

Hadronic mass spectrum in AdS/QCD with Deep Learning $$\rm A$ early proposal$

Miguel Angel Martin Contreras University of South China August 11, 2023

Outline

- Motivation
- \blacksquare Hadronic Identity in AdS/QCD
- 2 Hadron mass spectrum in AdS/QCD
- 3 Dilaton Engineering
 - Dilaton/deformation master equation
 - \blacksquare WKB reconstruction algorithm
- 4 Deep Learning for Hadronic spectrumDL proposal

Motivation

- Hadrons are bounded states of quarks and gluons.
- ▶ Hadrons are direct evidence of confinement.
- ► Hadron masses are organized in taxonomic structures called *Regge trajectories*.
- ▶ Hadronic spectroscopy is non-perturbative.
- ▶ Non-holo. approaches to hadron spectroscopy:
 - Relativistic and non-relativistic potential models.
 - Bethe-Salpeter equation.
 - Light-cone QCD.
 - Lattice QCD.

Figure: Cartoon describing mesons and baryons

Hadrons in AdS/QCD

 Gauge/gravity duality: hadrons are nonperturbative boundary objects dual to bulk fields.

$$\mathcal{O} |0\rangle = \alpha |p\rangle$$

with operator creating hadrons \mathcal{O} defined as

 $\dim \mathcal{O} \Leftrightarrow \dim \psi(z,q) \equiv \Delta$

Bulk field: p-form in AdS₅ $A_p(z,q) = A_p(q) \psi(z,q)$ with mass M_5 .

$$\psi(z,q)|_{z\to 0} = \mathcal{C} \, z^{\Delta-p}$$

See Polchinski 2002.

 $\mathcal{O} = f(q, \bar{q}, G_{\mu\nu}, D_{\mu})$ $\dim \mathcal{O} = \Delta_0 + L + \gamma$

Hadrons in AdS/QCD

 Hadronic identity: From p-form EOMs:

$$\tau = \Delta - p = \frac{1 - \beta}{2} + \frac{1}{2}\sqrt{(1 - \beta)^2 + 4M_{d+2}^2R^2},$$

$$\beta = -3 + 2p$$

We get the master formula for defining hadrons in AdS/QCD:

$$M_5^2 R^2 = (\Delta - p) (\Delta + p - 4)$$
(1)

► Observations:

- Hadron spin S is equivalent to p-form index p.
- OPE twist $\tau = \dim \mathcal{O} S$. See Wise's lecutures, 1999.
- Holographic hadrons usually written in S-wave, i.e., L = 0. (See Branz et al., 2010).
- For fermionic expression, a similar procedure is to get a fermionic bulk mass expression.
- Similar expressions for LFHQCD (See Brodsky 2009).

Miguel Angel Martin Contreras

Hadronic Identity

- Hadrons in AdS/QCD are normalizable modes labeled by their bulk mass.
- ▶ From OPE and QCD sum rules, we can write a general expression (Vega, 2010)

$$M_5^2 R^2 = (\Delta_0 + L + \gamma - p) (\Delta_0 + L + \gamma + p - 4)$$

$$\Delta_0 \rightarrow \text{ info. from hadron constituents.}$$

 $L \rightarrow$ angular momentum.

 $\gamma \rightarrow$ anomalous dimension.

• Observations: Hadrons are not univocally defined.

HADRO-Hadronic Identity

TETRAQUARK

HYBRIC

8/19

Scalar hadrons	Vector hadrons	Spin 1/2 hadrons
$(nQ)(mG)$ Δ_0	$(nQ)(mG)$ Δ_0^q	$(nQ)(mG) \land \Delta_0$
(2Q) _Q 3	(2Q) Q 3	(3Q) 9/2
(2G) Q 4	(2Q)(1G) 5	(1Q)(3G) or $(3Q)(1G)$ 13/2
(2Q)(1G) 5	(4Q) or (3G) = 6	(5Q) 15/2
(4Q) 6	(2Q)(2G) 7	(3Q)(2G) 17/2
(2Q)(2G) 7	(4Q)(1G) 8	(5Q)(1G) 19/2
(4Q)(1G) or (4G) = 8	(6Q) or (2Q)(3G) = 9	$(3Q)(3G) \text{ or } (7Q) G \downarrow_2 / 2 / 2 / 2$
(6Q) or (2Q)(3G) = 9	(5G) or (4Q)(2G) = 10	(5Q)(2G) 23/2

Table: Possible hadronic states composed by n quarks (or antiquarks) and m gluons and their conformal dimensions. To know the corresponding value of the associated bulk mass, solve the equation of motion for the bulk fields, and compute the low z limit to see how the fields scale. This scaling is the conformal dimension defined in terms of the bulk mass. Invert the relation, and you will find the expected $M_{d+2} = M_{d+2}(\Delta)$ relation.

Miguel Angel Martin Contreras

Hadron mass spectrum in AdS/QCD

$AdS/QCD \ a \ la \ bottom-up \ in \ a \ nutshell$

► Motivation: confinement.

- Dilaton field $\Phi(z)$ in the bulk action.
- Geometry deformation h(z), i.e., AdS warp factor $A(z) = \log(R/z) + h(z), h(z \to 0) \to 0$.

Both induce bounded spectra in AdS space.

▶ How? Using the Schrodinger-like potential:

$$V(z) = \frac{1}{4}B'(z)^2 - \frac{1}{2}B''(z) + \frac{M_5^2 R^2}{z^2}e^{h(z)},$$
(2)

with $B(z) = \Phi(z) + \beta \left[\log \frac{R}{z} + \frac{1}{2}h(z) \right].$

► For linear Regge trajectories (KKSS for example):

$$V(z) = \frac{A}{z^2} + B z^2 + C + \text{corrections}$$

▶ Holographic hadron masses (M_n^2) are eigenvalues of V(z) in a Schrödinger-like potential.

Miguel Angel Martin Contreras

Hadron mass spectrum in AdS/QCD

Hadron Mass spectrum

Softwall Model Vector Meson Potential

Figure: Holographic potential.

• Regge trajectories emerge as eigenvalue spectrum of V(z).

Figure: ρ meson Regge Trajectory.

- Linearity is controlled by the high-z behavior of V(z). Example:
 - Hardwall model (see Boschi-Filho, 2002): $M_n^2 \propto n^2.$
 - Softwall model (see KKSS, 2006): $M_n^2 \propto n$

Miguel Angel Martin Contreras

Hadron mass spectrum in AdS/QCD

Dilaton Engineering

Dilaton/deformation Reconstruction

Main idea

Given a phenomenological structure for V(z), it is possible to infer $\Phi(z)$ or h(z).

$$V(z) = \frac{1}{4} \left[\Phi'(z)^2 + \beta^2 h'(z)^2 \right] + \frac{1}{2} \beta h'(z) \Phi'(z) - \frac{1}{2} \left[\Phi''(z) + \beta h''(z) \right] - \frac{\beta}{2z} \left[\beta h'(z) + \Phi'(z) \right] + \frac{4 M_5^2 R^2 e^{2h(z)} - 2\beta + \beta^2}{4z^2}$$
(3)

- Low z region of the potential is dominated by the AdS warp factor.
- High z region is dominated by $\Phi(z)$ or h(z).
- ▶ WKB analysis from the eigenvalue spectrum can be used to define a phenomenological potential. (Schrödinger inverse problem.)

Miguel Angel Martin Contreras

WKB analysis

From a eigenvalue spectrum $M_n^2(n)$, we can calculate the potential at high z (turning point):

$$z(V) = 2 \int_0^V \frac{d M^2}{\frac{\partial M^2}{\partial n} \sqrt{V - M^2}}.$$

▶ Compute the dilaton and deformation as

$$V(z)|_{z\to\infty} = \frac{1}{4} \left[\Phi'(z)^2 + \beta^2 h'(z)^2 \right] + \frac{1}{2} \beta h'(z) \Phi'(z) - \frac{1}{2} \left[\Phi''(z) + \beta h''(z) \right] - \frac{\beta}{2z} \left[\beta h'(z) + \beta h''(z) \right] + \frac{\beta}{2z} \left[\beta h''(z) + \beta h''(z) \right] + \frac{\beta}{2z} \left[\beta h''(z) + \beta h'''(z) \right] + \frac{\beta}$$

- Build the full potential by adding the low-z part.
- Compute the holographic eigenspectrum.

Miguel Angel Martin Contreras

Dilaton Engineering

Example: Softwall model

Let us consider linear Regge Trajectories: M_n² = a(n + b).
WKB:

$$z(V) = 2\int_0^V \frac{dM^2}{a\sqrt{V-M^2}} = \frac{4}{a}V^{1/2} \Rightarrow V(z) = \frac{a^2}{16}z^2$$

► Solve for the dilaton field $\Phi(z)$ with $\beta = -1$ (vector mesons) and h(z) = 0,

$$C(a) z^{2} = \frac{1}{4} \Phi'(z)^{2} - \frac{1}{2} \Phi''(z) + \frac{1}{2} \Phi'(z) \Rightarrow \Phi(z) = c_{1} - 2\log\left[\cosh\left(\frac{a}{2}z^{2} - 2c_{2}\right)\right]$$

▶ Fix $c_1 = 0$ and $c_2 = \infty$, after some algebra:

$$\Phi(z) = -2\log\left[\cosh\frac{a}{8}z^2 - \sinh\frac{a}{8}z^2\right] = 2\log\left(e^{-\frac{a}{8}z^2}\right) = \frac{a}{4}z^2 \equiv \kappa^2 z^2$$

For vector mesons $a = 4\kappa^2$:

$$M_n^2 = a(n+b) \Rightarrow M_n^2 = 4 \, \kappa^2 (n+b)$$

Miguel Angel Martin Contreras

Dilaton Engineering

Deep Learning for Hadronic spectrum

Motivation

- ▶ Hadrons are not univocally defined in AdS/QCD. How can be extended the model?
- ► Can hadronic inner structure information be captured in other bulk structures?

Idea

Try to solve V(z) for different dilatons and deformations to match non- $q \bar{q}$ masses, starting from a proposed spectrum (Experiment, Lattice QCD, or other non-holographic models).

- ▶ This idea has been explored using the following:
 - Shifted bulk mass, Branz et. al, 2010.
 - Anomalous dimensions for glueballs, Braga and Boschi-Filho, 2012.
 - Generalized SWM, Afonin, 2013.
 - Anomalous dimensions for pseudoscalar and axial mesons, Martin et. al, 2019.
 - Deformed AdS, Capposouli et. al, 2019.
 - Non-linear Regge trajectories, Martin and Vega, 2021

DL proposal

Main goal

Following Hashimoto's works (2018, 2021) works, it is possible to train a neural network (NN) to solve Schrödinger inverse problem to find dilatons or deformation suitable to model hadronic mass spectrum.

- ▶ DL methods can define parameter spaces for ODEs solutions.
- ▶ DL are suitable to be used to background reconstruction.

Methodology

- ▶ Using experimental Regge trajectories data to train a NN (torch or tensorflow) to solve a Schrödinger-like potential to compute $\phi(z)$ and h(z) as parametric function families.
- ▶ To set the parameter space.
- ▶ To compute other hadronic species as non- $q \bar{q}$ states (for example, tetraquarks).

