 10^{-15}$$

$$\times \operatorname{Br}(\tau \to \mu \nu_{\tau} \bar{\nu}_{\mu}),$$

Back up

$Jl\psi \rightarrow e\mu$ angle



$$|\Delta \theta| = |180^{\circ} - (\theta_1 + \theta_2)|$$

$$|\Delta \phi| = |180^{\circ} - |\phi_1 - \phi_2||$$

CLFV in SM

$$\begin{split} \Gamma(\mu \to e \gamma) &\approx \frac{G_F^2 m_\mu^5}{192 \pi^3} & \left(\frac{\alpha}{2\pi}\right) & sin^2 2\theta sin^2 \left(\frac{1.27 \Delta m^2}{M_W^2}\right) \\ & \mu - decay & \gamma - vertex & \vartheta - oscillation \\ &\approx \frac{G_F^2 m_\mu^5}{192 \pi^3} & \left(\frac{3\alpha}{32\pi}\right) & \left(\frac{\Delta m_{23}^2 s_{13} c_{13} s_{23}}{M_W^2}\right)^2 \\ & \text{with } \Delta \sim 10^{-3} eV^2, M_W \sim O(10^{11}) eV \approx \textbf{O}(\textbf{10}^{-\textbf{54}}) \end{split}$$

Backup

$JI\psi \rightarrow e\mu$ cut flow

v	v	U
Cut flow	Efficiency 2009 (%)	Efficiency 2017-2019 (%)
Generated(100000, 200000)	100	100
$N_{charged}^{good} = 2, \sum Q = 0$	88.00	87.27
$\Delta TOF \leq 1.0 \mathrm{ns}$	86.45	85.67
E/P > 0.5 for electron, $E/P < 0.5$ for muon	83.31	82.60
$E_{\gamma B} < 0.025 \text{ GeV}, E_{\gamma G} < 0.050 \text{ GeV}, E_{\gamma E} < 0.050 \text{ GeV}$	76.00	74.47
$N_{hits}^e = 0$ for electron in MUC	73.33	71.15
E/P > 0.96 for electron	60.34	59.09
$ \chi_{dE/dx}^e < 1.5$ for electron	55.37	53.37
$0.1 \text{ GeV} < E_{deposited} < 0.3 \text{ GeV for muon}$	54.35	52.35
$0 < \chi^2_{MUC} < 100 \text{ for muon}$	32.35	40.33
$d_{\mu} > 40 \mathrm{cm}$ for muon	27.38	30.06
$\chi^{e}_{dE/dx} < -1.6$ for muon	26.04	28.42
$ \Delta\theta < 1.2^{\circ}, \Delta\phi < 1.5^{\circ}$	24.21	24.96
$ \Sigma \vec{p} /\sqrt{s} \leq 0.02, \ 0.95 \leq E_{vis}/\sqrt{s} \leq 1.04$	20.67	21.20

 $[\]succ \chi^e_{dE/dx}$: difference between the measured and expected χ_{dedx} for the electron hypothesis.

> Signal efficiency:
$$\varepsilon_{sig}^{MC} = \sum \epsilon_{sig}^i \times \frac{n^i}{N} = (21.18 \pm 0.13)\%$$

 $>d_{\mu}$: penetration depth in MUC *NumLayers*: penetration layers *MaxHitsInLayer*: Max hits in one layer

Backup

$JI\psi \rightarrow e\mu$ background

Sample	Mode	Size 09+17-19 (M)	Survived	Scale factor	Normalized
Exclusive MC	$J/\psi \rightarrow e^+e^-$	133.8+5239	0+58	1/10.0	5.80 ± 0.76
	$J/\psi \to \mu^+\mu^-$	133.6+5230	1+174	1/10.0	$\textbf{17.40} \pm \textbf{1.32}$
	$J/\psi o \pi^+\pi^-$	0.33+12.90	0+27	1/10.0	2.70 ± 0.52
	$J/\psi \to K^+K^-$	0.64+25.10	0+0	1/10.0	0
	$J/\psi \to p^+p^-$	4.75+1860	0+0	1/10.0	0
Inclusive MC	$J/\psi o anything$	230+8774	0+6+9=15	8.2	$\boldsymbol{1.83 \pm 0.47}$
Continuum MC	$e^+e^-\to e^+e^-(\gamma)$	81+274.8+251.3	0	9.0	0
	$e^+e^-\to \mu^+\mu^-(\gamma)$	0.3+1.0+0.9	0+0+0	9.0	0
Data	$\psi(3770)$ data \rightarrow 09	$2.93 \; \mathrm{fb^{-1}}$	10	1.3416	13.42 ± 4.24
	$\chi_{c1}(1P)$ data \to 18,19	458.21 pb^{-1}	1	7.4390	7.44 ± 7.44
	3.080GeV data	224.04 + 877.52	0	15.5533	-

$$\hat{\mu} = \frac{\sum_{i=1}^{n} \frac{\mu_i}{\sigma_i^2}}{\sum_{i=1}^{n} \frac{1}{\sigma_i^2}} = \frac{\sum_{i=1}^{n} \omega_i \mu_i}{\sum_{i=1}^{n} \omega_i}, V(\hat{\mu}) = \frac{1}{\sum_{i=1}^{n} \frac{1}{\sigma_i^2}} = \frac{1}{\sum_{i=1}^{n} \omega_i}$$

Back up

$Jl\psi \rightarrow e\mu$ background

lack The normalized background in the signal region $N_{bk,g1}^{norm}$ is calculated as,

$$N_{bkg1}^{norm} = N_{bkg1}^{J/\psi - MC} \cdot f_1, \qquad f_1 = \frac{N_{J/\psi}^{data}}{N_{J/\psi}^{MC}}$$

- $N_{bkg1}^{J/\psi-MC}$: the number of J/ψ background decays in the J/ψ inclusive and exclusive MC samples
- $N_{I/\psi}^{data}$: the total number of J/ψ events in the data
- $N_{J/\psi}^{MC}$: the total number of equivalent J/ψ events in the J/ψ inclusive and exclusive MC samples. The normalized number in the signal region is estimated to be $N_{bkg1}^{norm} = 24.8 \pm 1.5$.
- lacktriangle By assuming a 1/s energy-dependence of the cross sections, the normalized number of continuum backgrounds at the J/ψ peak, $N_{bkg2}^{norm,k}$, can be obtained by

$$N_{bkg2}^{norm,k} = N_{cont}^{k} \times f_{2}^{k}, \qquad f_{2}^{k} = \frac{\mathcal{L}_{J/\psi}}{\mathcal{L}_{k}} \times \frac{s_{k}}{s_{J/\psi}}$$

- N_{cont}^k : the number of background events survived in the signal region at the energy with index k
- \mathcal{L}_k , $\mathcal{L}_{J/\psi}$: the integrated luminosities at energies k and at the J/ψ peak. The normalized number is estimated to be $N_{bkq2}^{norm} = 12.0 \pm 3.7$.

Back up

BLMSSM

$$G_{BL} = SU(3)_C \bigotimes SU(2)_L \bigotimes U(1)_Y \bigotimes U(1)_B \bigotimes U(1)_L$$

In the BLMSSM, the local B and L are spontaneously broken at the TeV scale.

The superpotential of the BLMSSM is written as:

$$W_{\text{BLMSSM}} = W_{\text{MSSM}} + W_B + W_L + W_X$$

$$(m_{\tilde{L}}^2)_{ii} = (m_{\tilde{R}}^2)_{ii} = S_m^2$$