New Semiconductor Devices for Dark Matter Detection

- Peizhi Du
- **Rutgers University**
- RUTGERS
- Particle Physics Seminar @ Peking University August 21, 2023
- in collaboration with Daniel Egana-Ugrinovic, Rouven Essig and Mukul Sholapurkar (PRX 12, 011009) Daniel Egana-Ugrinovic, Rouven Essig and Mukul Sholapurkar (arXiv:2212.04504) Javier Tiffenberg, Daniel Egana-Ugrinovic, Rouven Essig, Guillermo Fernandez-Moroni, Miguel Sofo Haro, Sho Uemura (arXiv:2307.13723)

Dark matter

Galaxy

Galaxy Cluster

- 85% of matter, 27% total energy density in the Universe Evidence for dark matter is currently only gravitational Particle nature is unknown, a wide range of DM masses are allowed

CMB

Dark matter

Sub-GeV dark matter

DM-electron scattering

Relic abundance: Freeze-in mechanism

Dark photon model: $\mathcal{L} \supset -\frac{1}{4}F'^{\mu\nu}F'_{\mu\nu} - \frac{\kappa}{2}F^{\mu\nu}F'_{\mu\nu} + \frac{1}{2}m_A^2A'^{\mu}A'_{\mu} - g_DA'_{\mu}\bar{\chi}\gamma^{\mu}\chi$

DM χ + (light) Dark photon A' mediator

Direct Detection of DM

- Assuming DM has more than gravitational interactions with SM
- Clean environment, sensitive detector
- Wait for DM to come!

Direct Detection: $\Delta E > keV$

Direct Detection: $\Delta E > keV$

Threshold: ~keV

Nuclear recoil constraints

Direct Detection: $\Delta E > O(10) eV$

Direct Detection: $\Delta E > O(10) eV$

Vergados, Ejiri , PLB 2004 Ibe, Nakano, Shoji, Suzuki, JHEP 2018

Signal: electron ionization

Threshold: ~10 eV

Direct Detection: $\Delta E > O(10) eV$

DM

for light DM

Signal: electron ionization Threshold: ~10 eV

Essig, Mardon, Volansky, PRD 2012

Direct Detection: $\Delta E > O(I) eV$

Direct Detection: $\Delta E > O(1)eV$

Essig, Perez-Rios, Ramani, Slone, PR Research 2019 Blanco, Collar, Kahn, Lillard, PRD 2020

Excitation in molecules

Signal: photons Threshold: O(I) eV

Direct Detection: $\Delta E > O(1)eV$

Peizhi Du (Rutgers) |Seminar @ PKU

Essig, Mardon, Volansky, PRD 2012

Electron ionization in semiconductors

Signals: eh pairs Threshold: E_g~I eV

Direct Detection of Sub-GeV DM

Electron recoils

Access to whole kinetic energy:

$$E_{\rm ER} \lesssim \frac{1}{2} m_{\chi} v^2 \approx 1 \,\mathrm{eV} \left[\frac{m_{\chi}}{0.5 \,\mathrm{MeV}} \right]$$

Current targets

Target	Signal	Threshold	DM Mas range
Noble Liquid	electron ionization	~10 eV (atom ionization)	>10 Me\
Semiconductors	eh pairs	~leV (bandgap)	>MeV

Sub-GeV DM detection: tabletop experiments

SENSEI

SuperCDMS HVeV

PandaX (WIMP)

Direct Detection of Sub-GeV DM

Figure from SENSEI, *PRL* 2020

Direct Detection of Sub-GeV DM

Figure from SENSEI, *PRL* 2020

Questions:

how to probe sub-MeV DM?

how to probe Freeze-in theory target?

Probing Sub-MeV DM

Low threshold detector can probe low mass DM

Direct Detection: $\Delta E < IeV$

Direct Detection: $\Delta E < IeV$

Signals: optical phonons Threshold: ~10-100 meV

Direct Detection: $\Delta E < IeV$

Superconductor

 $\Delta = O(1) \text{ meV}$

Hochberg, Zhao, Zurek, PRL 2015 Hochberg, Kahn, Lisanti, Zurek, et.al, PRD 2017

Dirac material

 $\Delta = O(1) \text{ meV}$

Signals: quasiparticles/phonons Threshold: ~I meV

Probing Sub-MeV DM

Low threshold detector can probe low mass DM

Probing Sub-MeV DM

Low threshold detector can probe low mass DM

Doped semiconductors

n-type semiconductor

Donors in Silicon: P,As ...(group V elements)

Commonly used: p-n junction, diodes

p-type semiconductor

Acceptors in Silicon: B, Al ... (group III elements)

Dopants in semiconductors

Dopants: "Hydrogen atoms" in a background with a large dielectric constant

Peizhi Du (Rutgers) |Seminar @ PKU

19/35

Dopants in semiconductors

electron effective mass Boh For $\epsilon \sim 10$ $a_* \sim (\frac{\alpha}{\epsilon}m_*)^{-1} \sim O(10)$

Dopants: "Hydrogen atoms" in a background with a large dielectric constant

$$\overset{\text{an radius}}{a_0} E_{\text{ionization}} \sim \frac{1}{2} \left(\frac{\alpha}{\epsilon}\right)^2 m_* \sim 10 - 100 \,\text{meV}$$

Peizhi Du (Rutgers) |Seminar @ PKU

19/35

Conduction band

Valence band

DM reach with doped silicon

Signals: dopant ionization Threshold: E_I~10-100 meV

Light dark photon mediator (Si:P, $n_d = 1 \times 10^{18} \text{ cm}^{-3}$)

Direct Detection of Sub-GeV DM

Figure from SENSEI, *PRL* 2020

Questions:

how to probe sub-MeV DM? doped semiconductors

how to probe Freeze-in theory target?

What about backgrounds?

- Excess events are near the threshold
- Cannot be explained by known sources \bullet

Those could come from DM !

Kurinsky, Baxter, Kahn, Krnjaic, PRD, 2020

Those could come from DM !

Kurinsky, Baxter, Kahn, Krnjaic, PRD, 2020

Probably not DM

Kozaczuk, Lin, PRD, 2020

Those could come from DM !

Kurinsky, Baxter, Kahn, Krnjaic, PRD, 2020

Probably not DM

Kozaczuk, Lin, PRD, 2020

Those are likely unexplored backgrounds!

PD, Egana-Ugrinovic, Essig, Sholapurkar, *PRX*, 2022

Kurinsky, Baxter, Kahn, Krnjaic, PRD, 2022

SuperCDMS, PRD 2022

EXCESS Workshop Report, 2022

Unexplored low energy backgrounds

Cherenkov radiation inside detector

Cherenkov radiation from holders

SENSEI excess \Rightarrow

SuperCDMS HVeV excess \Rightarrow

SENSEl experiment

Peizhi Du (Rutgers) |Seminar @ PKU

SENSEI image (half of one quadrant)

Simulation results

SENSEI le events:

- Cherenkov events contribute 1/3 of total, • explain the observed shape of the spectrum
- The remaining 2/3 is spatially uniform possible sources: surface dark current from defects, charge leakage...

How to reduce surface dark current?

Dual-Sided CCD

Regular CCD collects only one charge

Tiffenberg, PD, Egana-Ugrinovic, Essig, Fernandez-Moroni, Sofo Haro, Uemura (arXiv:2307.13723)

DCCD collects both charges at two sides Surface DC are only collected in one side of the image

Surface DC rejection in timed-exposure mode

SENSEI le dark current: O(10⁻⁴) e/pixel/day dark current rejection: $O(10^{-3})-O(10^{-4})$

Surface DC rejection in timed-exposure mode

SENSEI le dark current: O(10⁻⁴) e/pixel/day dark current rejection: $O(10^{-3})-O(10^{-4})$

Improved timing resolution: continuous readout mode

Conclusions

- how to probe sub-MeV DM? doped semiconductors
- how to probe Freeze-in theory target?
- need to understand backgrounds
- DCCD can reduce some of backgrounds

35/35

Thank you