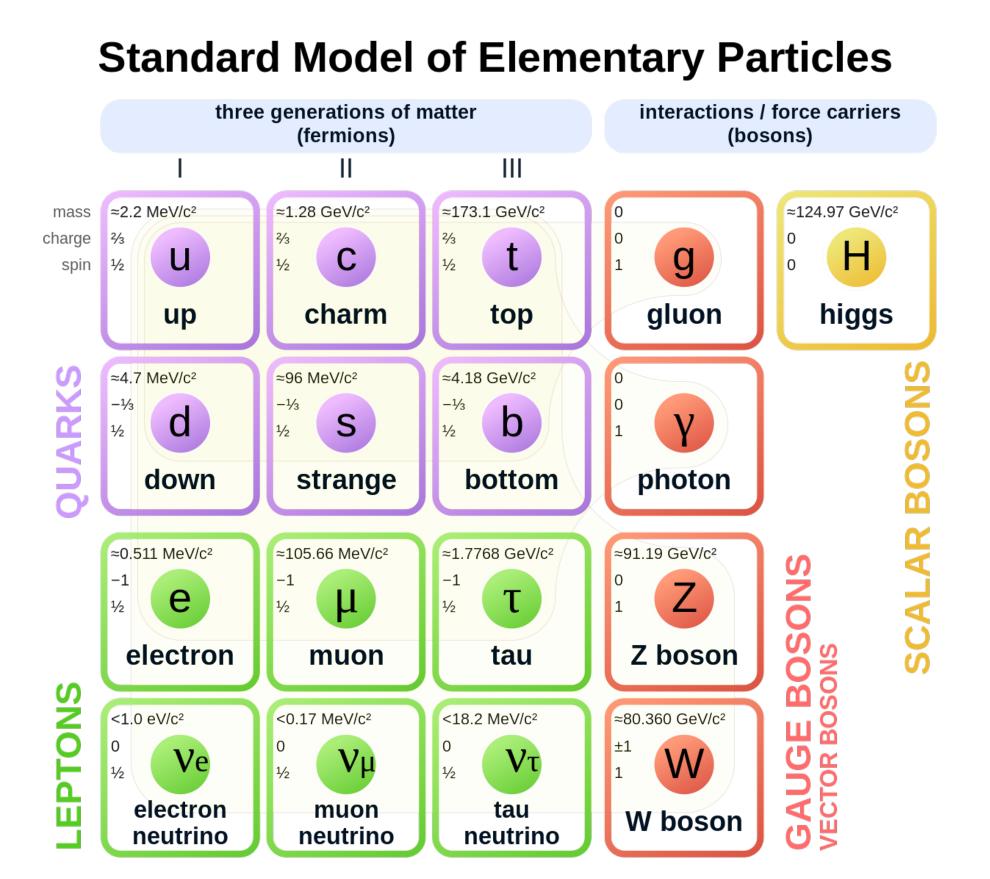


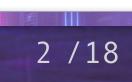
Searches for supersymmetry using two same-sign leptons or three leptons with ATLAS detector

Shuhui Huang

Department of Physics University of Hong Kong

September 13th, 2023


Shuhui Huang


Introduction

- The Standard Model (SM) provides the most precise description for most of experimental phenomenon in particle physics. However, it is not flawless.
- Many open questions in SM
 - the hierarchy problem
 - unification of fundamental forces
 - dark matter
 - matter-antimatter asymmetry
 - neutrinos masses

Beyond SM (BSM) searches can shed the light on these open questions of SM

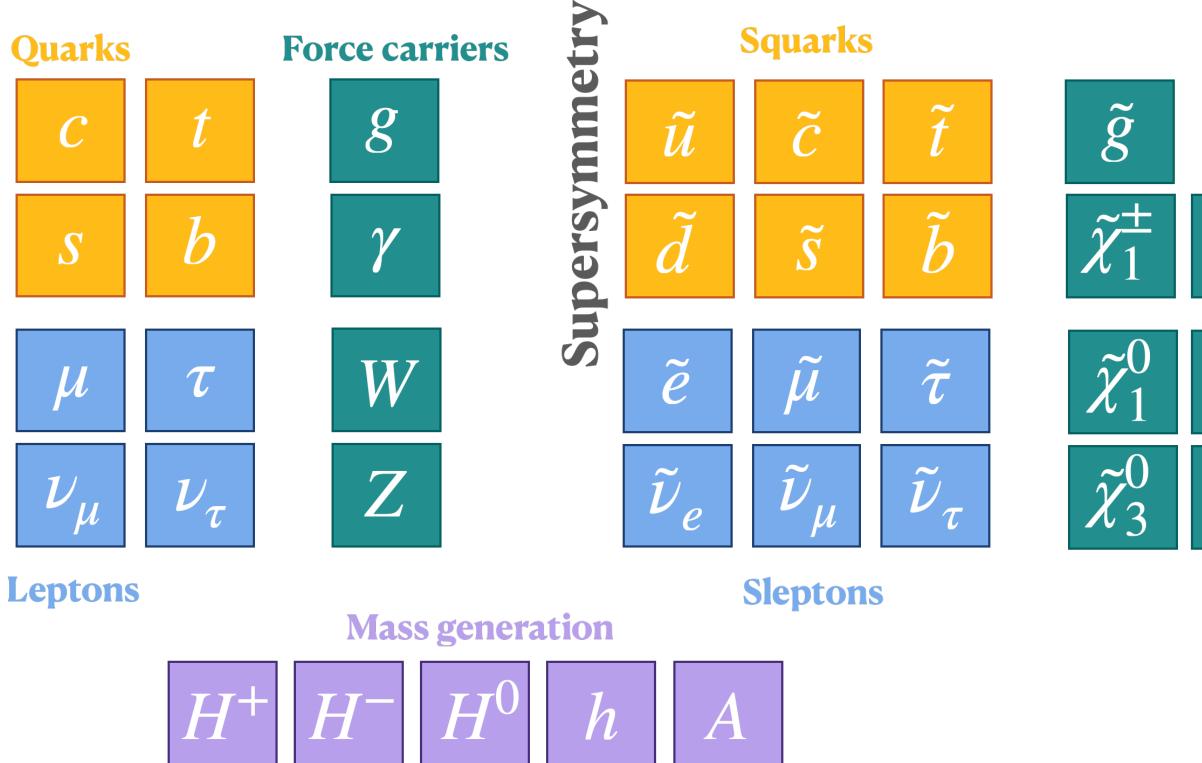
SYSU-PKU Collider Physics Forum for Young Scientists

Introducing Supersymmetry

- relates bosons and fermions.
- SM particles Model
 - Quarks <-> Squarks
 - Leptons <-> Sleptons
 - SM gauge bosons <-> Gauginos
 - Higgs sector <-> Higgsinos
 - Electroweak (EW) gauginos and Higgsinos are mixed to form different mass eigenstates
 - Neutralinos: $\tilde{\chi}_1^0$, $\tilde{\chi}_2^0$, $\tilde{\chi}_3^0$, $\tilde{\chi}_4^0$
 - Charginos: $\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^{\pm}$

 \mathcal{U}

d

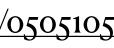

e

 \mathcal{V}_{e}

Standard

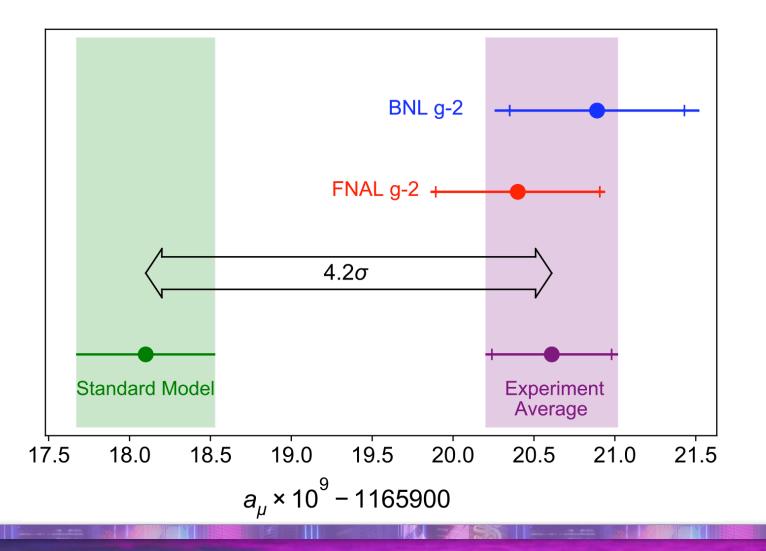
• Supersymmetry (SUSY) is one of the promising extensions of SM by assuming a new symmetry

• The Minimal Supersymmetric Standard Model (MSSM) introduces supersymmetric partners to

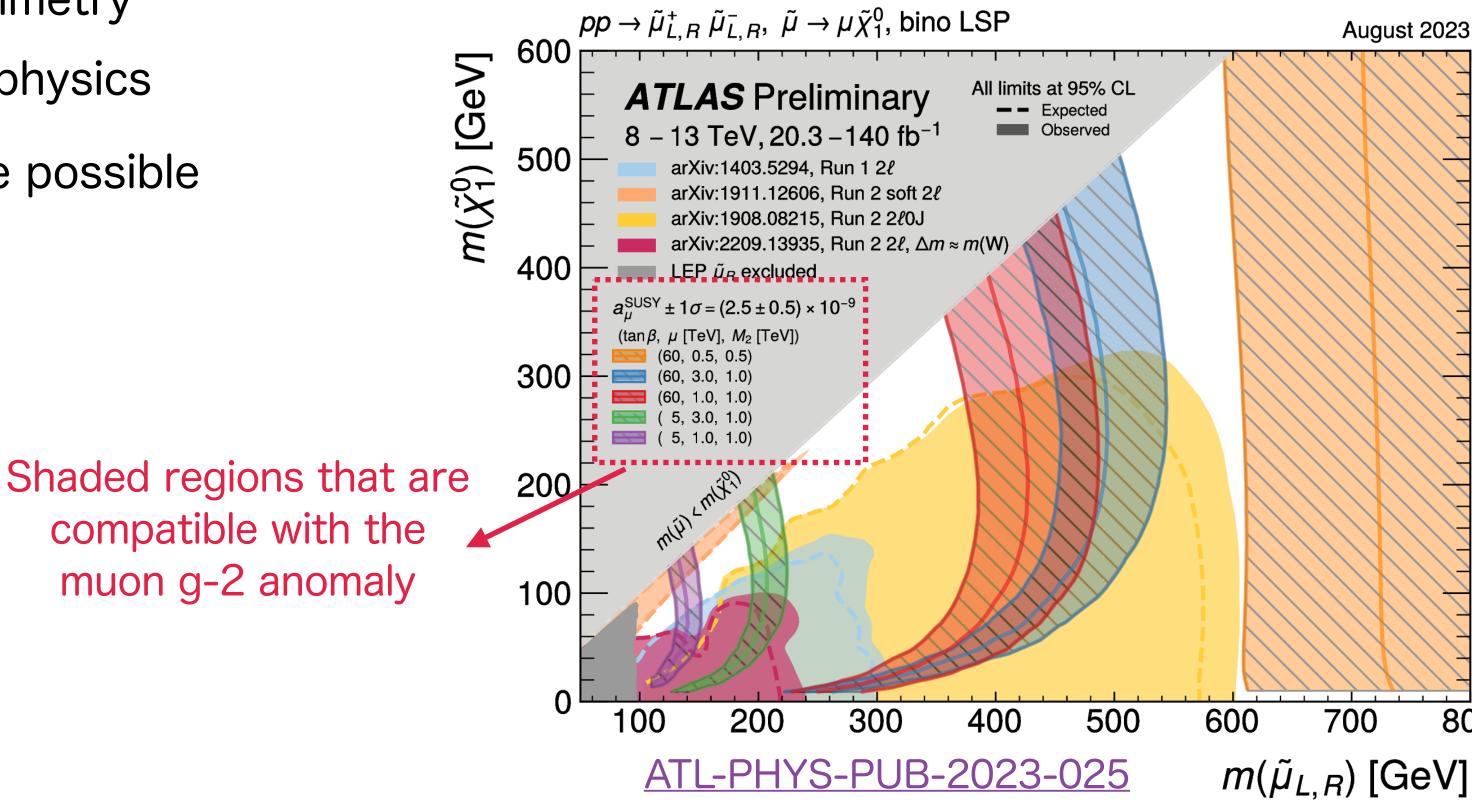


[1] I. J. R. Aitchison. "Supersymmetry and the MSSM: An Elementary introduction".arXiv: <u>hep-ph/0505105</u> [2] S. P. Matrin. "A Supersymmetry Primer" arXiv:hep-ph/0700356

SYSU-PKU Collider Physics Forum for Young Scientists



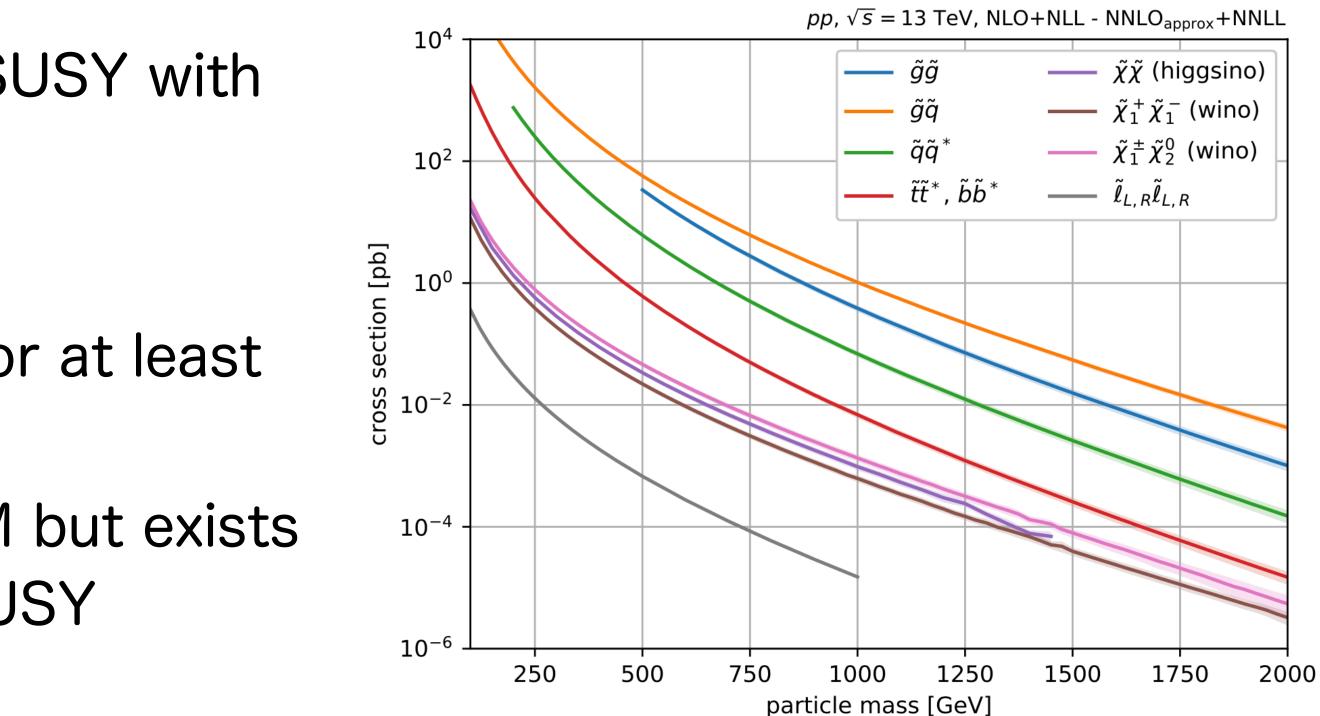
Motivation for SUSY


- Provide a natural solution to the hierarchy problem
- a suitable dark matter candidate
- - BNV: abundant source for baryon asymmetry
 - LNV: possible explanation for neutrino physics
- Light sleptons and neutralinos can provide possible explanation to $(g-2)_{\mu}$ anomaly

Shuhui Huang

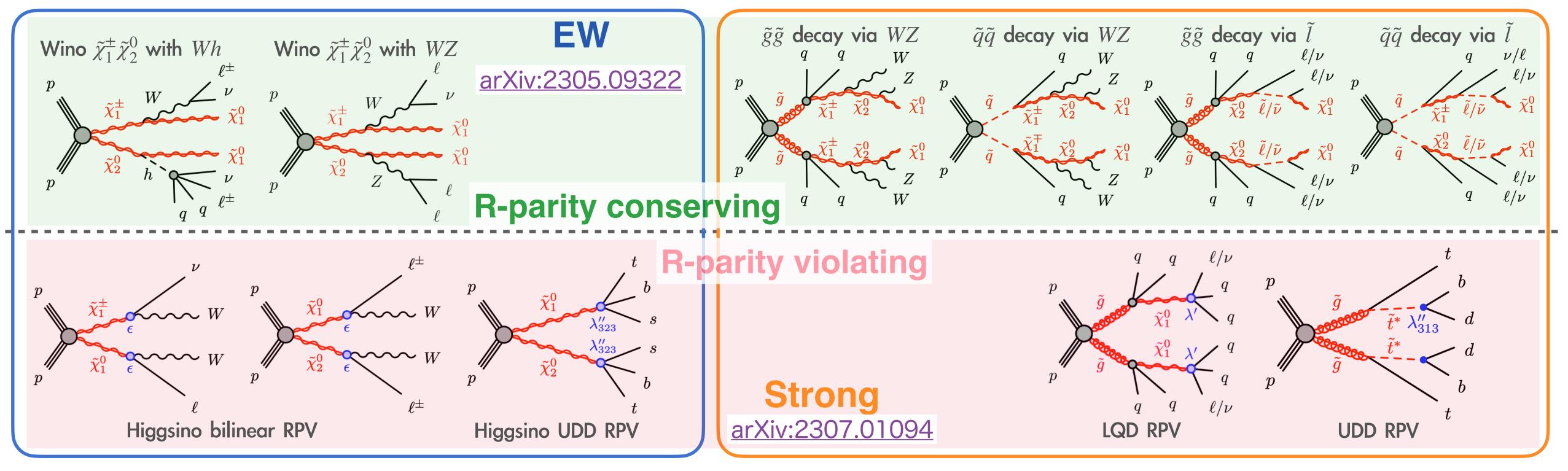
• By assuming an ad hoc symmetry called R-parity, $R = (-1)^{3(B-L)+2S}$, the lightest stable SUSY particle (LSP) can be

In R-parity broken SUSY scenarios, baryon number violation (BNV) or lepton number violation (LNV) is allowed



Search for SUSY with two same-sign and three leptons

- SUSY production at LHC under $\sqrt{s} = 13$ TeV proton-proton collisions
 - Strong processes have relatively larger cross-section than others
 - EW processes are motivated by naturalness arguments and expected to dominate if squarks and gluinos are heavy
- In this talk: two analyses searching for SUSY with **ATLAS** detector
 - Dataset: 139 fb⁻¹ (full Run 2 data)
 - Channel: two same-sign (SS) leptons or at least three leptons (3L)
 - SS signature is rarely predicted by SM but exists widely in many BSM extensions like SUSY
 - EW SS/3L: <u>arXiv:2305.09322</u>
 - Strong SS/3L: <u>arXiv:2307.01094</u>

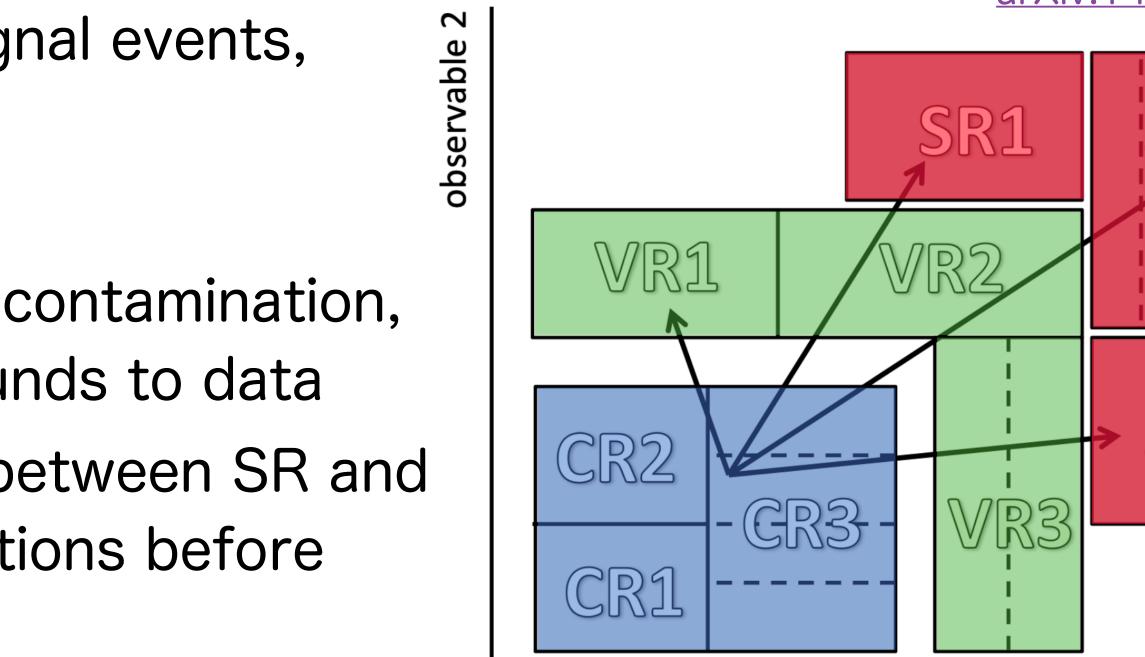


Signal models

Shuhui Huang

- Consider both EW and strong production of SUSY simplified models yielding SS/3L + jets + E_T^{miss}
- Covering both R-parity conserving (RPC) and violating (RPV) scenarios
 - (LSP) remaining in final state
 - RPV: decay via LNV or BNV terms

• RPC: decay via weak bosons or sleptons(\tilde{l}) in the intermediate states, with the lightest neutralino $\tilde{\chi}_1^0$


Large E_T^{miss}

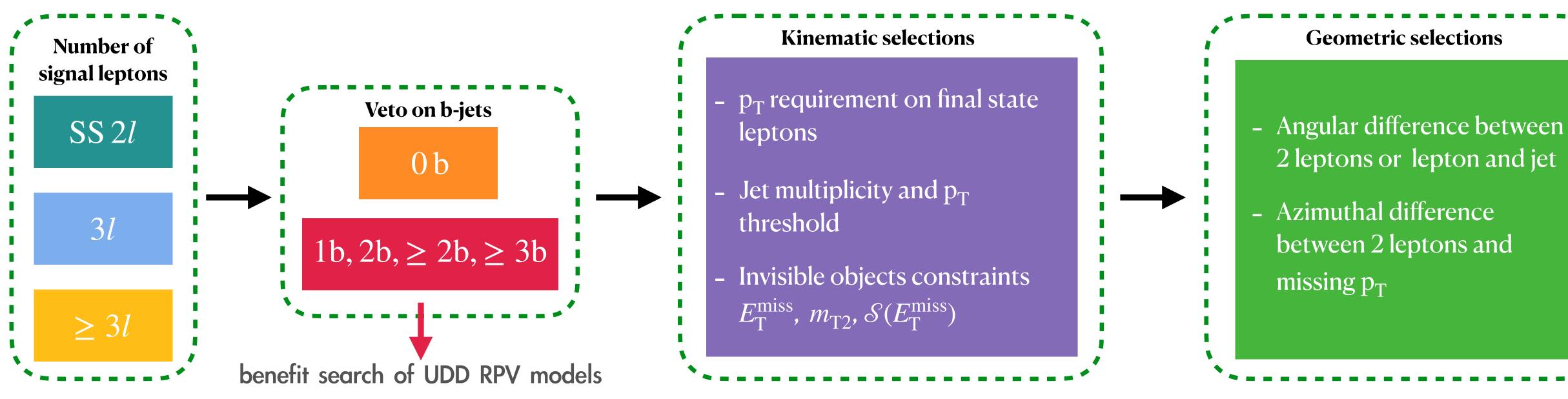
6 / 18

SYSU-PKU Collider Physics Forum for Young Scientists

General analysis strategy

- Maximize BSM signal significance
 - Signal Region (SR): enrich in SUSY signal events, minimal background contamination
- SM background modelling
 - Control Region (CR): free from signal contamination, designed to normalise major backgrounds to data
 - Validation Region (VR): in the middle between SR and CR, used to check background predictions before extrapolation from CR to SR
- Statistical interpretation
 - performed by a combined fit over CR(s)+SR(s) to set exclusion limits at 95% Confidence Level (CL) in context of targeted SUSY signal model.

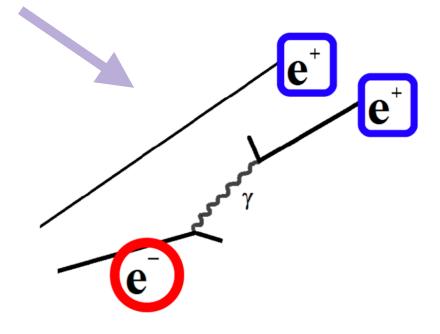
• If no significance excess in SR(s) is observed on data, statistical interpretation will be



Signal regions

Optimised event selections for each simplified model to maximise the sensitivity

- Multi-bin SRs defined on top of the distribution of discriminant variables
- Feasible statistical combination of orthogonal SRs

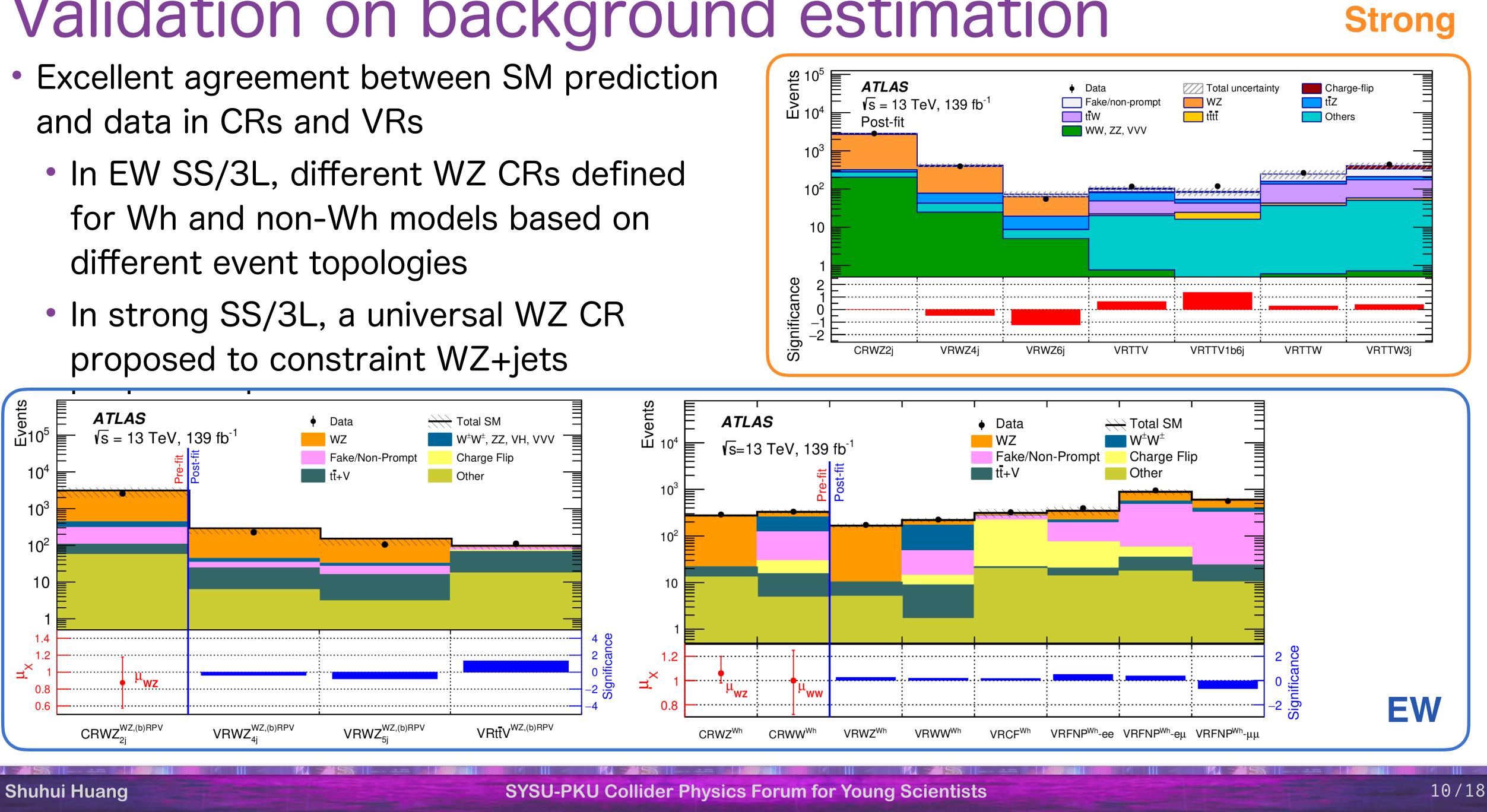

Background estimation

- Reducible background
 - Electrons with incorrect charge (Charge-Flip) and fake/non-prompt leptons
 - Measured by data-driven techniques

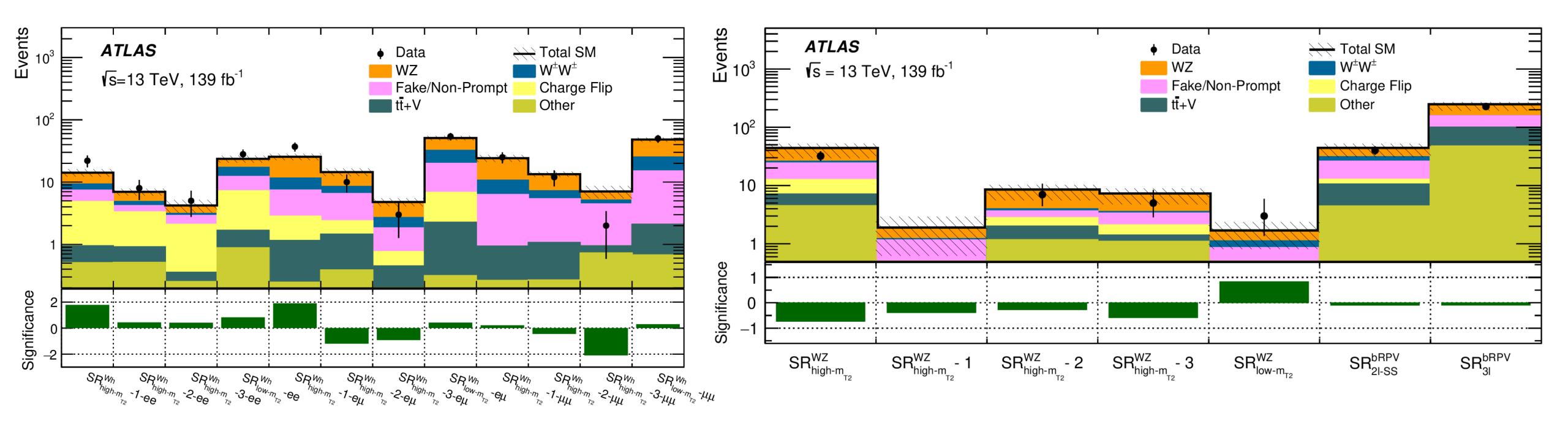
- Irreducible background
 - SM prompt processes that yield SS/3L in final states
 - Diboson, triboson processes, $t\bar{t}W$, $t\bar{t}Z$, $t\bar{t}H$, $t\bar{t}t$, $t\bar{t}t\bar{t}$ and other rare processes
 - Most of them are estimated by MC simulation

 - dominant in Wh SRs

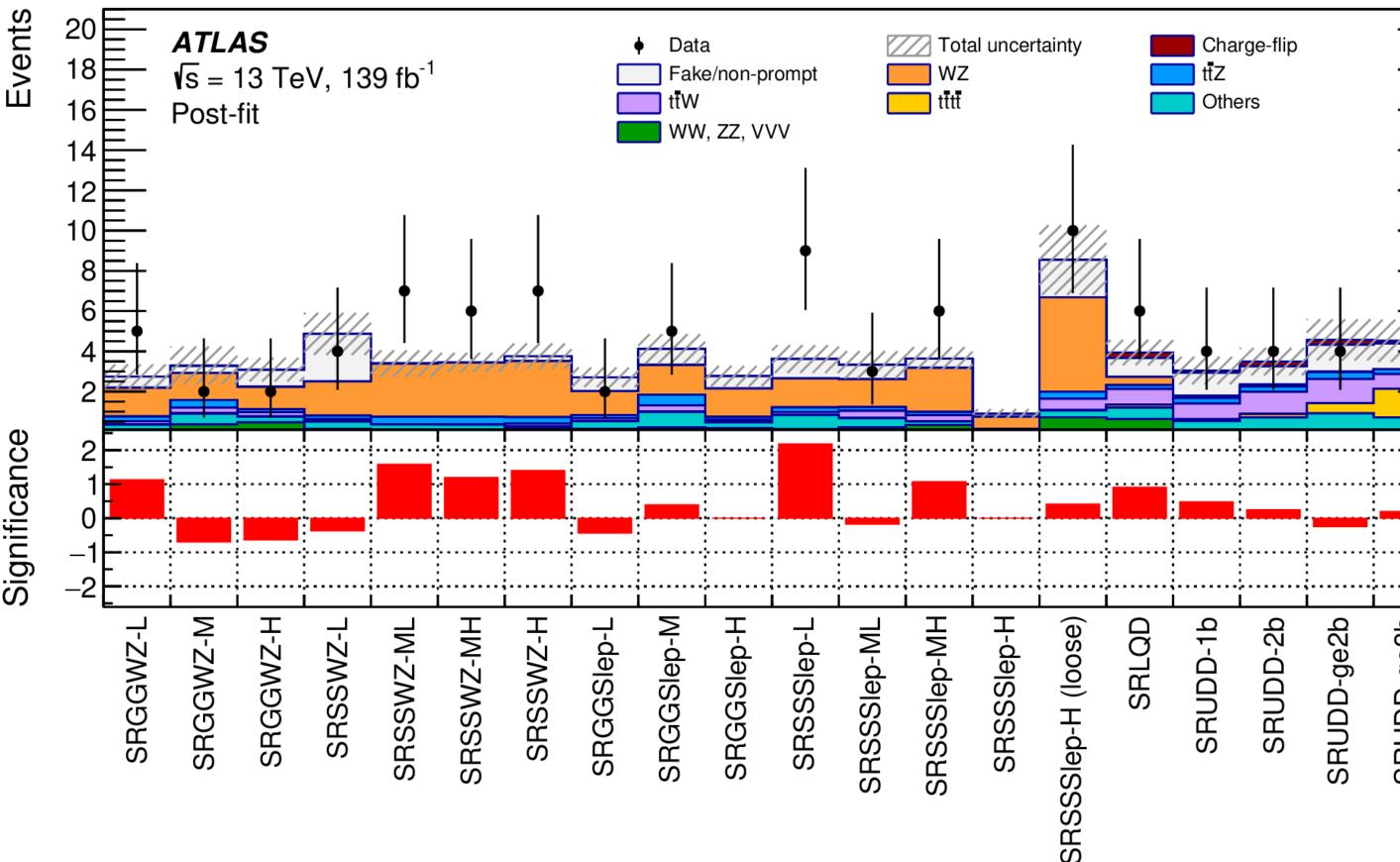
From heavy or light hadron decays, photon conversion or misidentified jets


• A dedicated CR defined for WZ+jets where this process is normalised to data

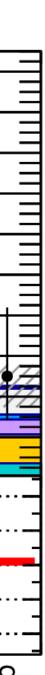
• A dedicated CR defined for $W^{\pm}W^{\pm}$ for Wino Wh model, since this process is


Validation on background estimation

- and data in CRs and VRs
 - for Wh and non-Wh models based on different event topologies
 - proposed to constraint WZ+jets

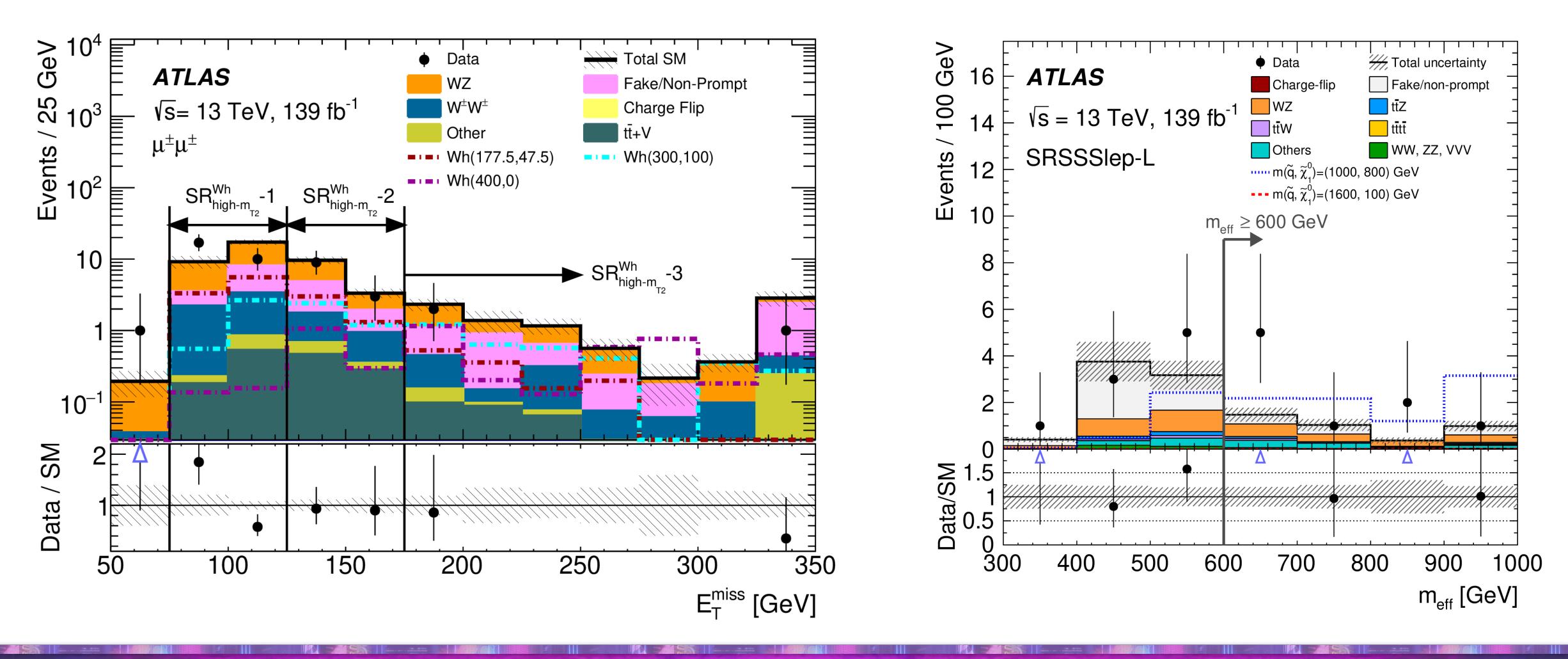

Results in signal regions: EW SS/3L

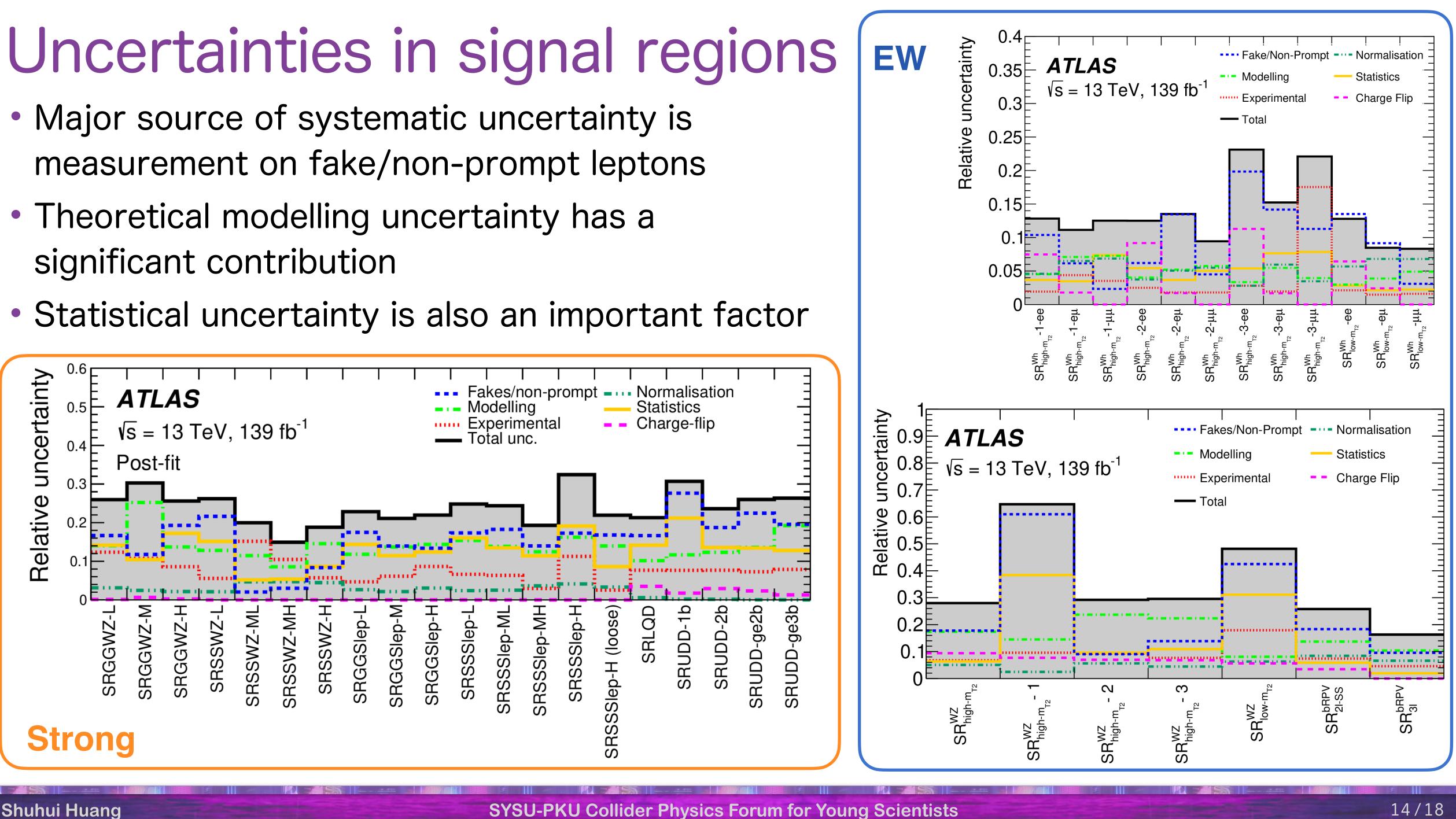
- No significant excess over the SM predictions
 - The largest excess less than 2σ in Wh SRs is compatible with statistical fluctuation
 - The 2.1 σ deficit in one Wh SR is due to large statistical fluctuation
 - Observed data are compatible with SM predictions in non-Wh SRs



Results in signal regions: strong SS/3L

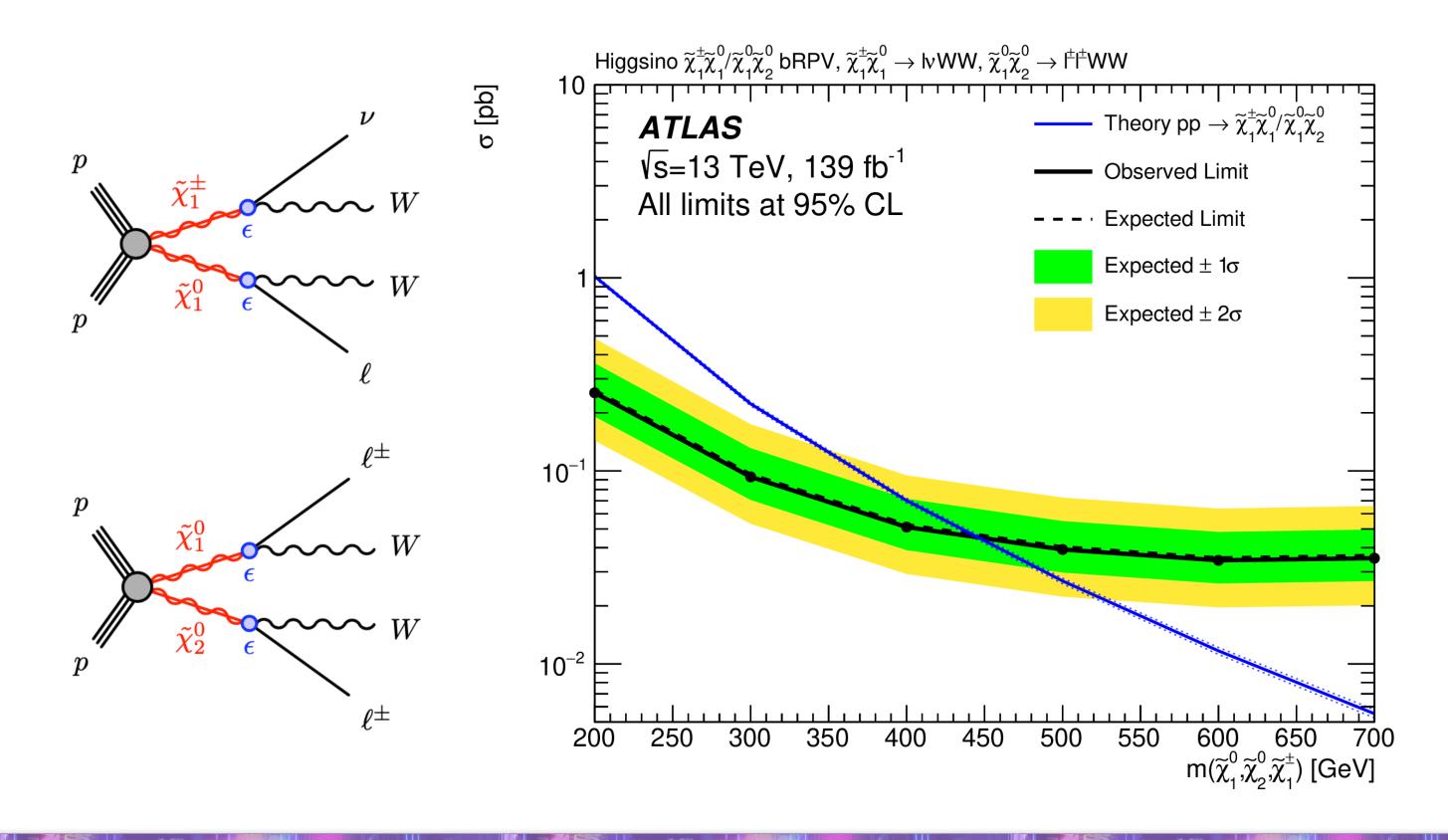
- No significant excess over the SM expectation
 - due to the overlap among these regions with 3 data events in common.
 - 2.3 σ deviation found in SRSSSlep-L due to large statistical fluctuation
 - Observed data and background expectation are in agreement in remaining SRs


• An overall excess with less than 2σ in SRSSWZ-ML, SRSSWZ- MH, and SRSSWZ-H,



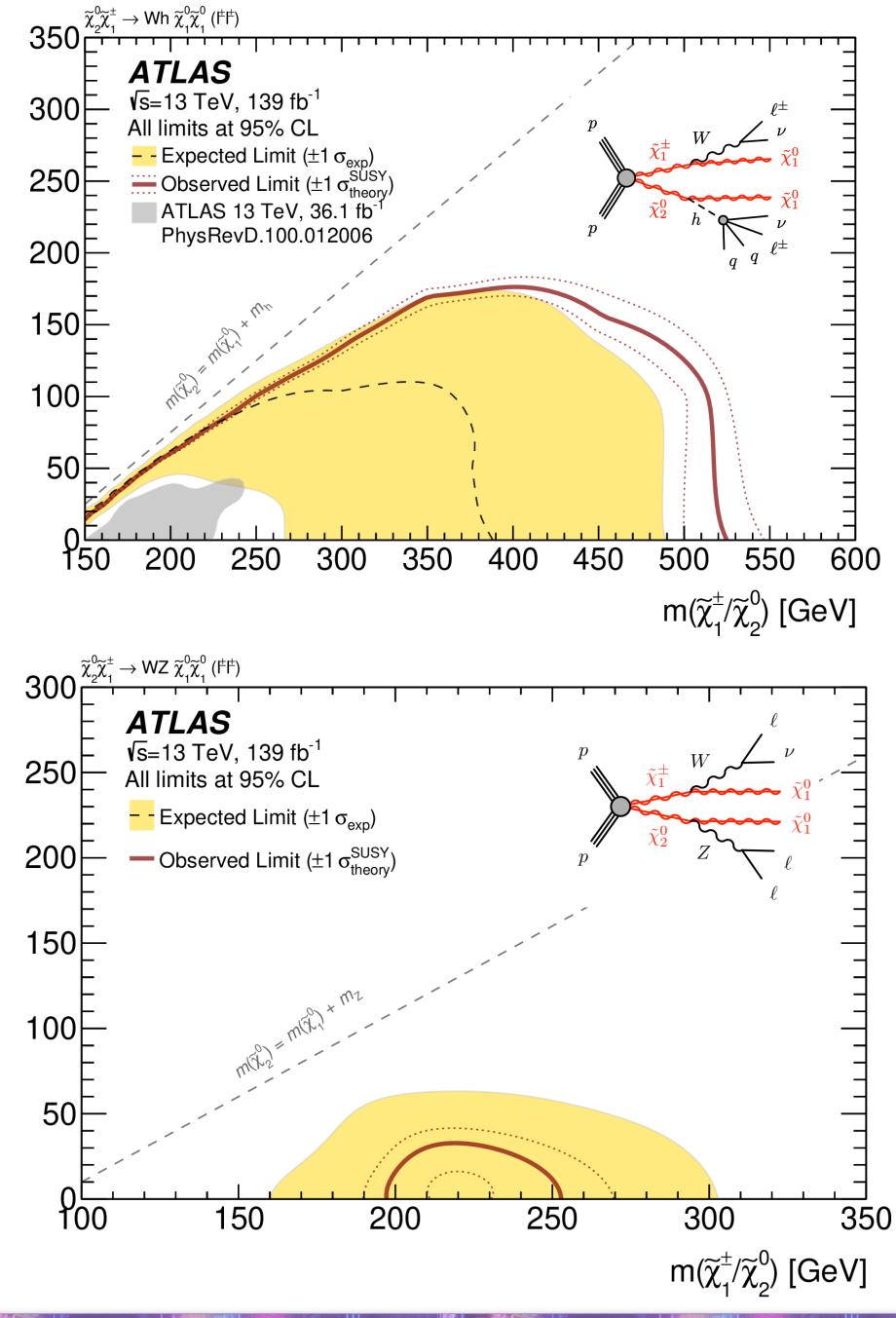
Distributions in signal regions with mild deviation • 2.1 σ deficit in Wh SR and 2.3 σ excess in SSSIep SR

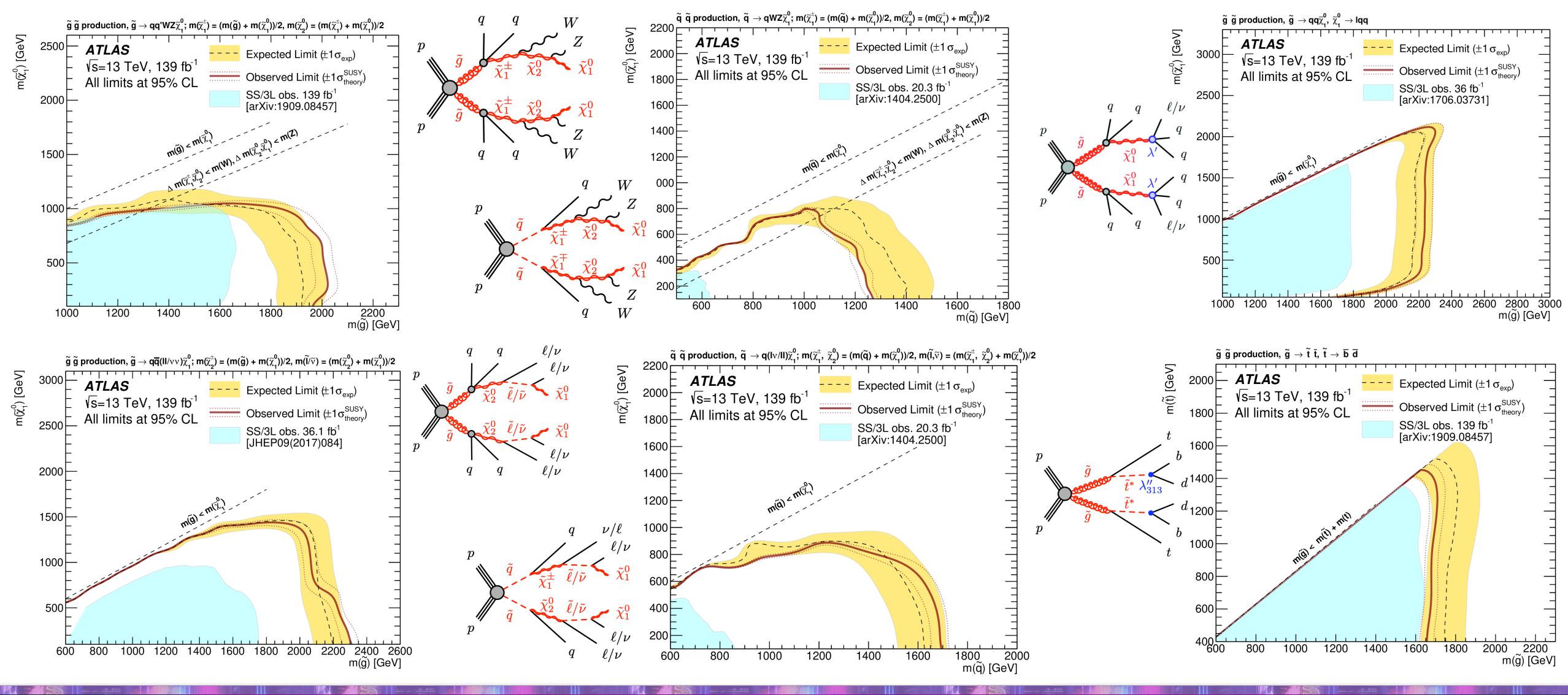
- Dominate by statistical fluctuations in most of bins



- significant contribution

Interpretation: EW SS/3L


- Next-to-LSP masses of up to 525 GeV have been excluded for a massless LSP in wino Wh model
- In the natural bRPV model, mass-degenerate Higgsinos lighter than 440 GeV have been excluded


 $n(\widetilde{\chi}_1^0)$ [GeV]

 $m(\widetilde{\chi}_{1}^{0})$ [GeV]

SYSU-PKU Collider Physics Forum for Young Scientists

Interpretation: strong SS/3L Gluinos (squarks) masses excluded up to 2.3 (1.7) TeV with a massless LSP

Shuhui Huang

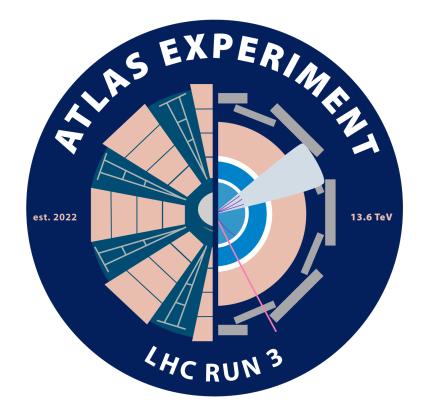
SYSU-PKU Collider Physics Forum for Young Scientists

	L upp	ber	limits	s or	n the vi	nt uppe sible cross se			e number	of signa	al ever
EW	Ot	72									Stro
Signal region	$\langle \epsilon \sigma \rangle_{ m obs}^{95}$ [fb]	$S_{\rm obs}^{95}$	S_{exp}^{95}	CL _b	$p_0\left(Z ight)$	SR	$\sigma_{ m vis}$ [fb]	S ⁹⁵ _{obs}	S ⁹⁵ _{exp}	CL _b	p(s =
$SR_{high-m_{T2}}^{Wh}$ $SR_{high-m_{T2}}^{Wh}-1-ee$	0.28	39.3	$33.9^{+14.3}_{-10.0}$	0.66	0.34 (0.41)	SRGGWZ-L	0.06		5 2+2.2	0.01	
$SR_{high-m_{T2}}^{Wh}$ -1-ee	0.13	17.4	$9.9^{+4.4}_{-2.8}$	0.94	0.04 (1.72)	SRGGWZ-L SRGGWZ-M	0.06 0.03	8.1 4.5	$5.2^{+2.2}_{-1.1}$ 5.2 ^{+2.1}	0.91 0.32	0.05 0.50
$SR_{high-m_{T2}}^{Wh}$ -1- $e\mu$		23.6	$12.9^{+5.6}_{-3.6}$	0.96	× /	SRGGWZ-WI SRGGWZ-H	0.03	4. <i>3</i> 3.9	$5.2^{+2.1}_{-1.3}$ $5.0^{+2.0}_{-1.4}$	0.32	0.50
$\operatorname{SR}_{\operatorname{high}-m_{T2}}^{wn}$ -1- $\mu\mu$		13.0	$12.6^{+5.4}_{-3.6}$	0.55	、 <i>,</i>	SRSGWZ-II SRSSWZ-L	0.03	5.7	$6.1^{+2.3}_{-1.6}$	0.23	0.50
$SR_{high-m_{T2}}^{Wh}$ -2-ee	0.06	7.8	$7.2^{+3.1}_{-2.2}$	0.63	、 <i>,</i>	SRSSWZ-ML	0.07	10.4	$6.5^{+2.3}_{-1.5}$	0.94	0.02
$SR_{high-m_{T2}}^{Wh}$ -2- $e\mu$		6.8	$9.5^{+4.0}_{-2.7}$	0.16	× /	SRSSWZ-MH	0.06	8.6	$5.3^{+2.0}_{-1.4}$	0.93	0.04
$SR_{high-m_{T2}}^{Wh} - 2 - \mu\mu$		9.6	$7.7^{+0.6}_{-0.2}$	0.64	× /	SRSSWZ-H	0.06	8.6	$5.4^{+2.5}_{-1.1}$	0.91	0.09
$SR_{high-m_{T2}}^{Wh} - 3 - ee$	0.05	6.9	$6.1^{+3.0}_{-1.6}$	0.61		SRGGSlep-L	0.03	4.0	$4.7^{+2.0}_{-1.1}$	0.33	0.50
$SR_{high-m_{T2}}^{Wh} - 3 - e\mu$	0.03	4.8	$6.1^{+3.0}_{-1.6}$	0.24	× /	SRGGSlep-M	0.04	6.2	$5.8^{+2.2}_{-1.7}$	0.60	0.43
$SR_{high-m_{T2}}^{Wh}-3-\mu\mu$		4.3	$6.9^{+3.0}_{-2.0}$	0.06	×	SRGGSlep-H	0.02	3.0	$4.7^{+2.0}_{-1.1}$	0.00	0.35
$SR_{low-m_{T2}}^{Wh}$	0.24 0.12	33.0 16.2	$29.5^{+11.7}_{-8.8}$ $12.6^{+5.4}_{-3.6}$	0.63 0.76	、 <i>,</i>	SRSSSlep-L	0.08	11.7	$5.6^{+2.4}_{-1.3}$	0.99	0.01
$SR_{low-m_{T2}}^{Wh} - ee$ $SR_{low-m_{T2}}^{Wh} - e\mu$	0.12	10.2	$12.0_{-3.6}$ $17.6_{-5.1}^{+7.4}$	0.70	``´´	SRSSSlep-ML	0.03	4.8	$5.1^{+2.2}_{-1.3}$	0.43	0.50
$SR_{low-m_{T2}}^{}-e\mu$ $SR_{low-m_{T2}}^{Wh}-\mu\mu$	0.14	19.9	$17.0_{-5.1}$ $17.0_{-4.9}^{+7.0}$	0.59	``´´´	SRSSSlep-MH	0.06	7.9	$5.4^{+2.3}_{-1.4}$	0.85	0.15
$\frac{SR_{low-m_{T2}}}{SR_{high-m_{T2}}}\mu\mu$	0.13	18.7	$24.4^{+6.8}_{-5.0}$	0.12	、 <i>、 、</i>	SRSSSlep-H	0.02	3.0	$3.5^{+1.3}_{-0.5}$	0.04	0.36
$SR_{high-m_{T2}}^{high-m_{T2}}$ -1	0.01	1.7	$3.6^{+1.3}_{-0.6}$	0.02	× ,	SRSSSlep-H (loose)	0.07	9.9	$8.1^{+3.3}_{-2.0}$	0.70	0.32
$SR_{high-m_{T2}}^{high-m_{T2}} - 2$	0.05	7.4	$8.3^{+3.2}_{-2.2}$	0.34	×	SRLQD	0.05	7.3	$5.3^{+2.3}_{-1.2}$	0.82	0.21
$\frac{SR_{high-m_{T2}}^{WZ}}{SR_{high-m_{T2}}^{WZ}}-3$	0.04	5.2	$7.3^{+2.7}_{-1.8}$	0.11	×	SRUDD-1b	0.05	6.6	$5.1^{+2.3}_{-1.1}$	0.77	0.21
$SR_{high-m_{T2}}^{high-m_{T2}}$ $SR_{low-m_{T2}}^{WZ}$	0.04	5.9	$4.4^{+1.8}_{-0.8}$	0.81	0.22 (0.76)	SRUDD-2b	0.05	6.4	$5.2^{+2.4}_{-1.1}$	0.69	0.26
$SR_{2\ell-SS}^{bRPV}$	0.16	22.6	$25.8^{+7.9}_{-5.8}$	0.29	· · · ·	SRUDD-ge2b	0.04	5.8	$6.1^{+2.4}_{-1.4}$	0.44	0.50
$SR_{3\ell}^{2\ell-55}$	0.44	61.4	$93.0^{+56.0}_{-20.3}$	0.02	· · ·	SRUDD-ge3b	0.05	6.8	$6.1^{+2.4}_{-1.7}$	0.62	0.40

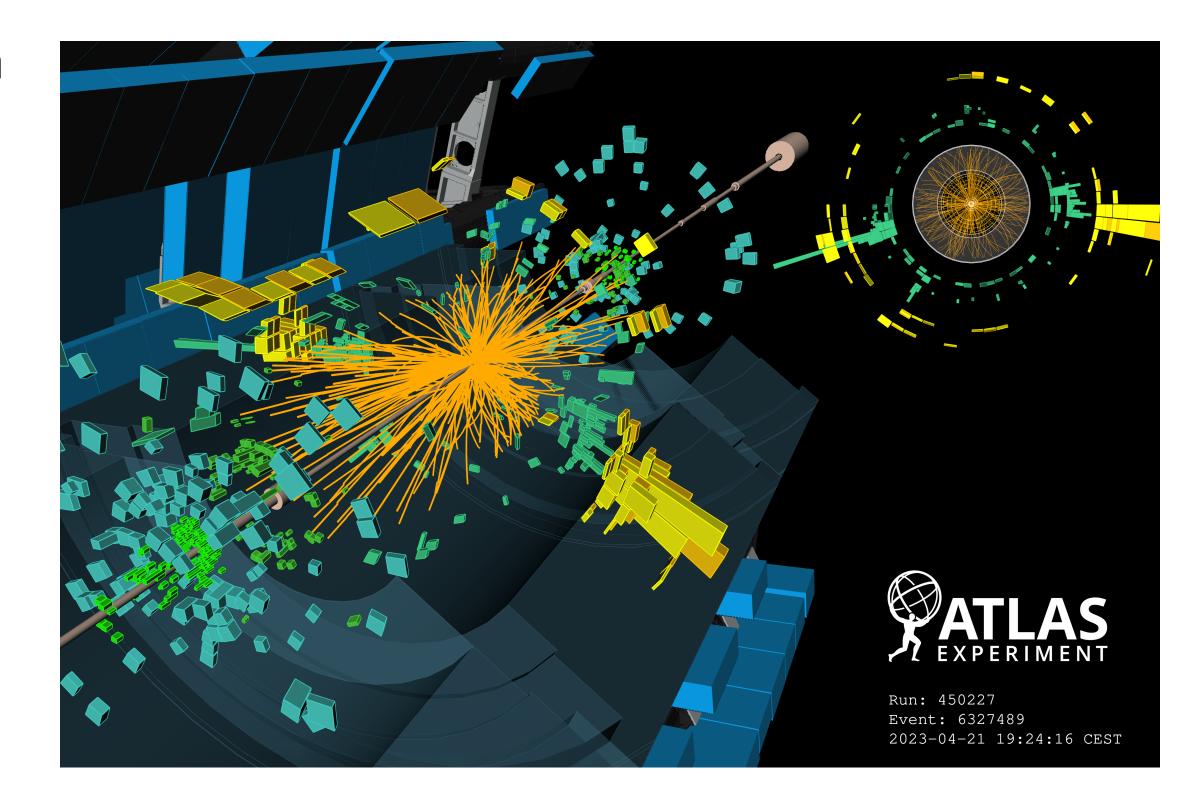
$SR_{high-m_{T2}}^{Wh}$ -2-ee	0.06	7.8	$7.2^{+3.1}_{-2.2}$	0.63	0.36 (0.36)
$\mathrm{SR}^{Wh}_{\mathrm{high}-m_{\mathrm{T2}}}$ -2- $e\mu$	0.05	6.8	$9.5^{+4.0}_{-2.7}$	0.16	0.50 (0.00)
$\mathrm{SR}_{\mathrm{high}-m_{\mathrm{T2}}}^{Wh}$ -2- $\mu\mu$	0.07	9.6	$7.7^{+0.6}_{-0.2}$	0.64	0.50 (0.00)
$SR_{high-m_{T2}}^{Wh}$ -3-ee	0.05	6.9	$6.1^{+3.0}_{-1.6}$	0.61	0.37 (0.33)
$\mathrm{SR}^{Wh}_{\mathrm{high}-m_{\mathrm{T2}}}$ -3- $e\mu$	0.03	4.8	$6.1^{+3.0}_{-1.6}$	0.24	0.50 (0.00)
$SR_{high-m_{T2}}^{Wh}$ -3- $\mu\mu$	0.03	4.3	$6.9^{+3.0}_{-2.0}$	0.06	0.50 (0.00)
$SR_{low-m_{T2}}^{Wh}$	0.24	33.0	$29.5^{+11.7}_{-8.8}$	0.63	0.33 (0.43)
$SR^{Wh}_{low-m_{T2}}$ -ee	0.12	16.2	$12.6^{+5.4}_{-3.6}$	0.76	0.23 (0.76)
$\mathrm{SR}^{Wh}_{\mathrm{low-}m_{\mathrm{T2}}}$ - $e\mu$	0.14	19.9	$17.6^{+7.4}_{-5.1}$	0.63	0.36 (0.35)
$SR_{low-m_{T2}}^{W n}$ - $\mu\mu$	0.13	18.2	$17.0^{+7.0}_{-4.9}$	0.59	0.41 (0.22)
$\mathrm{SR}^{WZ}_{\mathrm{high}-m_{\mathrm{T2}}}$	0.13	18.7	$24.4_{-5.0}^{+6.8}$	0.12	0.50 (0.00)
$SR_{high-m_{T2}}^{WZ}$ -1	0.01	1.7	$3.6^{+1.3}_{-0.6}$	0.02	0.45 (0.12)
$SR_{high-m_{T2}}^{WZ}$ -2	0.05	7.4	$8.3^{+3.2}_{-2.2}$	0.34	0.50 (0.00)
$SR_{high-m_{T2}}^{WZ}$ -3	0.04	5.2	$7.3^{+2.7}_{-1.8}$	0.11	0.50 (0.00)
$\mathrm{SR}^{WZ}_{\mathrm{low-}m_{\mathrm{T2}}}$	0.04	5.9	$4.4^{+1.8}_{-0.8}$	0.81	0.22 (0.76)
$\mathrm{SR}^{\mathrm{bRPV}}_{2\ell}$ -SS	0.16	22.6	$25.8^{+7.9}_{-5.8}$	0.29	0.50 (0.00)
$\mathrm{SR}^{\mathrm{bRPV}}_{3\ell}$	0.44	61.4	$93.0^{+56.0}_{-20.3}$	0.02	0.50 (0.00)

Shuhui Huang

ents



17/18


Summary

- three leptons signature using full Run 2 data collected by ATLAS
 - EW SS/3L: <u>arXiv:2305.09322</u>
 - Strong SS/3L: <u>arXiv:2307.01094</u>
- No significant excess observed over the SM prediction
- Significant improvement on the constraints of $m(\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0)$ and $m(\tilde{g}/\tilde{q})$ in context of different R-parity conserving and R-parity violating SUSY scenarios
- Look forward to Run 3 results! Stay tuned!

• Search for TeV-scale direction production of $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ and \tilde{g}/\tilde{q} with two same-sign leptons or at least

SYSU-PKU Collider Physics Forum for Young Scientists

Shuhui Huang

Backup

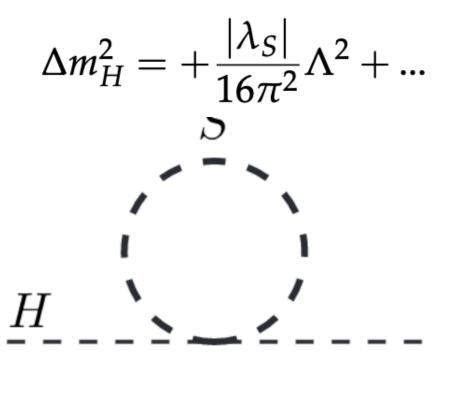
The hierarchy problem

- corrections
- an unnatural fine-tuning on the bare mass term, in order to keep its mass at 125 GeV.
- problem.
- opposite-sign contributions to the loop correction. Loop correction from a SM fermion

$$\Delta m_{\rm H}^2 = -\frac{|\lambda_f|^2}{8\pi^2}\Lambda^2 + \dots$$

$$m_{\rm H}^2 = m_{\rm H(bare)}^2 + \Delta m_{\rm H}^2$$

$$H_{\rm Herror}$$


• The Higgs squared masses calculation in SM includes the coupling terms of other massive SM particles as loop

• If assume the validity of SM at Planck scale, the Higgs boson, observed with a mass of 125 GeV, has to receive

• The huge hierarchy between Higgs mass scale (10^2 GeV) and Planck scale (10^{19} GeV), is known as the hierarchy

• SUSY can provide a natural solution to the hierarchy problem by introducing extra scalar fields which give

Loop correction from a scalar field

 $|\mathbf{f} |\lambda_S| = |\lambda_f|^2$ natural cancellation on the quadratic terms!

MSSM

	Names	Spin	Interaction	Mass	Names	Spin	Interaction	Mass		
	INAILLES	Spin	eigenstates	eigenstates	INAILLES	Spin	eigenstates	eigenstates		
Quark Sector:	Quarks	1	$\begin{pmatrix} u_L \\ d_L \end{pmatrix}$, u_L	n dn	Squarks	0	(\tilde{u}_L)	, \tilde{u}_R , \tilde{d}_R		
Q, \bar{u}, \bar{d}	(× 3 generations)	$\frac{1}{2}$	$(d_L)'^{u}$	R, ^u R	(× 3 generations)	0	$\langle \tilde{d}_L \rangle$, <i>u_R</i> , <i>u_R</i>		
Lepton Sector:	Leptons	1	$\left(\nu_{L}\right)$	<i>Q</i> _D	Sleptons	0	ĺ	$L \left(\tilde{e}_{\mathbf{p}} \right)$		
L,ē	(× 3 generations)	$\frac{1}{2}$	$\begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$,	e _R	(× 3 generations)	0	$\begin{pmatrix} \tilde{\nu}_L \\ \tilde{e}_L \end{pmatrix}$, \tilde{e}_R			
Higgs Sector:	Higgs bosons	0	$\begin{pmatrix} H_u^+ \\ H_u^0 \end{pmatrix}, \begin{pmatrix} H_d^0 \\ H_d^- \end{pmatrix}$	$h^0, H^0, A^0,$	Higgsinos	1	$\begin{pmatrix} \tilde{H}_u^+ \\ \tilde{H}_u^0 \end{pmatrix}$, $\begin{pmatrix} \tilde{H}_d^0 \\ \tilde{H}_d^- \end{pmatrix}$	Neutralinos:		
H_u, H_d	111883 0030113		$\left(H_{u}^{0} \right)^{\prime} \left(H_{d}^{-} \right)$	H^{\pm}	11128511105	$\frac{1}{2}$	$\begin{pmatrix} u \\ \tilde{H}_u^0 \end{pmatrix}' \begin{pmatrix} u \\ \tilde{H}_d^- \end{pmatrix}$	$ ilde{\chi}^0_1, ilde{\chi}^0_2, ilde{\chi}^0_3, ilde{\chi}^0_4$		
Gauge Sector	Gauge bosons	1	W^{\pm}, W^0, B	W^{\pm}, Z^0, γ	Gauginos	<u>1</u>	$ ilde W^\pm, ilde W^0, ilde B$	Charginos: $ ilde{\chi}_1^\pm, ilde{\chi}_2^\pm$		
	Gauge Dosons		Gluor	n g	Gaugiios	¹ / ₂	Glı	uinos ĝ		

The superpotential of MSSM (analogue to SM Lagrangian)

 $W_{MSSM} = \bar{u}y_u QH_u - \bar{d}y_d QH_d - \bar{e}y_e LH_d + \mu H_u H_d$ R $W_{\Delta L=1} = \frac{1}{2}\lambda^{ijk}L_i L_j \bar{e}_k + \lambda'^{ijk}L_i Q_j \bar{d}_k + \mu'^i L_i H_u$ Some references: [1] I. J. R. Aitchison. "Supersymmetry and the MSSM: An Elementary introduction".arXiv: <u>hep-ph/0505105</u> [2] S. P. Matrin. "A Supersymmetry Primer" arXiv:hep-ph/9709356 $W_{\Delta B=1} = \frac{1}{2} \lambda^{\prime\prime i j k} \bar{u}_i \bar{d}_j \bar{d}_k$

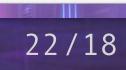
• The minimal realization of supersymmetry with the same gauge group $SU(3)_C \times SU(2)_L \times U(1)_Y$ as in SM

$$R = (-1)^{3(B-L)+2S}$$

Special variables used in SUSY search

- Significance of $E_{\rm T}^{\rm miss}$
 - events lacking a genuine source of $E_{\rm T}^{\rm miss}$

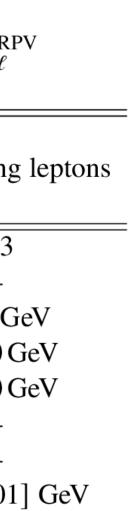
$$\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}}) = rac{|E_{\mathrm{T}}^{\mathrm{miss}}|^2}{\sigma_L^2 (1 - \rho_{LT}^2)} \qquad \begin{array}{l} \sigma_L : \mathrm{tota} \\ \sigma_{LT}^2 : \mathrm{condermal} \end{array}$$


- scenarios
- m_{T2} 'stransverse mass'
 - An event variable used to bound the masses of an unseen pair of particle

• To quantify the robustness of the E_{T}^{miss} values against object mis-measurement in

al longitudinal resolution relative to the direction of \vec{p}_{T}^{miss} . rrelation factor between total longitudinal and transverse relative resolution.

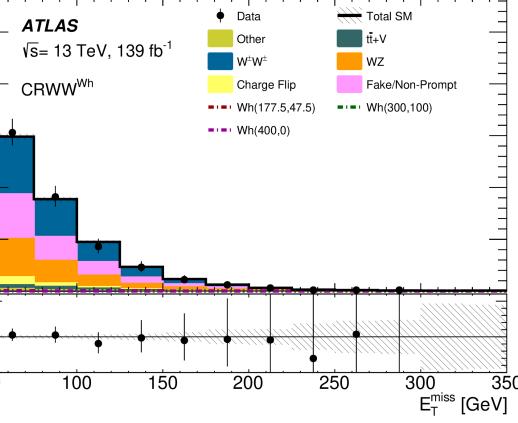
• Large $S(E_T^{\text{miss}})$ value indicates a real source of E_T^{miss} , e.g. the (invisible) LSP in RPC

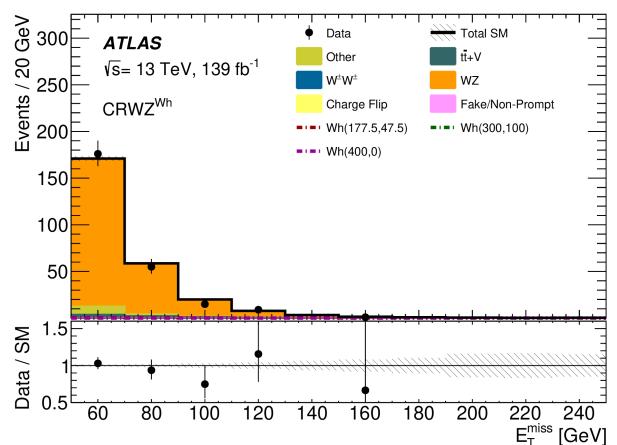

$m_{\rm T2} = \min_{\mathbf{q}_{\rm T}} \left| \max \left(m_{\rm T,\ell_1}(\mathbf{p}_{\rm T,\ell_1},\mathbf{q}_{\rm T}), m_{\rm T,\ell_2}(\mathbf{p}_{\rm T,\ell_2},\mathbf{p}_{\rm T}^{\rm miss} - \mathbf{q}_{\rm T}) \right) \right|,$

SRs definitions in EW SS/3L

	$SR^{Wh}_{high-m_{T2}}$	$SR^{Wh}_{low-m_{T2}}$		$SR_{high-m_{T2}}^{WZ}$	$SR^{WZ}_{low-m_{T2}}$		$SR_{2\ell-SS}^{bRPV}$	$\mathrm{SR}^{\mathrm{bRPV}}_{3\ell}$
$N_{\rm BL}(\ell)$	$\begin{vmatrix} e^{\pm}e^{\pm} & e^{\pm}\mu^{\pm} \\ e^{\pm}\mu^{\pm} & \mu^{\pm}\mu^{\pm} \\ = 2 \\ e^{\pm}\mu^{\pm}\mu^{\pm} \\ e^{\pm}\mu^{\pm}\mu^{\pm}\mu^{\pm} \\ e^{\pm}\mu^{\pm}\mu^{\pm}\mu^{\pm}\mu^{\pm}\mu^{\pm}\mu^{\pm}\mu^{\pm}\mu$	$e^{\pm}e^{\pm} \mid e^{\pm}\mu^{\pm} \mid \mu^{\pm}\mu^{\pm}$	$\frac{N_{\rm BL}(\ell)}{N_{\rm Sig}(\ell)}$ Charge(ℓ)	= 2 $= 2$ same-sign		$N_{\rm BL}(\ell)$ $p_{\rm T}(\ell)$ $n_{\rm jets} (p_{\rm T} > 25 {\rm GeV})$	$\geq 20 \text{GeV}$ for	$\frac{-}{1}$ r (sub)leading $\frac{1}{2}$
$N_{\text{Sig}}(\ell)$ Charge(ℓ) $p_{\text{T}}(\ell)$ $n_{\text{jets}} (p_{\text{T}} > 25 \text{ GeV})$	$= 2$ same-si $\ge 25 \text{ G}$ ≥ 1	•	$p_{T}(\ell)$ $n_{jets} (p_{T} > 25 \text{ GeV})$ n_{b-jets} m_{jj}	$\geq 25 \text{ GeV}$ ≥ 1 $= 0$ $\leq 350 \text{ GeV}$		$N_{Sig}(\ell)$ Charge(ℓ) m_{T2} E_{T}^{miss}	= 2 same-sign $\geq 60 \text{ GeV}$ $\geq 100 \text{ GeV}$	$= 3$ $= 80 \text{ Ge}$ $\geq 120 \text{ Ge}$
$\frac{n_{b-jets}}{m_{jj}}$ $\frac{m_{T2}}{m_{T2}}$	$= 0$ $< 350 \text{ C}$ $\geq 80 \text{ GeV}$	eV < 80 GeV	$\frac{m_{\rm T2}}{m_{\rm T}^{\rm min}}$ $E_{\rm T}^{\rm miss}$	$ \ge 100 \text{ GeV} \\ \ge 100 \text{ GeV} \\ \ge 100 \text{ GeV} \\ \ge 100 \text{ GeV} $	 ≤ 100 GeV ≥ 130 GeV ≥ 140 GeV 	m_{eff} $n_{b\text{-jets}}$ $n_{\text{jets}} (p_{\text{T}} > 40 \text{ GeV})$	_ = 0 ≥ 4	≥ 350 Ge
$m_{\rm T}^{\rm min}$ $\mathcal{S}(E_{\rm T}^{ m miss})$ $E_{\rm T}^{ m miss}$	≥ 7 $\ge 75 \text{GeV}$	$\geq 100 \text{GeV}$ ≥ 6 $\geq 50 \text{GeV}$	$\frac{m_{\text{eff}}}{\Delta R(\ell^{\pm}, \ell^{\pm})}$	$\begin{array}{c c} & - \\ & - \\ \hline & \\ & \mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}}): \in [0, 10) \end{array}$	$ \leq 600 \text{ GeV} \\ \leq 3 $	$m_{e^{\pm}e^{\mp}}, m_{\mu^{\pm}\mu^{\mp}}$	_	∉ [81,101]
• •	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Bins	$\begin{aligned} & \text{Spread}(\Phi) \geq 2.2 \\ & \mathcal{S}(E_{\text{T}}^{\text{miss}}): \in [10, 13) \\ & \mathcal{S}(E_{\text{T}}^{\text{miss}}): \in [13, +\infty] \\ & \Delta R(\ell^{\pm}, \ell^{\pm}) \geq 1 \end{aligned}$				

^a The $E_{\rm T}^{\rm miss}$ binning applies separately to each flavour channel of SR^{Wh}_{high-m_{T2}}.




CRs/VRs definitions in EW SS/3L

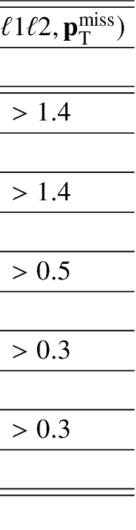
			1								
	CRWZ ^{Wh}	VRWZ ^{Wh}	CRWW ^{W h}	VRWW	JW h		$CRWZ_{2j}^{WZ,(b)RPV}$	$VRWZ_{4j}^{WZ,(b)RPV}$	VR $WZ_{5j}^{WZ,(b)RPV}$	$VRt\bar{t}V^{WZ,(b)RPV}$	
$=$ $N_{\rm BL}($	$(\ell) =$: 3		= 2		$N_{\rm BL}(\ell)$		= 3		≥ 2	
$N_{\rm Sig}($		-	= 2	_		$N_{\rm Sig}(\ell)$		= 3		≥ 2	
Charge			same-sign			Charge(ℓ)		_		same-sign	
$p_{\rm T}(\ell$			$\geq 25 \text{GeV}$			$p_{\mathrm{T}}(\ell)$	$p_{\rm T} > 20 {\rm G}$	eV for (sub)leading	leptons	$p_{\rm T} > 30 {\rm GeV}$ for SS pair	leptons
			= 0			n_{b-jets}		= 0	1	≥ 1	1
$n_{b ext{-je}} \ E_{ ext{T}}^{ ext{mis}}$	ss		$\geq 50 \mathrm{GeV}$			$n_{\text{jets}} (p_{\text{T}} \ge 25 \text{GeV})$	≥ 2	≥ 4	≥ 5	\geq 3 with $p_{\rm T}$ > 40 Ge	eV
		• 1		≥ 2			$50 < E_{\rm T}^{\rm miss} < 150 {\rm GeV}$		ss < 250 GeV		
${n_{ m jets}} \ {\cal S}(E_{ m T}^{ m m})$		≥ 6	< 6	≥ 2 ≥ 6			$m_{\rm eff} < 1 {\rm TeV}$	1	< 1.5 TeV	_	
$\underline{O(L_{\rm T})}$		$\frac{2}{6} < 105 \text{GeV}$		<u> </u>			$81 < m_{\rm SFOS} < 101 {\rm GeV}$		os < 101 GeV	_	
				—		Other selections		_		$\Delta R(\ell_1, \text{jet})_{\min} > 1.1$.1
Other		0,100]GeV		$\sim 250 \text{CeV}$				_		$\sum p_{\mathrm{T}}^{b\text{-jet}} / \sum p_{\mathrm{T}}^{\mathrm{jet}} > 0.$	
Other		_		$j \ge 350 \text{GeV}$	and in a lata			_		$E_{\rm T}^{\rm miss}/m_{\rm eff} > 0.1$	
	-	_	$p_{\rm T}(\text{jets}) \ge 75 \text{C}$		÷ •		explicit v	reto on SR ^{WZ} 8	$\approx SR_{low-m_{T2}}^{WZ} \& SR_{2\ell-SS}^{bRPV}$	& SR ^{bRPV} _{3ℓ} events	
		-	1	$-m_Z \ge 150$					$n_{b-\text{jets}} \ge 3$		
Purit	ty 90%	90%	45%	55%	0	Vetoing other pos-	ľ		$(p_{\rm T} > 50 {\rm GeV}), E_{\rm T}^{\rm miss}$	> 130 GeV	
						sible BSM events	ŗ	$n_{b-\text{jets}} = 0, n_{\text{jets}} \ge 3$ ($(p_{\rm T} > 50 {\rm GeV}), E_{\rm T}^{\rm miss}$	> 130 GeV	
									$n_{\text{jets}} \ge 5 (p_{\text{T}} > 50 \text{GeV})$		
	$CRFF_e$	$CRFF_{\mu}$	VRFNF	$\mathbf{D}Wh$	VR <i>CF^{Wh}</i>	Purity	85%	84%	77%	62%	
	+ +	+ +	+ + +		+ +	> F****				<u></u>	
	$e^{\pm}e^{\pm}$	$\mu^{\pm}\mu^{\pm}$	$e^{\pm}e^{\pm}$ e^{\pm}	$\mu^{\pm} \mu^{\pm} \mu^{\pm}$	$e^{\pm}e^{\pm}$				300 ATLAS	🔶 Data 💛 Total S	SM
$N_{\rm BL}(\ell)$			= 2			ເຊິ່ √s= 13 TeV, 139 fb	p^{-1} $w^{\pm}w^{\pm}$ wz		2	b ⁻¹ Other tt+V	
Charge (ℓ)			same-sign					on-Prompt – v	230 $=$ CRWZ ^{Wh}		Non-Prompt
$N_{\rm Sig}(\ell)$	= 1			= 2			Wh(177.5,47.5) Wh(300 Wh(400,0)	0,100) – ů	200	•••• Wh(177.5,47.5) •••• Wh(30)0,100)
$p_{\mathrm{T}}(\ell)$			$\geq 25 \text{GeV}$						150	- · - · Wh(400,0)	
n _{jets}			≥ 1			100					
n _{b-jets}	_	= 1		= 0					100		
$E_{\rm T}^{\rm miss}$	∈ [30, 50) GeV	< 50 GeV		$\geq 50 \text{GeV}$		50			50		
$\frac{1}{m_{\ell^{\pm}\ell^{\pm}} - m_Z}$	$\geq 15 \text{GeV}$	_	$\geq 15 \text{GeV}$		< 15 GeV						
$\frac{m_{ij}}{m_{jj}}$				< 350 GeV		≥ 1.5 0 =			₅ 1.5⊢		·÷·÷·
$m_{\rm T2}$	_			< 80 GeV			<u> </u>	///////////////////////////////////////			
$m_{\rm T}^{\rm min}$	_			< 100 GeV			50 200 250	300 350 C		Ⅰ	
$\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$	_			< 5				E ^{miss} [GeV]	60 80 100	120 140 160 180 200	220 24
				 V 							E ^{miss} [Ge

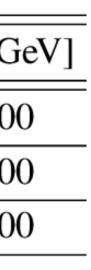
Shuhui Huang

SYSU-PKU Collider Physics Forum for Young Scientists

SRs definitions in strong SS/3L

	_						_	_										
SR name	$n_{\mathrm{Sig}}(\ell)$	$(n_{\rm BL}(\ell))$	$ n_{b-jet} $	$n_{\rm jets}$	$p_{\rm T}^{\rm jet}$ [GeV]	$E_{\rm T}^{\rm miss}$ [GeV]	$m_{\rm eff}$ [GeV]	$\Delta \phi(\ell 1 \ell 2, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}})$	$\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$	SR name	$n_{\mathrm{Sig}}(\ell)$	p_{T}^{ℓ} [GeV]	n _{b-jets}	n _{jets}	$p_{\rm T}^{\rm jet}$ [GeV]	$E_{\rm T}^{\rm miss}$ [GeV]	$m_{\rm eff}$ [GeV]	$\Delta \phi(\ell 1 \ell$
SRGGWZ-L	≥ 2 ((≥ 3)		≥ 6	> 25	> 200	$> 8 \times \sum p_{\mathrm{T}}^{\ell}$	> 0.2	> 6						other requ	irements		-
SRGGWZ-M	≥ 2	2 (-)	= 0	≥ 6	> 40	> 190	> 1300	> 0.8	_	SRSSSlep-L	= 3*	< 60	= 0	≥ 3	> 60, 60, 25	> 100	> 600	>
SRGGWZ-H	≥ 2	2 (-)		≥ 6	> 40	> 150	> 2100	_	_	5K555lep-L					$\sum p_{\mathrm{T}}^{\ell} / \sum p$	$T_{\rm T}^{\rm jet} < 0.6$	·	-
										SRSSSlep-ML	= 3*	> 30	= 0	≥ 3	> 60, 60, 25	> 100	> 700	>
													E	$\frac{T^{\text{miss}}}{T}/\Sigma$	$p_{\rm T}^{\ell} > 0.7,$	$\sum p_{\rm T}^{\ell} / \sum p_{\rm T}^{\rm jet}$	< 0.6	
SR name	$n_{\rm Sig}(\ell)$	n _{b-jets}	n _{jets} p	^{jet} [GeV	V] $E_{\rm T}^{\rm miss}$ [G	$eV] m_{eff} [Ge$	$eV] E_T^{miss} / \Sigma$	$p_{\rm T}^{\ell} \sum p_{\rm T}^{\ell} / \sum p_{\rm T}^{\rm jet}$	$n_{Z \to \ell^+ \ell^-}$	SRSSSlep-MH	= 3*	> 40	= 0	≥ 2	> 60	> 200	> 1000	>
SRSSWZ-L			≥ 4	> 25	> 0.2 ×			< 0.2	$=0^{\dagger}$				E	$\frac{\Sigma_{\rm T}^{\rm miss}}{2}$	$\sum p_{\mathrm{T}}^{\ell} > 0.7,$	$\Delta R(\ell 1, \ell 2)$ >	> 0.2	
SRSSWZ-ML		-	<u>≥ 6</u>	> 25	> 15	•) > 1.2		$\geq 1^{\dagger}$	SRSSSlep-H	= 3*	> 40	= 0	≥ 2	> 60	> 200	> 2000	>
SRSSWZ-MH	- > 3	= 0	≥ 5	> 40	> 20				$\geq 1^{\dagger}$				_		$\Delta R(\ell 1, \ell 2)$	2) > 0.5		
SRSSWZ-H	-		≥ 5	> 40	> 25					SRSSSlep-H (loose)	= 3*	> 40	= 0	≥ 2	> 60	> 200	> 1000	>
							2 0.5								$\Delta R(\ell 1, \ell 2)$	2) > 0.5		
[†] : based on nu	imper of S	ъгоз ра	urs with	1 81 < 1	$n_{\rm SFOS} < 10$	IGev				*: additional baselin	e leptons	are not all	owed, n	or SFC	OS pairs with	$81 < m_{\rm SFOS}$	< 101 GeV	


								1										
SR name	$n_{\mathrm{Sig}}(\ell)$	$(n_{\rm BL}(\ell))$	n_{b-jet}	$n_{\rm jets}$	$p_{\rm T}^{\rm jet}$ [GeV]	$E_{\rm T}^{\rm miss}$ [GeV]	$m_{\rm eff}$ [GeV]	$\Delta \phi(\ell 1 \ell 2, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}})$	$\mathcal{S}(E_{\mathrm{T}}^{\mathrm{miss}})$	SR name	$n_{\mathrm{Sig}}(\ell)$	p_{T}^{ℓ} [GeV]	n _{b-jets}	n _{jets}	$p_{\rm T}^{\rm jet}$ [GeV]	$E_{\rm T}^{\rm miss}$ [GeV]	$m_{\rm eff}$ [GeV]	$\Delta \phi(\ell 1 \ell$
SRGGWZ-L	≥ 2 ((≥ 3)		≥ 6	> 25	> 200	$> 8 \times \sum p_{\mathrm{T}}^{\ell}$	> 0.2	> 6						other requi	irements		-
SRGGWZ-M	≥ 2	2 (-)	= 0	≥ 6	> 40	> 190	> 1300	> 0.8	_	SRSSSlep-L	= 3*	< 60	= 0	≥ 3	> 60, 60, 25	> 100	> 600	>
SRGGWZ-H	≥ 2	2 (-)		≥ 6	> 40	> 150	> 2100	_	_	SKSSSlep-L					$\sum p_{\mathrm{T}}^{\ell} / \sum p_{\mathrm{T}}$	$T_{\rm T}^{\rm jet} < 0.6$		-
										SRSSSlep-ML	= 3*	> 30	= 0		> 60, 60, 25	> 100	> 700	>
													E	$\frac{\text{miss}}{T}/\sum_{r}$	$p_{\rm T}^{\ell} > 0.7,$	$\sum p_{\rm T}^{\ell} / \sum p_{\rm T}^{\rm jet}$	< 0.6	
SR name	$n_{\rm Sig}(\ell)$	n _{b-jets}	n _{jets} p	^{jet} [GeV	$[E_{\rm T}^{\rm miss}] = E_{\rm T}^{\rm miss}$	$eV] m_{eff} [Ge$	$eV] E_{T}^{miss} / \Sigma$	$p_{\rm T}^{\ell} \sum p_{\rm T}^{\ell} / \sum p_{\rm T}^{\rm jet}$	$n_{Z \to \ell^+ \ell^-}$	SRSSSlep-MH	= 3*	> 40	= 0	≥ 2	> 60	> 200	> 1000	>
SRSSWZ-L			<u>≥</u> 4	> 25	$> 0.2 \times n$			< 0.2	$=0^{\dagger}$				E	$E_{\rm T}^{\rm miss}/\Sigma$	$p_{\rm T}^{\ell} > 0.7,$	$\Delta R(\ell 1, \ell 2) >$	> 0.2	
SRSSWZ-ML	-		≥ 6	> 25	> 150	•••			$\geq 1^{\dagger}$	SRSSSlep-H	= 3*	> 40	= 0	≥ 2	> 60	> 200	> 2000	>
SRSSWZ-ME	- > 3	= 0		> 23 > 40	> 100				≥ 1 $\geq 1^{\dagger}$	5K555lep-11					$\Delta R(\ell 1, \ell 2)$	(2) > 0.5	·	•
	_		≥ 5								= 3*	> 40	= 0	≥ 2	> 60	> 200	> 1000	>
SRSSWZ-H			≥ 5	> 40	> 250) > 0.3	< 0.7		SRSSSlep-H (loose)					$\Delta R(\ell 1, \ell 2)$	(2) > 0.5	1	
[†] : based on nu	mber of S	SFOS pa	irs with	n 81 <i>< 1</i>	$n_{\rm SFOS} < 101$	GeV				*: additional baseline	e leptons a	are not all	owed, no	or SFOS	S pairs with	$81 < m_{\rm SFOS}$ ·	< 101 GeV	


SR name	$n_{\text{Sig}}(\ell)$	n _{b-jets}	n _{jets}	$p_{\rm T}^{\rm jet}$ [GeV]	$E_{\rm T}^{\rm miss}$ [GeV]	$E_{\mathrm{T}}^{\mathrm{miss}}/\sum p_{\mathrm{T}}^{\mathrm{jet}}$	$p_{\rm T}^{\ell 2}$ [GeV]	Other
SRGGSlep-L					_	> 0.4	> 30	$E_{\rm T}^{\rm miss} / \sum p_{\rm T}^{\ell} > 1.4$
SRGGSlep-M	$\geq 3^{\dagger}$	= 0	≥ 4	≥ 40	> 150	> 0.3	> 70	$\Delta \phi(\ell 1 \ell 2, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}) > 0.7$
SRGGSlep-H					> 100	_	_	$\sum p_{\rm T}^{\rm jet} > 1200 {\rm GeV}$
[†] : SFOS pairs	with 81	< m _{SFO}	s < 10	01 GeV are r	not allowed			

SR name	$n_{\text{Sig}}(\ell)$	n _{b-jets}	n _{jets}	$p_{\rm T}^{\rm jet}$ [GeV]	$m_{\rm eff}$ [GeV]
SRLQD	= 2	_	≥ 5	> 50	> 2600

	SR name	$n_{\mathrm{Sig}}(\ell)$	n _{b-jets}	n _{jets}	$p_{\rm T}^{\rm jet}$ [GeV]	$m_{\rm eff}$ [GeV]	$\sum p_{\mathrm{T}}^{\mathrm{jet}}$ [G
	SRUDD-1b		= 1	≥6	> 50	_	> 1600
=	SRUDD-2b	= 2	= 2	≥ 2	> 25	_	> 1700
=	SRUDD-ge2b		≥ 2	≥ 5	> 50	_	> 1600
_	SRUDD-ge3b		≥ 3	≥4	> 50	> 1600	_

SYSU-PKU Collider Physics Forum for Young Scientists

CR/VRs definitions in strong SS/3L

	N ^{signal}	$N_{\rm b-jets}^{20{ m GeV}}$	$N_{ m jets}^{ m 25GeV}$	$E_{\rm T}^{\rm miss}$ [GeV]	$m_{\rm eff}$ [GeV]	$\sum p_T^{\text{lep}}$ [GeV]	Purity
CRWZ2j	3	0	2 or 3	[30, 150]	< 1500	> 130	> 85%
	Other cu	its: 81 < m	$s_{\rm SFOS} < 102$	1 GeV , $p_{\rm T} > 15$	5 GeV for two	same-sign leptons	> 05 /0

				iet		miga						
	$n_{\rm Sig}(\ell)$	n _{b-jets}	<i>n</i> _{jets}	1	$m_{\rm eff}$ [GeV]	$E_{\rm T}^{\rm miss}$ [GeV]						
			oth	er requireme	nts							
VRWZ4j	= 3*	= 0	≥ 4	> 25	[600, 1500]	[30, 250]						
V IX VV Z-+J	1	$\frac{E_{\rm T}^{\rm miss}}{m_{\rm e}}$	$f_{\rm ff} < 0.$	2, $81 < m_{\rm S}$	FOS < 101 GeV	I						
VRWZ6j	= 3*	= 0	≥ 6	> 25	[400, 1500]	[30, 250]						
V KVV ZOJ	E	$E_{\rm T}^{\rm miss}/m_{\rm eff} < 0.15, 81 < m_{\rm SFOS} < 101 {\rm GeV}$										
	≥ 2											
VRTTV	$p_{\rm T} > 30 \text{GeV}$ for the two leading- $p_{\rm T}$ same-sign leptons,											
	$\Delta R > 1.1$ between the leading- $p_{\rm T}$ lepton and any jet,											
	$\sum p_{\rm T}^{b - \rm jet} / \sum p_{\rm T}^{\rm jet} > 0.4, E_{\rm T}^{\rm miss} / m_{\rm eff} > 0.1$											
	≥ 2	≥ 1	≥ 6	> 40	< 1500	[30, 250]						
VRTTV1b6j	$p_{\rm T} > 3$	80 GeV f	or the t	wo leading-p	_T same-sign le	eptons,						
			$E_{\mathrm{T}}^{\mathrm{n}}$	$m^{\rm hiss}/m_{\rm eff} < 0.$	15							
VRTTW	$= 2^* (\mu^{\pm} \mu^{\pm})$	≥ 2	≥ 2	> 25	< 1500	[30, 250]						
	both le	eptons w	ith $p_{\rm T}$	> 25 GeV, or	ne with $p_{\rm T} > 4$	0 GeV						
VRTTW3	$= 2^* (e^{\pm} \mu^{\pm})$	≥ 2	≥ 3	> 25	< 1500	[30, 250]						
VRTTW3j		bot	th lepto	ons with $p_{\rm T}$ >	> 25 GeV							

*: additional baseline leptons are not allowed

Shuhui Huang

