物理事例产生器

平荣刚

中国科学院高能物理研究所 (pingrg@ihep.ac.cn)

北京谱仪十一培训学校,2023年9月29-10月6日,内蒙古大学

Outline

1. 引言

- 2. 相空间事例产生器
- 3. BESIII上的事例产生器
 - > KKMC
 - BesEvtGen
 - Bhlumi/Bhwide

- ➢ Babayaga
- > Phokhara
- > PYTHIA
- ≻ Two-gamma
- 3. Lundcharm产生器
- 4. 总结

1. 引言

高能物理实验中为什么需要事例产生子?

▶ 高精度产生子模型是获得探测器效率可靠地保证

探测器在各个方向上的粒子探测效率不是完全相同的,探测器的空间覆盖也不是全空间的,如果事例 产生器提供的粒子在空间分布和种类与真实的物理过 程不一致,可能导致探测效率的偏差。

▶ 产生器为物理分析提供<u>精确的截面</u>

在物理分析中, 需要产生子计算精确的截面。如在测量数据的积分亮度(L)实验中, 对于正负电子对撞机, 常常采用Babha过程($e^+e^- \rightarrow e^+e^-$)和双光子过程 ($e^+e^- \rightarrow \gamma\gamma$), 测量L的精度, 与产生子计算的这两个 过程的截面精度有关。

$$L=\frac{N^{sig}}{\sigma \varepsilon},$$

这里, σ 是产生子计算的包括辐射修正的截面, ε 是探测器效率。

> 实验要求产生器为不稳定粒子的衰变分支比提供 精确的计算

对粒子衰变的事例形状、带点径迹多重数、粒子产额的 总数测量实验中,如果粒子的各个遍举衰变衰变分支比 不能准确计算,不可能给出可靠的探测效率。对高能粒 子过程,有的产生子对截面的计算可以到达NNL精度, 对于部分子的强子化过程,通常采用唯象参数调节的办 法,通过匹配数据的各种分布,来达到实验精度要求。

▶ 对于R-值测量实验和遍举过程的强子截面测量, 产生子要精确地计算初态辐射因子。

在正负电子对撞机实验中,测量遍举强子产生的Born 截面,需要产生器计算相应的初态辐射因子,才能求 得Born截面。

$$\sigma_{Born} = \frac{N^{sug}}{L \varepsilon f_{ISR}}$$
,这里, *L*是数据的积分亮度,

 ε 是探测器效率, f_{ISR} 是初态辐射修正因子。

事例产生子是基于Monte-Carlo方法,根据特定的概 率模型,通过合理、高效的方法抽样生成物理事例软件 包/库。它是探测器模拟的事例源,为探测器模拟提供各 种粒子的四动量。

事例产生器

✤对事例产生子的性能有哪些要求?

a.高精度的理论计算模型

Beyond leading order: QED过程, ISR过程, 高能QCD过程→精确的截面,参数,合理的 event shape和单粒子的分布

b.模型具有很好的扩展性,参数便于优化

c.高效的事例抽样效率

一些极端的分布,如Bhabha角分布,质量分布中的窄共振态等,合理的抽样方案可提高单个事例的CPU利用率。

d. 软件的开放性,可移植性,详细的用户手册

例: $EI/\psi \rightarrow e^+e^-$ 衰变中,电子的角分布满足 **1** + $\cos^2 \theta$, θ 是电子的极角。

事例产生步骤:

a. 用相空间模型(仅满足衰变初末态的能动量守恒), 抽取末态电子的四动量。

b. 用舍选抽样方法,选出末态电子角分布符合1+cos²θ的事例。
 即:产生一个随机数ξ,如果满足ξ < (1+cos²θ)/2,接受这个事例;否则,不接受这个事例,回到a.

BESIIL上的物理目标和产生子

Charm physics :

 $e^+e^- \rightarrow \psi(3770) \rightarrow D\overline{D}$

Charmonium physics and light hadron physics

 $e^+e^- \rightarrow \psi$ (2S), J/ ψ (χ_{cJ} , η_c ,...)

 τ & QCD physics

 $e^+e^- \rightarrow \tau \tau$, light hadrons

High precision event generators: KKMC, EvtGen, Bhlumi, Bhwide

2.1 相空间的产生

考虑粒子衰变的情况:

■ 两体衰变相空间: P(M) → p₁(m₁) + p₂(m₂)

$$d\Phi_{2} = \delta^{4}(P - p_{1} - p_{2}) \frac{d^{3}p_{1}}{(2\pi)^{3}2E_{1}} \frac{d^{3}p_{2}}{(2\pi)^{3}2E_{2}}$$
$$= \frac{1}{4} \frac{1}{(2\pi)^{6}} \frac{|p_{1}|}{M} d\phi_{1} d(\cos \theta_{1}),$$

where

$$|\mathbf{p}_{1}| = \frac{\sqrt{[\mathbf{M}^{2} - (\mathbf{m}_{1} + \mathbf{m}_{2})^{2}][\mathbf{M}^{2} - (\mathbf{m}_{1} - \mathbf{m}_{2})^{2}]}}{2\mathbf{M}}$$

 $φ_1, \cos θ_1$ 可以按均匀分布抽样产生
-Weight events
-Un-weight events
9

多体衰变的相空间: $P(M) \rightarrow p_1(m_1) + ...+p_n(m_n)$

3. BESIII产生子简介

Main Page

在哪里可以获得有关BESIII产生子的信息或资料?

http://docbes3.ihep.ac.cn/~offlinesoftware/index.php/Main_Page

Offline Software Group

Page Discussion View source History Watch

Main Menu

Home

- Getting Started
- ReleaseNotes
- Doxygen
 Documents

Software Guide

- Generator
- Simulation
- Calibration
- Reconstruction
- Analysis
- Validation
- Event Display

Database

- DatabaseSvc
- MYSQL

Offline http://docbes3.ihep.ac.cn/~offlinesoftware/index.php/ If you Generator Service to the service of t

The BESIII Offline Software System (BOSS) is developed on the operating system of Scientific Linux CERN (SLC), using C++ language and GAUDI framework. The software uses some external HEP libraries such as CERNLIB, CLHEP, ROOT, Geant4 etc. The CMT is used as the software configuration management tool. MYSQL is used as database server.Please take a look at the 'Links to External Software' for more information.

BOSS software source code CVS repository: for users inside IHEP, click here for users outside IHEP, click here

Main Menu

- Home
- Getting Started
- ReleaseNotes
- Doxygen
 Documents

Software Guide

- Generator
- Simulation
- Calibration
- Reconstruction
- Analysis
- Validation
- Event Display

Database

- DatabaseSvc
- MYSQL
- SQLITE
- Dictionary

Data Handling

- Data Description
- Data I/O
- Raw Data

Generator

Contents [hide]

- 1 General Information
 - 1.1 Introduction
 - 1.2 Generator framework
 - 1.3 Mailing lists
- 2 Event Generators
 - 2.1 KKMC
 - 2.1.1 Comments
 - 2.2 BesEvtGen
 - 2.3 Bhlumi and Bhwide
 - 2.4 Babayaga
 - 2.5 Inclusive Generators
 - 2.6 Phokhara
 - 2.7 Two-photon generators
 - 2.7.1 Galuga
 - 2.7.2 BesTwogam
 - 2.7.3 BesBdkRc
 - 2.7.4 UDOD
 - 2.8 CosmicRay
 - 2.9 others

3 Lists of inclusive MC smaples 3.1J/ψ 3.1.1 BOSS655: 226 Million $3.2 \psi(2S)$ 3.2.1 BOSS655 106 million $3.3 \psi(3770)$ 3.3.1 BOSS655 $3.4 \psi(4040)$ 3.4.1 BOSS655 4 Documents 4.1 Guides and manuals 4.2 talks and references 4.2.1 talks 4.2.2 References 5 Other Links 5.1 KKMC 5.2 Babayaga 5.3 Phokhara 5.4 PYTHIA 5.5 Bhwide 5.6 Bhlumi

5.7 CosmicRay

粲夸克衰变的产生子框架(official)

KKMC+BesEvtGen

下面具体介绍:

≻ KKMC

≻BesEvtGen

≻Bhlumi/Bhwide

≻ Babayaga

> Phokhara

≻PYTHIA

≻Lundcharm

≻Two-gamma

参考文献:

KKMC

1.S. Jadach, B.F.L. Ward, Z. Was, Computer Physics Communications 130(2000) 260-325

2. S. Jadach, B.F.L. Ward, Z. Was, Physical Review D63 (2001) 113009

BesEvtGen:

1.David J. Lane, Nucl.Instrum.Meth.A462:152-155,2001

2.http://bes3.ihep.ac.cn/group/offline/SofPro/generator/docments/guide_EvtG en.pdf

3. Guide for BesEvtGen

Babayaga

1. G. Galossini, Nucl. Phys. B758(2006) 227-253

2. http://www.pv.infn.it/hepcomplex/babayaga.html

Phokhara:

1. http://ific.uv.es/~rodrigo/phokhara/

Cosmic Ray

1. Allkofer et al, Phys. Lett. 36B (1971), 425;

2. A.Dar, Phys. Rev. Lett. 51 (1983), 227

KKMC

✓物理过程: e⁺e⁻ → ff⁻ + nγ, f=μ,τ,d,u,s,c,b. E_{cm} ∈ [m_τ,1TeV] 这个产生子基于Electroweak Standard Model 对这个过程 的精确计算结果。

✓早期用于: LEP, SLC; 未来: Linear Colliders, b, c, t-工 厂.

√技术特点:

✓考虑了束流的初态辐射(ISR)和出射费米子的末态辐射效应(FSR),QED计算到达二级精度,计算采用 Coherent Exclusive Exponentiation (CEEX) 方案,并考虑可能的干 涉效应。

✓夸克的强子化采用强子簇射模型(PYTHIA), tau-轻子的 衰变调用TAUOLA库,并考虑了自旋极化效应。

✓支持共振态衰变: J/ψ,ψ(2S),ψ(3770),ψ(4030),ψ(4160),

 $\psi(4415), \rho, \rho', \rho'', \omega, \omega', \phi, \phi'$

✓末态粒子的辐射修正: PHOTOS

KKMC 的辐射修正

CEEX(Coherent Exclusive Exponentiation)

- 包含ISR和FSR效应及其干涉效应
- 末态带电粒子的辐射修正调用PH0T0S

BESIII上的KKMC支持以下事例的产生:

- • $e^+e^- \rightarrow \text{Resonance} + n\gamma(\text{ISR}/\text{FSR})$ Resonance : $J/\psi, \psi(2S), \psi(3770), \psi(4030), \psi(4160), \psi(4415), \rho, \rho', \rho'', \omega, \omega', \phi, \phi', Y family$
- • $e^+e^- \rightarrow$ lepton pair + n γ (ISR / FSR)
- • $e^+e^- \rightarrow q\overline{q} + n\gamma(ISR/FSR), q = quark$

用户选项:

束流的质心能量、束流能散、共振态名称、共振 态质量、随机数种子、联结BesEvtGen的开关。

BesEvtGen

✓BesEvtGen是基于EvtGen产生子发展的tau-粲能区的 产生子,在EvtGen的模型基础上,添加了更多的tau-粲物理的模型

✓EvtGen产生子是BaBar和CLEO合作组联合发展的、为 研究B物理而研制的产生子

✓EvtGen平台具有强大的功能,不仅支持粲夸克偶素的 遍举衰变模型,也提供了连结其它产生子的接口,如 PYTHIA, PHOTOS等。

✓BesEvtGen大多属于动力学产生子,实现的算法采用基于衰变的振幅概率的舍选抽样,对于级联式衰变, EvtGen平台能够自动计算各级衰变的自旋密度矩阵,并把它们关联起来。

EvtGen的算法

 Selection Algorithm: (sequential sampling) Consider the example:

$$\begin{array}{ccc} \mathsf{B} \to D^* & \tau \bar{\nu} \\ & \sqcup D\pi & \sqcup \pi \nu \end{array}$$

振幅可以通过协变 张量振幅或者螺旋 度振幅构建

• Generate the $B \rightarrow D^* \tau \nu$ decay:

$$P = \sum_{\lambda_{D^*} \lambda_{\tau}} |A^{B \to D^* \tau \nu}_{\lambda_{D^*} \lambda_{\tau}}|^2$$

• Average over τ spin and calculate the D^* spine density matrix

$$\rho^{D^*}_{\lambda_{D^*}\lambda'_{D^*}} = A^{B \to D^* \tau \nu}_{\lambda_{D^*}\lambda_{\tau}} (A^{B \to D^* \tau \nu}_{\lambda'_{D^*}\lambda_{\tau}})^*$$

• Generate the $D^* \rightarrow D\pi$ decay

$$P = \sum_{\lambda_{D^*}\lambda'_{D^*}} = \rho^{D^*}_{\lambda_{D^*}\lambda'_{D^*}} A^{D^* \to D\pi}_{\lambda_{D^*}} (A^{D^* \to D\pi}_{\lambda'_{D^*}})^*$$

19

- selection algorithm (cont.)
 - Calculate spin density matrix for the τ:

$$\rho_{\lambda_{\tau}\lambda_{\tau}'}^{\tau} = \sum_{\lambda_{D^{*}}\lambda_{D^{*}}'} \hat{\rho}_{\lambda_{D^{*}}\lambda_{D^{*}}'}^{D^{*}} A^{B \to D^{*}\tau\nu}_{\lambda_{D^{*}}\lambda_{\tau}'} (A^{B \to D^{*}\tau\nu}_{\lambda_{D^{*}}\lambda_{\tau}'})^{*}$$

with

$$\hat{\rho}^{D^*}_{\lambda_{D^*}\lambda'_{D^*}} \equiv A^{D^* \to D\pi}_{\lambda_{D^*}} (A^{D^* \to D\pi}_{\lambda'_{D^*}})^*$$

• Generate the $\tau \rightarrow \pi \nu$ decay

$$P = \sum_{\lambda_{\tau} \lambda_{\tau}'} \rho_{\lambda_{\tau} \lambda_{\tau}'}^{\tau} A_{\lambda_{\tau}}^{\tau \to \pi \nu} (A_{\lambda_{\tau}'}^{\tau \to \pi \nu})^*$$

- These steps allow us to generate each mode the decay chain independently.
- Generalize to arbitrarily long decay chains.
- Calculation of probabilities and spin density matrices are done by the framework.

BesEvtGen中的衰变模型

✓在EvtGen中,每一级衰变可以用一个模型来描述,例 如:

 $\psi(2S) \rightarrow \pi^+ \pi^- J/\psi$, then $J/\psi \rightarrow e^+ e^-$ Model: VVPIPI VLL

✓级联式衰变,用户可以通过单级衰变模型的组装来实现.

 $\psi(2S) \rightarrow \pi^+ \pi^- J / \psi \rightarrow \pi^+ \pi^- e^+ e^-$

衰变卡片:

Decay psi(2S) 1.0 J/psi pi+ pi- VVPIPI; Enddecay Decay J/psi 1.0 e+ e- VLL; Enddecay End ✓EvtGen模型的创建:用户可以根据需求在EvtGen平台下创建 自己的模型。在EvtGen中,可用于tau-粲物理的模型有20个 左右,在BesEvtGen中,增添了30多个模型。关于这些模型的 具体使用规则,用户需要参考EvtGen/BesEvtGen手册。

http://bes3.ihep.ac.cn/group/offline/SofPro/generator/docments/guide_EvtGen.pdf http://bes3.ihep.ac.cn/group/offline/SofPro/generator/docments/guide_BesEvtGen.pdf

✓用户填写衰变卡片的规则

-粒子的名称必须按照pdt.table文件中的定义填写 pdt.table @BossCvs /Generator/ BesEvtGen / share

--EvtGen允许用户定义新粒子态

pdt.table

注意:用户添加的粒子,指定的ID号不允许与现有的ID号重叠!

*	type	name	id	mass	s/GeV	' width	/GeV	max_	Dm/G	eV	3*charge	2*spin	lifetime*c/mm Lund-K	C.
add	p Parton	d	1	0.0	099		0	0	-	1	1	01		
*	·													
* Di	ummy partic	les for users to ch	nange p	roper	ties o	& simul	ate n	ew pa	rticles	5.				
* Ca *	onvention fo	r the numbers afte	er the	"dum	my":	charge	spin_	_seria	I					
add	p Meson	dummy00_1		51	1		0.1	L	1.0	C	0	0 0		
*								I		I	+	KC=Lund	l internal code	
*		1						I		I	+ T=	=c*lifeti	me (mm, alternative t	o W)
*	I						I	I		+ ;	S=2*spin			
*		1				I	1	-	+ Q=3	*ch	arge			
*		1					+	WM=I	max de	evic	ation fror	n mass		
*		1	11			+ W	'=wid	th in (GeV					
*	Ì		+	M=m	ass i	n GeV								
*	·		+ IL)=ST	DHEP	-ID								
*		+ NAME=name to	o be us	ed in	print	out or	as cl	har st	rina ta	o id	lentify no	article		
*	+ TVPF				F						/ P			
	+ 17FL													

--模型的书写规则必需按照参考手册的要求填写

4.17 JPE

Author:Rong-Gang Ping Usage: BrFr gamma pseudoscalar JPE;

BesEvtGen guide

Explanation:

This model is constructed for a vector decays into a photon plus a pseudoscalar, e.g. $J/\psi \to \gamma \eta_c$

Example:

Decay J/psi 1.000 gamma eta_c JPE; Enddecay

Notes:

Helicity amplitude used.

注意: gamma eta_c的顺序 不能改变,模型后面的分号 不能缺少!

-- Decay 卡的结构

---几点说明

 如果衰变链中某一级的衰变没有指定分支比和 模型,EvtGen将会按照一个内置的衰变卡进行 衰变,衰变模式是按照粒子表中现有的衰变道 抽样。

- 2. 如果某个母粒子的衰变道分支比之和大于或者小于1, EvtGen平台将会对这些道的分支比重新归一。
- 3. 对于 $\psi(3770)$ → $D\overline{D}$, $D\overline{D}$ 阈值需要再KKMC中设置:

KKMC. ThresholdCut=3.7;

4. EvtGen平台能够自动过滤掉遍举衰变模型(如: Lundcharm)产生的、与Decay卡中单举衰变道重叠的道。

Bhlumi/Bhwide

✓适用于Bhabha过程:e⁺e⁻→e⁺e⁻+nγ(ISR/FSR)
Bhlumi适用于小角Bhabha(θ<6°)
Bhwide适用于大角Bhabha(θ>6°)
✓早期用于LEP1/SLC实验,以及后来的LEP2实验。
✓精度:Bhlumi, 0.11%(@LEP1能区), 0.25%(@LEP2 能区)

Bhwide,0.3%(@Z-boson peak), 1. 5%(@ LEP2

能区)

- 在 e^+e^- 对撞机上测量R值 R = $\frac{\sigma(e^+e^- \rightarrow 强子)}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)}$

-量度测量:

需要高精度的产生子: $e^+e^- \rightarrow e^+e^-, \mu^+\mu^-, \gamma\gamma$

- $-BESII: e^+e^- \rightarrow (\gamma)e^+e^- (RADEE), (\gamma)\mu^+\mu^- (MUGEN)(\sim \alpha^3)$
- Babayaga :

利用强子蔟射算法求解Lipatov – Altarelli – Parisi 方程

(Ref: G.Galossini, Nucl. Phys. B758(2006) 227-253)
Babayaga 3.5:
http://www.pv.infn.it/hepcomplex/babayaga.html

-- BESIII发布版本:

产生子名称: Babayaga

--用户选项:

过程: $1:e^+e^- \rightarrow (n\gamma)e^+e^ 2:e^+e^- \rightarrow (n\gamma)\mu^+\mu^ 3:e^+e^- \rightarrow (n\gamma)\gamma\gamma$ $4:e^+e^- \rightarrow (n\gamma)\pi^+\pi^-$ 质心能量= 2* E_{beam} Running α : 0=off, 1=on FSR switch (for ICH=2): 0=off,1=on ----cuts:

charged particles: E_{min} (MinimumEnergy), θ_{min} (MinThetaAngle), θ_{max} (MaxThetaAngle) MaximumAcollinearity photons : MinEnergyCutG MinAngCutG MaxAngCutG

-技术细节:

采用结构函数方法计算截面: $\sigma(s) = \int dx_1 dx_2 dy_1 dy_2 \int d\Omega D(x_1, Q^2) D(x_2, Q^2) \times$ $D(y_1, Q^2)D(y_2, Q^2) \frac{d\sigma_0(x_1x_2s)}{d\Omega} \Theta(cuts)$ 结构函数

Phokhara

```
Phokhara 6.0 (realsed at Dec. 2006)
Source: http://ific.uv.es/~rodrigo/phokhara/
Fixed order radiative corrections: NLO accuracy
Leptonic channel:
                            \mu^+\mu^-
Hadronic channels:
     \pi^+\pi^-
     2\pi^{0}\pi^{+}\pi^{-}, 2\pi^{+}2\pi^{-}
     p\bar{p},n\bar{n},\Lambda\bar{\Lambda}
    \pi^{0}\pi^{+}\pi^{-}, \mathbf{K}^{+}\mathbf{K}^{-}, \mathbf{K}^{0}\mathbf{\overline{K}}^{0}
Tagged or untagged photons
```

Modular structure: easy replacement of hadronic form factor

Physics and techniques

□ radiative return method: $e^+ + e^- \rightarrow \gamma + \gamma^*, \gamma^* \rightarrow hadrons$ To measure σ_{had} over a wide range of energies

Fig. 1. One-loop corrections to initial state radiation in $e^+e^- \rightarrow \gamma + \text{hadrons}$

The one-loop matrix elements contain infrared divergences. These are canceled by adding the diagram with the two photons.

\Box Final state radiation (FSI) to NLO

 $d\sigma = d\sigma_{\text{ISR}} + d\sigma_{\text{FSR}} + d\sigma_{\text{INT}}$

ISR: dominated by photons collinear to beams
FSR: dominated by photons collinear to hadrons
INT: asymmetry, used to test the FSR model
recipe: ISR and FSR can be distangled by
properly setting angular cuts

34

 \Box Hadronic tensors:

 γ^{*}

 π^+

 π

$$\gamma^* \to \pi^0 \pi^+ \pi^-$$
 (EPJC47,617)

 f_0

* **→ 4**π

Eur.Phys.J.C18:497(hep-ph/0008262) Nucl. Phys. B (proc. Suppl.)98,289

 $\gamma^* \rightarrow p\overline{p}, n\overline{n}, \Lambda\overline{\Lambda}$

EPJC**35**,527 PRD**75**,074026

Pauli and Dirac form factor :

$$J_{\mu} = -ie\overline{u}(q_2)(F_1^N(Q^2)\gamma_{\mu} - \frac{F_2^N(Q^2)}{4m_N}[\gamma_{\mu}, Q])v(q_1)$$
$$H_{\mu\nu} = J_{\mu}J_{\nu}^+$$

Nucleon form factors are determined by fitting exp. data

PYTHIA

高能对撞机上非常流行的事例产生子

PYTHIA history

38

例:核子对撞的事例产生及演化

PYTHIA 中的物理过程(Lund模型)

1.硬过程: |M|², Breit-Wigner

2. 共振态衰变

3. 末态部分子蔟射

4. 初态部分子蔟射

5. 部分子一部分子 的多体相互作用

7. 强子化过程

6. 束流残余

BESII: **J**/ψ, ψ(2S), ψ(3770) \Rightarrow Lundcharm model

41

PYTHIA Process Library

No. Subprocess	No. Subprocess	No. Subprocess	No. Subprocess	No. Subprocess	No. Sul	bprocess	No.	Subprocess
Hard QCD processes:	$36 f_i \gamma \rightarrow f_k W^{\pm}$	New gauge bosons:	Higgs pairs:	Compositeness:	$210 f_i \overline{f}_j$	$i \rightarrow \tilde{\ell}_L \tilde{\nu}_\ell^* +$	250	$f_{ig} \rightarrow \tilde{q}_{iL} \tilde{\chi}_3$
$11 \mathrm{f}_i\mathrm{f}_j o \mathrm{f}_i\mathrm{f}_j$	69 $\gamma\gamma \rightarrow W^+W^-$	141 $f_i \overline{f}_i \rightarrow \gamma / Z^0 / Z'^0$	297 $f_i \overline{f}_j \rightarrow H^{\pm} h^0$	146 $e\gamma \rightarrow e^*$	211 $f_i \overline{f}_j$	$\tau \rightarrow \tilde{\tau}_1 \tilde{\nu}_{\tau}^* + \ $	251	${ m f}_{ig} ightarrow { m ilde q}_{iR} { m ilde \chi}_3$
12 $f_i \overline{f}_i \rightarrow f_k \overline{f}_k$	70 $\gamma W^{\pm} \rightarrow Z^{0}W^{\pm}$	142 $f_i \overline{f}_j \rightarrow W'^+$	298 $f_i \overline{f}_j \rightarrow H^{\pm} H^0$	147 $dg \rightarrow d^+$	212 $f_i \overline{f}_j$	$\tau \rightarrow \tilde{\tau}_2 \tilde{\nu}_{\tau}^* + \parallel$	252	$f_{ig} \rightarrow \tilde{q}_{iL} \tilde{\chi}_4$
13 $f_i \overline{f}_i \rightarrow gg$	Prompt photons:	144 $f_i \overline{f}_j \rightarrow \mathbb{R}$	299 $f_i \overline{f}_i \rightarrow A^0 h^0$	148 $ug \rightarrow u^*$	213 f _i f _i	$\iota \rightarrow \tilde{\nu_{\ell}} \tilde{\nu_{\ell}}^*$	253	$f_{ig} \rightarrow \tilde{q}_{iR} \tilde{\chi}_4$
$28 f_{ig} \rightarrow f_{ig}$	14 $f_i \overline{f}_i \rightarrow g \gamma$	Heavy SM Higgs:	$300 f_{i}\overline{f}_{i} \rightarrow A^{0}H^{0}$	167 $q_i q_j \rightarrow d^* q_k$	214 f _s f _s	$i \rightarrow \tilde{\nu}_{\tau} \tilde{\nu}_{\tau}^{*}$	254	$f_{ig} \rightarrow \tilde{q}_{jL} \tilde{\chi}_{\underline{i}}^{\pm}$
53 $gg \rightarrow f_k \overline{f}_k$	18 $f_i \overline{f}_i \rightarrow \gamma \gamma$	$5 Z^{o}Z^{o} \rightarrow h^{o}$	$301 f_i \overline{f}_i \rightarrow H^+ H^-$	168 $q_i q_j \rightarrow u^* q_k$	216 $f_i \overline{f}_i$	$i \rightarrow \tilde{\chi}_1 \tilde{\chi}_1$	256	$f_{ig} \rightarrow \tilde{q}_{jL} \tilde{\chi}_2^{\pm}$
$68 gg \rightarrow gg$	29 $f_i g \rightarrow f_i \gamma$	$8 W^+W^- \rightarrow h^0$	Leptoquarks:	$169 q_i \overline{q}_i \rightarrow e^{\pm} e^{++}$	217 $f_i \overline{f}_i$	$1 \rightarrow \tilde{\chi}_2 \tilde{\chi}_2$	258	$f_{ig} \rightarrow \tilde{q}_{iL}\tilde{g}$
Soft QCD processes:	114 $gg \rightarrow \gamma \gamma$	71 $Z_L^0 Z_L^0 \rightarrow Z_L^0 Z_L^0$	145 $q_i \ell_j \rightarrow L_Q$	$165 \mathbf{f}_{i}\mathbf{f}_{i}(\to \gamma^{*}/\mathbf{Z}^{\circ}) \to \mathbf{f}_{k}\mathbf{f}_{k}$	218 $f_{i}\overline{f}_{i}$	$1 \rightarrow \tilde{\chi}_3 \tilde{\chi}_3$	259	f _i g → q̃ _{iR} ĝ
91 elastic scattering	$115 gg \rightarrow g\gamma$	72 $Z_{L}^{0}Z_{L}^{0} \rightarrow W_{L}^{+}W_{L}^{-}$	162 qg $\rightarrow \ell L_Q$	$166 f_i f_j (\to W^{\pm}) \to f_k f_l$	219 $f_{i}\overline{f}_{i}$	$1 \rightarrow \tilde{\chi}_4 \tilde{\chi}_4$	261	$f_i f_i \rightarrow t_1 t_1$
92 single diffraction (XB)	Deeply Inel. Scatt.:	73 $Z_L^0 W_L^{\pm} \rightarrow Z_L^0 W_L^{\pm}$	163 gg $\rightarrow L_Q \overline{L}_Q$	Extra Dimensions:	220 f ₄ f4	$\rightarrow \tilde{\chi}_1 \tilde{\chi}_2$	262	$f_i f_i \rightarrow t_2 t_2$
93 single diffraction (AX)	$10 \mathrm{f}_{i}\mathrm{f}_{j} \to \mathrm{f}_{l}\mathrm{f}_{l}$	76 $W_{L}^{+}W_{L}^{-} \rightarrow Z_{L}^{0}Z_{L}^{0}$	164 $q_{i}\overline{q}_{i} \rightarrow L_{Q}\overline{L}_{Q}$	391 $ff \rightarrow G^+$	221 $f_i \overline{f}_i$	$\rightarrow \tilde{\chi}_1 \tilde{\chi}_3$	263	$f_i f_i \rightarrow t_1 t_2^{\dagger} +$
94 double diffraction	99 $\gamma^* q \rightarrow q$	$77 W_{L}^{\pm}W_{L}^{\pm} \to W_{L}^{\pm}W_{L}^{\pm}$	Technicolor:	$392 \text{ gg} \rightarrow \text{G}^+$	222 fafa	$\rightarrow \tilde{\chi}_1 \tilde{\chi}_4$	264	$gg \rightarrow t_1 t_1^{\dagger}$
95 low- p_{\perp} production	Photon-induced:	BSM Neutral Higgs:	149 gg $\rightarrow \eta_{tc}$	$393 q\overline{q} \rightarrow gG$	223 f _s f	$\chi \rightarrow \tilde{\chi}_2 \tilde{\chi}_3$	265	$gg \rightarrow t_2 t_2^{\dagger}$
Open heavy flavour:	$33 f_i \gamma \to f_i g$	151 $f_{i}f_{i} \rightarrow H^{0}$	191 $f_i \overline{f}_i \rightarrow \rho_{tc}^0$	$394 qg \rightarrow qG^{T}$	224 f _s f	$\rightarrow \tilde{\chi}_2 \tilde{\chi}_4$	271	$\begin{array}{c} 1_{i}1_{j} \rightarrow \mathbf{q}_{iL}\mathbf{q}_{jL} \\ \mathbf{f}_{i}\mathbf{f}_{i} \rightarrow \mathbf{q}_{iL}\mathbf{q}_{jL} \end{array}$
(also fourth generation)	$\begin{array}{ccc} 34 & t_i\gamma \rightarrow t_i\gamma \\ r_i & r_i\gamma \end{array}$	$152 \text{ gg} \rightarrow \text{H}^{\circ}$	192 $f_i \overline{f}_j \rightarrow \rho_{tc}^+$	$393 gg \rightarrow gG^{-}$	225 f _i f i	$\rightarrow \tilde{\chi}_3 \tilde{\chi}_4$	272 079	$I_{i}I_{j} \rightarrow \mathbf{q}_{i}R\mathbf{q}_{j}R$
$\begin{array}{ccc} & & \\ & &$	$54 g\gamma \rightarrow t_k t_k$	153 $\gamma \gamma \rightarrow H^{\circ}$	193 $f_i \overline{f}_i \rightarrow \omega_{tc}^0$	Lett-right symmetry:	226 f _i fi	$x \rightarrow \tilde{\chi}_{t}^{\pm} \tilde{\chi}_{t}^{\mp}$	2(3 977	$1_{ilj} \rightarrow q_{iL}q_{jR} + $
$82 \text{ gg} \rightarrow Q_k Q_k$	$58 \gamma\gamma \to \mathbf{i}_k \mathbf{i}_k$	171 $f_i f_i \rightarrow Z^0 H^0$	194 $f_i \overline{f}_i \to f_k \overline{f}_k$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	227 f.f.	$\rightarrow \tilde{\chi}^{\pm} \tilde{\chi}^{\mp}$	214	$I_i I_j \to q_i L q_j L$
$\begin{array}{c} 83 q_{i} t_{j} \rightarrow Q_{k} t_{l} \\ q_{i} t_{j} \rightarrow Q_{k} t_{l} \end{array}$	131 $f_i\gamma_T \rightarrow f_{ig}$	$172 f_i f_j \to W^{\pm} H^0$	195 $f_i \overline{f}_j \rightarrow f_k \overline{f}_l$	$342 \ell_2 \ell_j \rightarrow \Pi_R^{-1}$	228 f.f.	$\rightarrow \tilde{\chi}^{\pm} \tilde{\chi}^{\mp}$	275	$I_i I_j \rightarrow q_i R q_j R$
$84 g\gamma \rightarrow Q_k Q_k$	132 $1_i\gamma_L \rightarrow 1_ig$	$173 f_i t_j \to f_i t_j H^0$	$361 f_i \overline{f}_i \rightarrow W_L^+ W_L^-$	$343 \ell_1 \gamma \rightarrow \Pi_L e^{-1}$	229 f.f.	$\rightarrow \tilde{\chi}_1 \tilde{\chi}_2^{\pm}$	210	$I_{i}I_{j} \rightarrow q_{i}Lq_{j}R + $
$\frac{85 \gamma \gamma \to \mathbf{F}_k \mathbf{F}_k}{\alpha}$	$\begin{array}{ccc} 133 & I_{i}\gamma_{\rm T} \rightarrow I_{i}\gamma \\ 194 & f_{10}f_{10} \end{array}$	$174 f_i t_j \to f_k t_l H^\circ$	362 $f_i \overline{f}_i \rightarrow W_L^{\pm} \pi_{tc}^{\mp}$	$\begin{array}{ccc} 344 & c_{2} & \gamma \rightarrow \Pi_{R} & e^{\gamma} \\ g_{A5} & \rho^{\pm} & \gamma & \Pi^{\pm\pm} & \Pi^{\pm} \end{array}$	230 f.	$\rightarrow \tilde{\chi}_2 \tilde{\chi}_2^{\pm}$	277	$f_{i}f_{i} \rightarrow q_{j}Lq_{j}L$
Closed heavy flavour:	$134 1_{\tilde{e}} \gamma_{\rm L} \rightarrow 1_{\tilde{e}} \gamma_{\rm I}$ $195 mot^{+} \rightarrow 5.\overline{4}$	$181 gg \to Q_k Q_k H^\circ$	363 $f_i \overline{f}_i \rightarrow \pi_{tc}^+ \pi_{tc}^-$	340 $\ell_{2}^{\pm} \gamma \rightarrow \Pi_{L}^{\pm} \mu^{\pm}$	231 $f_{*}\overline{f}_{*}$	$\rightarrow \tilde{\chi}_3 \tilde{\chi}_2^{\pm}$	278	$f_i f_i \rightarrow q_j R q_j R$
$30 \text{ gg} \rightarrow J/\psi \text{g}$	$133 g\gamma_T \rightarrow 1_{2}1_{2}$	$182 q_{i}\overline{q}_{i} \rightarrow Q_{k}Q_{k}H^{\circ}$	364 $f_i \overline{f}_i \rightarrow \gamma \pi_{tc}^0$	340 $t_1 \rightarrow \Pi_R \mu$ 347 $\mu^{\pm} \sim \rightarrow H^{\pm\pm} \sigma^{\mp}$	232 f. f.	$\rightarrow \tilde{\chi}_4 \tilde{\chi}_2^{\pm}$	219	$gg \rightarrow q_{iL}q_{iL}$
$\sigma_1 gg \rightarrow \chi_{0c}g$	$130 g\gamma_L \rightarrow I_{2}I_{2}$	183 $f_i f_i \rightarrow g H^0$	365 $f_i \overline{f}_i \rightarrow \gamma {\pi'}_{tc}^0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	233 f. f.	$\rightarrow \tilde{\chi}_1 \tilde{\chi}_2^{\pm}$	200	$gg \rightarrow q_{iR}q_{iR}$
$\delta \delta gg \rightarrow \chi_{1cg}$	$137 \gamma_{\rm T}\gamma_{\rm T} \rightarrow 1212$	184 $f_{ig} \rightarrow f_{i}H^{0}$	366 $f_i \overline{f}_i \rightarrow Z^0 \pi_{tc}^0$	349 $f_1\overline{f_1} \rightarrow H^{\pm\pm}H^{\pm\pm}$	$234 \text{ f}_{1} \text{f}_{2}$	$\rightarrow \tilde{v}_{2}\tilde{v}_{2}^{\pm}$	281	$bq_i \rightarrow b_1 q_{iL}$
$5\pi gg \rightarrow \chi_{2c}g$ $104 gg \rightarrow \chi_{2}$	$138 \gamma_{\rm T}\gamma_{\rm L} \rightarrow 121_2$	$185 \text{ gg} \rightarrow \text{gH}^{\circ}$	367 $f_i \overline{f}_i \rightarrow Z^0 \pi'_{tc}^0$	1510 1512 H^{\pm}	235 f.f.	$\rightarrow \tilde{\chi}_3 \tilde{\chi}_2^{\pm}$	282	$bq_i \rightarrow b_2 q_{iR}$
$104 gg \rightarrow \chi_{0c}$ $105 gg \rightarrow \chi_{c}$	$139 \gamma_{\rm L}\gamma_{\rm T} \rightarrow 121_2$	156 $I_{i}I_{i} \rightarrow A^{\circ}$	368 $f_i \overline{f}_i \rightarrow W^{\pm} \pi_{tc}^{\mp}$	350 1_{515} $7 \Pi_R$ Π_R 351 6.6 $\rightarrow 6.6$ $\mathrm{H}^{\pm\pm}$	236 f_{1}	$\rightarrow \tilde{v}_{4}\tilde{v}_{\pm}^{\pm}$	283	$bq_i \rightarrow b_1 q_{iR} +$
$100 gg \rightarrow \chi_{2c}$ $106 gg \rightarrow 1/ab\gamma$	$\begin{array}{ccc} 140 & \gamma_L \gamma_L \rightarrow \eta_I \eta_i \\ 20 & \eta_i \gamma_L \gamma_L \rightarrow \eta_i \eta_i \end{array}$	$157 \text{gg} \rightarrow \text{A}^2$	370 $f_i \overline{f}_j \rightarrow W_L^{\pm} Z_L^{\circ}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$237 f_{1}f_{2}$	$\rightarrow \tilde{s}\tilde{v}$	284	$bq_i \rightarrow b_1 q_i L$
$100 \text{ gg} \rightarrow 3/\psi$ $107 \text{ gy} \rightarrow J/\psi$	$\delta U = q_{\ell}\gamma \rightarrow q_{k}\pi^{-}$	$150 \gamma\gamma \to \mathbf{A}^{-1}$	371 $f_i \overline{f}_j \rightarrow W_L^{\underline{4}} \pi_{tc}^{\overline{0}}$	$353 f_{2}\overline{f}_{2} \rightarrow \overline{Z}_{p}^{0}$	238 $f_{\rm e}f_{\rm e}$	$\rightarrow \tilde{\sigma} \tilde{\nu}_{2}$	285	$b\overline{q}_{i} \rightarrow b_{2}\overline{q}_{i}R$
$108 \gamma\gamma \rightarrow J/sb\gamma$	-11gm SW Higgs:	$170 I_{2}I_{2} \rightarrow \Delta^{-}A^{-}$	372 $f_i \overline{f}_j \rightarrow \pi_{tc}^{\pm} Z_L^0$	$354 f_{\ell}\overline{f}_{\ell} \rightarrow W^{\pm}$	$239 f_{1}f_{2}$	$\rightarrow \tilde{g}\tilde{\chi}_{2}$	286	$b\overline{q}_{i} \rightarrow b_{1}\tilde{q}_{i}^{\dagger}R+$
W/Z production:	$3 1_0 1_0 \rightarrow \Pi$ $24 4_1 \overline{4}, \sqrt{70} h^0$	$111 I_{2}I_{j} \rightarrow YY^{+}A^{-}$ $170 f_{2}f_{j} \rightarrow f_{3}f_{3}A^{0}$	373 $f_i \overline{f}_j \rightarrow \pi_{tc}^{\pm} \pi_{tc}^{\vec{0}}$	SUSY:	240 f.f.	→ ē x̃^	287	$f_i f_i \rightarrow b_1 b_1^{\dagger}$
$1 f_i \overline{f}_i \rightarrow \gamma^* / Z^0$	$24 1_0^{-1} 1_0^{-1} \rightarrow \Delta \Pi$	$170 1_{\xi_1\xi_1} \rightarrow 1_{\xi_1\xi_1} A \\ 170 f_1f_2 \rightarrow f_2 f_2 \Delta^0$	374 $f_i \overline{f}_j \rightarrow \gamma \pi_{tc}^{\pm}$	$201 f_4 \overline{f}_4 \rightarrow \tilde{e}_L \tilde{e}_T^{\dagger}$	241 f.f.	$a \rightarrow \tilde{p} \tilde{\chi}^{\pm}$	288	$t_i t_i \rightarrow b_2 b_2^{\dagger}$
$2 f_{i}f_{i} \rightarrow W^{\pm}$	$20 1_{i} 1_{j} \rightarrow \gamma \gamma^{-} n$ $20 f_{i} m \rightarrow f_{i} h^{0}$	186 m 1 0 0 0	375 $f_i \overline{f}_j \rightarrow Z^0 \pi_{tc}^{\pm}$	$202 f_4 \overline{f}_4 \rightarrow \tilde{e}_B \tilde{e}_D^{+}$	242 f.f.	$\rightarrow \tilde{v}\tilde{v}^{\pm}$	289	$gg \rightarrow b_1 b_1$
22 $f_*\overline{f}_* \rightarrow Z^0 Z^0$	102 102 101	$187 \text{def} \sim 0.0 \text{A}^{\circ}$	376 $f_i \overline{f}_j \rightarrow W^{\pm} \pi_{tc}^0$	$203 f_{4}\overline{f}_{4} \rightarrow \tilde{e}_{7}\tilde{e}_{7}^{+} +$	243 f.T.	→ 5 5 1	290	$gg \rightarrow b_2 b_2$
23 $f_* \overline{f}_* \rightarrow Z^0 W^{\pm}$	$102 gg \rightarrow 11$ $103 \gamma\gamma \rightarrow h^0$	$188 f_1 \xrightarrow{T} \sim \sim \wedge^0$	377 $f_i \overline{f}_j \rightarrow W^{\pm} \pi_{tr}^{0}$	$204 f_2 \overline{f_2} \rightarrow \tilde{\mu}_T \tilde{\mu}_T^+$	244 00	, . 55 → 22 2	291	$bb \rightarrow b_1 b_1$
$25 f_* \overline{f}_* \rightarrow W^+W^-$	$110 \text{fr} \to \text{wh}^0$	$189 f_{10} \rightarrow f_{10} \Delta^{0}$	381 $q_i q_j \rightarrow q_i q_j$	$205 f_a f_a \rightarrow \tilde{\mu} \tilde{\mu} \tilde{\mu} \tilde{\mu} $	246 f.g	$\rightarrow \tilde{q}_{iL}\tilde{\chi}_{1}$	292	$bb \rightarrow b_2 b_2$
$15 f_{4}\overline{f}_{4} \rightarrow gZ^{0}$	$111 f_1 \overline{f_1} \rightarrow ch^0$	$190 gg \rightarrow gA^0$	382 $q_i \overline{q}_i \rightarrow q_k \overline{q}_k$	$206 f_2 f_2 \rightarrow \tilde{\mu}_L \tilde{\mu}_D + $	247 f.g	$\rightarrow \tilde{q}_{kR}\tilde{\chi}_{1}$	293	$bb \rightarrow b_1 b_2$
$16 f_{4}\overline{f_{4}} \rightarrow gW^{\pm}$	$112 f_{10} \rightarrow f_{10}^{111}$	Charged Higgs	383 $q_i \overline{q}_i \rightarrow gg$	$207 f_2 \overline{f}_2 \rightarrow \tilde{\tau}_1 \tilde{\tau}_2^*$	248 f _i g	$\rightarrow \tilde{q}_{iL}\tilde{\chi}_2$	294	$bg \rightarrow b_1 \tilde{g}$
$30 f_*g \rightarrow f_*Z^0$	113 $gg \rightarrow gh^0$	$143 f_1 \overline{f}_2 \rightarrow H^+$	$384 f_4g \rightarrow f_4g$	$208 f_1 \overline{f_1} \rightarrow \overline{\tau}_2 \overline{\tau}_1^*$	249 f _i g	$\rightarrow \tilde{q}_{iR}\tilde{\chi}_2$	295	$b\underline{g} \rightarrow \underline{b}_2 \underline{\tilde{g}}$
$31 f_{ig} \rightarrow f_{k} W^{\pm}$	$121 gg \rightarrow O_1 \overline{O}, h^0$	$\begin{array}{cccc} 1&1&1&1\\ 1&61&f_{2}\sigma \rightarrow f_{2}H^{+} \end{array}$	385 gg $\rightarrow q_k \overline{q}_k$	$209 f_1 \overline{f_1} \rightarrow \overline{\tau}_1 \overline{\tau}_1^* +$			296	$bb \to \bar{b}_1 \bar{b}_2^* +$
19 $f_{i}\overline{f}_{i} \rightarrow \gamma Z^{0}$	122 $\alpha_{\overline{\alpha}} \rightarrow \Omega_{1} \overline{\Omega}^{*} h^{0}$	$401 gg \rightarrow \overline{tb}H^+$	386 gg → gg	2000 1918 1 112 1				
20 $f_{i}\overline{f}_{i} \rightarrow \gamma W^{\pm}$	$123 \text{fr}_{12} \rightarrow \text{fr}_{12} \text{h}^{0}$	$402 a\overline{a} \rightarrow \overline{t}bH^+$	387 $f_i \overline{f}_i \rightarrow Q_k \overline{Q}_k$					
$35 f_i \gamma \rightarrow f_i Z^0$	124 $f_{ij}f_{j} \rightarrow f_{l_0}f_{l_1}h^0$	- 11 0000	388 gg $\rightarrow Q_k \overline{Q}_k$					

PYTHIA 在EvtGen中的调用

Decay Parent_particle_name Br. $X_1 x_2$... PYTHIA mode; Enddecay

QED的强子过程:
$$e^+e^- \rightarrow \gamma^* / Z \rightarrow \text{light hadrons}$$

Decay vpho 1.000 PYCONT; Enddecay

TWO GAMMA

✓过程: $e^+e^- \rightarrow e^+e^-\gamma\gamma \rightarrow e^+e^-X(\pi\pi,KK,p\bar{p},\eta,\eta'...)$

✓用于研究两光子物理或其它过程的本底

√说明:截面计算由两部分构成:

两光子的量度函数 $\pi\gamma^*\gamma^* \rightarrow hadrons$

过程的截面。

✓强子化过程采用Lund模型,共 振态采用相对论形式,

PQCD:采用手征微扰方案(ChPT).

在tau一粲能区的精度为10%左右

4. Lundcharm

TABLE I. Parameters of JETSET7.4 tuned in the charmonium generator.

m

0000

	Dyn	amic para	meter	Particle ratio						
Parameter	Def Tuned		Description	Parameter	Def	Tuned	Description			
PARJ(21)	0.36	0.5	σ , width of Gaussian	parj(11)	0.5	0.60	V/P ratio of $u & d$			
PARJ(33)	0.8	0.6	diquark minium mass	parj(12)	0.6	0.66	V/P ratio of s			
parj(126)	2 GeV	1 GeV	gg minimum mass	parj(14)	0	0.62	axial Vector ratio			
<i>parj</i> (25)	1.0	0.5	η extra suppression	parj(15)	0	0.12	scalar meson ratio			
				parj(16)	0	0.12	another axial Vector			
				parj(17)	0	0.10	tensor meson			
				parj(1)	0.1	0.09	p(qq)/p(q)			
				parj(2)	0.3	0.4	p(ss)/p(uu)			

Lundcharm 模型的参数优化

▶ 参数响应函数方法 CHIN. PHYS. LETT. 31, 061301 (2014)

产生子参数调节软件: Professon, Rivet, Exp.: TASSO, ALEPH, DELPHI, LHC

$$f(\mathbf{p}_{0} + \delta \mathbf{p}, x) = a_{0}^{(0)}(x) + \sum_{i=1}^{n} a_{i}^{(1)}(x) \delta p_{i}$$
参数 观测量 $+ \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{(2)}(x) \delta p_{i} \delta p_{j}$
 $\approx MC(\mathbf{p}_{0} + \delta \mathbf{p}, x),$

参数对观测量分布的敏感度检验

$$S_i(x) = \frac{\delta MC(x)}{MC(x)} \Big/ \frac{\delta p_i}{p_i} \approx \frac{\partial \ln MC(x)}{\partial \ln |p_i|} \Big|_{p_i},$$

 $J/\psi \rightarrow \text{light hadrons}$ default values are taken from JETSET.^[4] (a)Parameters Default 5Tuned Description Events (10^5) PARJ(1) 0.071 ± 0.000 P(qq)/P(q)0.14 PARJ(2) 0.3 0.490 ± 0.002 P(ss)/P(uu)PARJ(11) $0.100 \pm 0.001 V/P$ ratio of u- and d-quarks 0.53 PARJ(12) 0.928 ± 0.003 V/P ratio of s-quark 0.6 PARJ(14) 0.645 ± 0.001 axial vector meson ratio 0.0 $\mathbf{2}$ scalar meson ratio PARJ(15) 0.016 ± 0.000 0.0 PARJ(16) 0.0 0.026 ± 0.001 another axial vector meson PARJ(17) 0.156 ± 0.001 0.0 tensor meson 0 PARJ(21) 0.427 ± 0.001 σ , width of Gaussian 0.36510150 0.366 ± 0.001 PARJ(25)1.0 η extra suppression $N_{\rm trk}$ PARJ(33) 0.338 ± 0.002 diquark minimum mass 0.8CHIN. PHYS. LETT. 31, 061301 (2014) PARJ(126) $\mathbf{2}$ 0.813 ± 0.001 gg minimum mass 500 F (a) (b) (c) 350 E 250300 400Events (10^3) 200250300 200150200 150100 100 E 100 5050 0 0 0 4 6 103 1.52.00.0 0.51.0 $N_{\text{trk}} (\text{GeV})$ N_{γ} x_f (e) (d) (f) 300Ē 45080 E 40070₽ Events (10^3) 250E 35060 E 200E 300 50250150 40200 30 100 15020 10050 10 47 500 0 0 0.51.00.00.51.50.01.51.01.50.00.51.0 x_{\perp} Sphericity Aplanarity

Table 1. List of tuned parameters and their definitions. The

习题一:取A=137,C=187,M=256和X0=1,用线性同余法产生3维随机数和2维随机数,然后分别绘出其3维和2维分布图。

习题二:证明**Breit-Wigner**分布 $f(x) = \frac{\Gamma}{\pi} \frac{1}{(x-x_0)^2 + \Gamma^2}$ 可以通过抽样)抽 样 $x_i = x_0 + \Gamma \cot(\pi \xi_i)$ 得到,其中, ξ_i 是在(0,1)区间的均匀分布随机数。

习题三:如果*ξ*₁,*ξ*₂ 是(0,1)之间均匀分布的随机数子样,试推导出以下随机变量的密度分布函数:

1. $X_1 = \xi_1^2$, *2.* $X_2 = \xi_1 * \xi_2$, *3.* $X_3 = \xi_1 / \xi_2$, 并用蒙特卡罗方法检验你的密度分布函数的正确性。

习题四: 在 J/ψ → e^+e^- 衰变中,电子的极角余弦 $x = \cos\theta$ 的分布密度 函数为 $f(x) = \frac{3}{8}(1 + x^2)$,给出三种随机变量x的不同蒙特卡洛抽样算 法。

5. 总结

- 事例产生器是物理分析当中不可或缺的工具
 - ▶ 它在物理分析
 - ▶ 探测器效率的确定
 - ▶ 亮度测量
 - ▶ 初态辐射修正因子计算方面发挥着不可替代的作用
- 也是物理分析当中一个重要的组成部分。