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QCD Lagrangian

How does the spin-1/2 proton with 
mass 938 MeV/c2 arise?
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Context
• Visualizations are a powerful means to describe and understand 

complicated phenomena in physics, e.g. 
  - free body diagrams in Newtonian mechanics
  - field lines of Faraday in electricity and magnetism
  - Feynman diagrams in quantum field theory
• Physicists have developed the Standard Model which successfully 

explains the subatomic world.
• Current and planned large-scale facilities should provide a 

comprehensive set of measurements to inform our understanding 
of QCD.

• However, the quarks and gluons of QCD are not detectable and the 
important phenomena are emergent. 

• Can this subatomic world be visualized so that the non-expert can 
begin to appreciate its unique structure?
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Earth Rise from the Moon
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Apollo 8
August 1968



The Sun as viewed by neutrino 
detection deep underground
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Super-Kamiokande experiment in 4504 days of data taking
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Crab
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From the Hubble web page
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An Electron 
Microscope to 

Image the 
Proton
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Source of Photons
Electron accelerator

Spectrometer
Detector

Data
acquisition

Computer
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Imaging the Proton
• Scatter electron from the proton
• Exchange a virtual photon of mass 

Q2=-qμqμ
• 1/Q determines the spatial resolution 

(pixel size) probed
• W2 = Wμ Wμ = M2 + 2Mν – Q2 

Wμ

• Elastic scattering: W2 = M2 so Q2 = 2 Mν         Hofstadter
 electromagnetic structure of proton described by two form- 
      factors GE(Q2) and GM(Q2)

• High energy, deep inelastic scattering: W2 > 4, Q2 > 1
                                                                        Friedman, Kendall, Taylor
 quark structure of proton described by structure functions F2(x,Q2)   

qμ(ν;q)
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Proton Viewed in High Energy Electron 
Scattering: 1 Longitudinal Dimension

• Viewed from boosted frame,
      length contracted by

• Internal motion of the proton’s 
constituents is slowed down by 
time dilation – the instantaneous 
charge distribution of the proton is 
seen.

• In boosted frame x is understood 
as the longitudinal momentum 
fraction

     valence quarks: 0.1 < x < 1
     sea quarks: x < 0.1  

Lorentz Invariants
• E2

CM = (p+k)2

• Q2 = -(k-k’)2

• x = Q2/(2p�q)
J. Bjorken, SLAC-PUB-0571
March 1969
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Proton is smashed into pieces!
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Visualization 
• The camera is a device to capture an image on a desired medium, 

e.g. CCD or film.
• Movie cameras capture a series of individual images in time to 

give the illusion of having captured motion.
• Essential elements of any camera are
  - the focus which uses a lens to gather light from 
              a selected image => pixel size
  - the shutter which is a door that opens for a definite 
              time to allow selected light to reach the medium.
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High Energy Electron Scattering

x ≈ 10-4 
Probe non-linear dynamics

  short exposure time
 

x ≈ 0.3 
Probe valence quarks
long exposure time

Snapshots where 0 < x < 1 is the shutter exposure time

x ≈ 10-2 
Probe rad. dominated

medium exposure time
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Quark Structure 
of Proton from 

High-Energy 
Lepton Scattering
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• Snap shots of the charged structure of 
the proton taken in the boosted frame

• 1/Q spatial resolution: pixel size
• x exposure time, 1/x shutter speed
• QCD prescribes evolution with Q2 which
     connects quarks and gluons  

1990

2004

e-p cross section ≈ σMott �F2(x,Q2) 
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R. Yoshida
C. Gwenlan
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Charting the Inner Structure of the 
Proton 

https://www.youtube.com/watch?v=G-9I0buDi4s 

Christopher Boebel
Rolf Ent

James LaPlante
Joseph McMaster

Richard Milner
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Quark and Gluon Dynamics Dominate Proton Structure

High x ~0.3 Medium x ~ 10-2 Low x  ~10-4
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Quark and Gluon Dynamics Dominate Proton Structure

High x ~0.3 Medium x ~ 10-2 Low x  ~10-4
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QCD 50th Anniversary



Quark and Gluon Dynamics Dominate Proton Structure

High x ~0.3 Medium x ~ 10-2 Low x  ~10-4
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Quark and Gluon Dynamics Dominate Proton Structure

High x ~0.3 Medium x ~ 10-2 Low x  ~10-4

PBS Space Time

Richard Milner Strong QCD Conference, Nanjing.                                                           
May 14, 2024

20



Proton Viewed in High Energy Electron 
Scattering: 1 Longitudinal Dimension
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Proton Tomography: 2 New Dimensions 
Transverse to Longitudinal Momentum

Structure mapped in terms of
bT = transverse position
kT = transverse momentum

Valence Quarks: JLab 12 GeV
Sea Quarks and Gluons: EIC
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Direction of longitudinal
momentum normal to
plane of slide

Goal:
Unprecedented
21st Century Imaging 
of Hadronic Matter

Nuclei!

Deeply virtual exclusive processes
where proton is left intact
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Theorists have developed a powerful formalism for studying 
the 3D partonic picture of the nucleon and the nucleus.  It is 
encoded in Generalized Parton Distributions and 
Transverse Momentum Dependent Distributions

Transverse
Momentum 
Dependent
distributions

Generalized
Parton 
Distributions

Wigner  distribution
 

SIDIS DES

3D Partonic Picture

Orbital motion
accessible!
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Elastic form factors →  
Transverse charge & current
densities F1(t), F2(t). 

DIS structure functions 
→ Longitudinal parton
momentum & helicity 
densities, F2(x), g1(x). 

Deeply exclusive processes → GPD’s 
and 3 D images in transverse space 
and  longitudinal momentum.
4 GPDs  H, E, H, E (x,ξ,t)~ ~

Last 60 years

Last 20 years

Last 45 years

Generalized Parton Distributions 
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Generalized Parton Distributions 

X. Ji: Viewing the proton through “color” filters 25

above expression, one finds pair creations and annihila-
tion terms. However, this is also true for the usual charge
density. Therefore we can speak of S(k) as a distribution
of vector charges and currents, but not a particle den-
sity. In nuclear physics where the non-relativistic dynam-
ics dominates, the proton spectral function in the nucleus
is positive definite and can be regarded as a particle den-
sity. The nuclear spectral function is directly measurable
through pick-up and knock-out experiments, in which E
and k are called the missing energy and missing momen-
tum, respectively (see for example [9]).

It is now easy to see that in the rest frame of the
proton, the Feynman quark distribution is

q(x) =
√

2
∫

d4k

(2π)4
δ(k0 + kz − xMN )S(k) . (4)

The x variable is simply a special combination of the
off-shell energy k0 and momentum kz. The parton dis-
tribution is the spectral function of quarks projected
along a special direction in the four-dimensional energy-
momentum space. The quarks with different k0 and kz

can have the same x, and moreover, the both x > 0 and
x < 0 distributions contain contributions from quarks and
anti-quarks.

3 Quantum phase-space distributions

Suppose we have a one-dimensional quantum mechanical
system with wave function ψ(x), the Wigner distribution
is defined as

W (x, p) =
∫

dηeipηψ∗(x − η/2)ψ(x + η/2) , (5)

where we have set ! = 1. When integrating out the coor-
dinate x, one gets the momentum density |ψ(p)|2, which
is positive definite. When integrating out p, the positive-
definite coordinate space density |ψ(x)|2 follows. For ar-
bitrary p and x, the Wigner distribution is not positive
definite and does not have a probability interpretation.
Nonetheless, for calculating the physical observables, one
can just take averages over the phase-space as if it is a
classical distribution

⟨Ô(x, p)⟩ =
∫

dxdp W (x, p)O(x, p) (6)

where the operators are ordered according to the Weyl
association rule. For a single-particle system, the Wigner
distribution contains everything there is in the quantum
wave function. For a many-body system, the Wigner dis-
tribution can be used to calculate the averages of all one-
body operators. Sign changes in the phase-space are a hint
that it carries non-trivial quantum phase information.

In QCD, the single-particle wave function must be re-
placed by (gauge-invariant) quantum fields, and hence it
is natural to introduce the Wigner operator,

ŴΓ (r, k) =
∫

d4ηeik·ηΨ(r − η/2)ΓΨ(r + η/2) , (7)

where r is the quark phase-space position and k the phase-
space four-momentum conjugated to the spacetime sepa-
ration η. Γ is a Dirac matrix defining the types of quark
densities because the quarks are spin-1/2 relativistic par-
ticles. Depending on the choice of Γ , we can have vector,
axial vector, or tensor density.

For non-relativistic systems for which the center-of-
mass is well-defined and fixed, one can define the phase-
space distributions by taking the expectation value of the
above Wigner operators in the R = 0 state. For the pro-
ton for which the recoil effect cannot be neglected, the
rest-frame state cannot be uniquely defined. Here we fol-
low Sachs, defining a rest-frame matrix element as that in
the Breit frame, averaging over all possible 3-momentum
transfers. Therefore, we construct the quantum phase-
space quark distribution in the proton as,

WΓ (r, k)=
1

2MN

∫
d3q

(2π)3
〈
q/2

∣∣∣ŴΓ (r, k)
∣∣∣ − q/2

〉
(8)

=
1

2MN

∫
d3q

(2π)3
e−iq·r

〈
q/2

∣∣∣ŴΓ (0, k)
∣∣∣ − q/2

〉
,

where the plane-wave states are normalized relativisti-
cally. The most general phase-space distribution depends
on seven independent variables.

The only way we know how to probe the single-particle
distributions is through high-energy processes, in which
the light-cone energy k− = (k0 − kz)/

√
2 is difficult to

measure, where the z-axis refers to the momentum direc-
tion of a probe. Moreover, the leading observables in these
processes are associated with the “good” components of
the quark (gluon) fields in the sense of light-cone quantiza-
tion [10], which can be selected by Γ = γ+, γ+γ5, or σ+⊥

where γ+ = (γ0 + γz)/
√

2. The direction of the gauge
link, nµ, is then determined by the trajectories of high-
energy partons traveling along the light-cone (1, 0, 0, −1)
[11,12]. Therefore, from now on, we restrict ourselves to
the reduced Wigner distributions by integrating out k−,

WΓ (r,k) =
∫

dk−

(2π)2
WΓ (r, k) , (9)

with a light-cone gauge link is now implied. Unfortunately,
there is no known experiment at present capable of mea-
suring this 6-dimensional distribution which may be called
the master or mother distribution.

Further phase-space reductions lead to measurable
quantities. Integrating out the transverse momentum of
partons, we obtain a 4-dimensional quantum distribution

f̃Γ (r, k+) =
1

2MN

∫
d3q

(2π)3
e−iq·r

∫
dη−

2π
eiη−k+

×
〈
q/2

∣∣Ψ(−η−/2)ΓΨ(η−/2)
∣∣ − q/2

〉
. (10)

The matrix element under the integrals is what defines
the GPDs. More precisely, if one replaces k+ by Feyn-
man variable xp+ (p+ = Eq/

√
2, proton energy Eq =√

M2 + q2/4 ) and η− by λ/p+, the reduced Wigner dis-
tribution becomes the Fourier transformation of the GPD
FΓ (x, ξ, t)
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Probe 3D structure  2D – 
euclidean space and 1D -  

momentum space.

Integrate over 
transverse 

momentum space
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(Quantum phase-space quark distribution in the nucleon) 

~ ~

hard	scattering

soft	part	

p
p

factorization x ≈
xB

2 -	xB

GPD H of special Importance 
as it gives access to the 
gravitational properties. 

D. Müller et al., F. Phys. 42,1994
X. Ji, PRL 78, 610, 1997
A. Radyushkin, PLB 380, 1996Richard Milner 25

X. Ji, Phys.Rev.D55, 7114 (1997)

M. V. Polyakov, Physics Letters B 555 (2003) 57 
I.V. Anikin and O.V. Teryaev, Phys.Rev.D76, 056007 (2007)  
M. Diehl and D.Y. Ivanov, Eur. Phys. J. C52, 919, (2007)  

Polarized DVCS probes GPDs. 
JLab @ 12GeV has broad 
DVCS  program with 
polarized beams and 
polarized targets.  
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3-D Imaging conjointly in transverse impact parameter and longitudinal momentum

x: average fraction of quark 
    longitudinal momentum  

:fraction of longitudinal 
      momentum transfer H, E, H, E : Generalized Parton Distributions (GPDs)

DVCS and Generalized Parton Distributions 

~ ~

Deeply Virtual Compton Scattering (DVCS) and GPDs
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Measured both asymmetries and cross sections

Deeply Virtual Compton Scattering - Experiment
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CLAS12
Deeply Virtual Processes

Access to new Generalized 
Parton Distributions

• Our group is a member of the CLAS12 collaboration at Jefferson Lab, VA
• Have developed with MIT-LNS high performance computing group (computers 

located at Bates) the capability to run the CLAS12 Monte-Carlo code by 
collaborators worldwide

• Working on determination of the absolute cross sections for the following 
processes:        p(e,e’π0)p – sensitive to GPDs

     p(e,e’γ)p - Deeply Virtual Compton Scattering (DVCS)
     p(e,e’ϕ)p - sensitive to gluonic radius
• Seek new insights into the quark and gluon structure of the proton
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in the high xB domain 
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The 12 GeV 
Upgrade is well 
matched to  studies 
in the valence 
quark regime. 

Kinematic coverage for Imaging @ 11GeV
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A flagship program 
of structure 
studies in deeply 
exclusive and 
semi-inclusive 
processes.   

2018 data taking with RG-A
Liquid hydrogen target

Energy = 10.6 GeV



DVCS Absolute Cross Section

Dr. Sangbaek Lee 
(ANL)                               

• Analysis based on Fall 2018 data.
• Much more data already taken.
• Manuscript in preparation

Yijie Wang
(MIT)
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DV 𝝅0 absolute cross section

Dr. Robert Johnston                         

• Analysis based on Fall 
2018 data.

• Much more data 
already taken.

• Analysis note in 
preparation
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DV p(e,e’p)⏀ absolute cross section

Gluonic radius of proton

• Preliminary analysis based on Fall 
2018 data.
• Further analysis in progress by 
 F.X. Girod (JLab)

Dr. Igor Korover
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Transverse Momentum 
Structure of Nucleon – TMDs

X. Ji: Viewing the proton through “color” filters 25

above expression, one finds pair creations and annihila-
tion terms. However, this is also true for the usual charge
density. Therefore we can speak of S(k) as a distribution
of vector charges and currents, but not a particle den-
sity. In nuclear physics where the non-relativistic dynam-
ics dominates, the proton spectral function in the nucleus
is positive definite and can be regarded as a particle den-
sity. The nuclear spectral function is directly measurable
through pick-up and knock-out experiments, in which E
and k are called the missing energy and missing momen-
tum, respectively (see for example [9]).

It is now easy to see that in the rest frame of the
proton, the Feynman quark distribution is

q(x) =
√

2
∫

d4k

(2π)4
δ(k0 + kz − xMN )S(k) . (4)

The x variable is simply a special combination of the
off-shell energy k0 and momentum kz. The parton dis-
tribution is the spectral function of quarks projected
along a special direction in the four-dimensional energy-
momentum space. The quarks with different k0 and kz

can have the same x, and moreover, the both x > 0 and
x < 0 distributions contain contributions from quarks and
anti-quarks.

3 Quantum phase-space distributions

Suppose we have a one-dimensional quantum mechanical
system with wave function ψ(x), the Wigner distribution
is defined as

W (x, p) =
∫

dηeipηψ∗(x − η/2)ψ(x + η/2) , (5)

where we have set ! = 1. When integrating out the coor-
dinate x, one gets the momentum density |ψ(p)|2, which
is positive definite. When integrating out p, the positive-
definite coordinate space density |ψ(x)|2 follows. For ar-
bitrary p and x, the Wigner distribution is not positive
definite and does not have a probability interpretation.
Nonetheless, for calculating the physical observables, one
can just take averages over the phase-space as if it is a
classical distribution

⟨Ô(x, p)⟩ =
∫

dxdp W (x, p)O(x, p) (6)

where the operators are ordered according to the Weyl
association rule. For a single-particle system, the Wigner
distribution contains everything there is in the quantum
wave function. For a many-body system, the Wigner dis-
tribution can be used to calculate the averages of all one-
body operators. Sign changes in the phase-space are a hint
that it carries non-trivial quantum phase information.

In QCD, the single-particle wave function must be re-
placed by (gauge-invariant) quantum fields, and hence it
is natural to introduce the Wigner operator,

ŴΓ (r, k) =
∫

d4ηeik·ηΨ(r − η/2)ΓΨ(r + η/2) , (7)

where r is the quark phase-space position and k the phase-
space four-momentum conjugated to the spacetime sepa-
ration η. Γ is a Dirac matrix defining the types of quark
densities because the quarks are spin-1/2 relativistic par-
ticles. Depending on the choice of Γ , we can have vector,
axial vector, or tensor density.

For non-relativistic systems for which the center-of-
mass is well-defined and fixed, one can define the phase-
space distributions by taking the expectation value of the
above Wigner operators in the R = 0 state. For the pro-
ton for which the recoil effect cannot be neglected, the
rest-frame state cannot be uniquely defined. Here we fol-
low Sachs, defining a rest-frame matrix element as that in
the Breit frame, averaging over all possible 3-momentum
transfers. Therefore, we construct the quantum phase-
space quark distribution in the proton as,

WΓ (r, k)=
1

2MN

∫
d3q

(2π)3
〈
q/2

∣∣∣ŴΓ (r, k)
∣∣∣ − q/2

〉
(8)

=
1

2MN

∫
d3q

(2π)3
e−iq·r

〈
q/2

∣∣∣ŴΓ (0, k)
∣∣∣ − q/2

〉
,

where the plane-wave states are normalized relativisti-
cally. The most general phase-space distribution depends
on seven independent variables.

The only way we know how to probe the single-particle
distributions is through high-energy processes, in which
the light-cone energy k− = (k0 − kz)/

√
2 is difficult to

measure, where the z-axis refers to the momentum direc-
tion of a probe. Moreover, the leading observables in these
processes are associated with the “good” components of
the quark (gluon) fields in the sense of light-cone quantiza-
tion [10], which can be selected by Γ = γ+, γ+γ5, or σ+⊥

where γ+ = (γ0 + γz)/
√

2. The direction of the gauge
link, nµ, is then determined by the trajectories of high-
energy partons traveling along the light-cone (1, 0, 0, −1)
[11,12]. Therefore, from now on, we restrict ourselves to
the reduced Wigner distributions by integrating out k−,

WΓ (r,k) =
∫

dk−

(2π)2
WΓ (r, k) , (9)

with a light-cone gauge link is now implied. Unfortunately,
there is no known experiment at present capable of mea-
suring this 6-dimensional distribution which may be called
the master or mother distribution.

Further phase-space reductions lead to measurable
quantities. Integrating out the transverse momentum of
partons, we obtain a 4-dimensional quantum distribution

f̃Γ (r, k+) =
1

2MN

∫
d3q

(2π)3
e−iq·r

∫
dη−

2π
eiη−k+

×
〈
q/2

∣∣Ψ(−η−/2)ΓΨ(η−/2)
∣∣ − q/2

〉
. (10)

The matrix element under the integrals is what defines
the GPDs. More precisely, if one replaces k+ by Feyn-
man variable xp+ (p+ = Eq/

√
2, proton energy Eq =√

M2 + q2/4 ) and η− by λ/p+, the reduced Wigner dis-
tribution becomes the Fourier transformation of the GPD
FΓ (x, ξ, t)
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is positive definite and can be regarded as a particle den-
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tribution is the spectral function of quarks projected
along a special direction in the four-dimensional energy-
momentum space. The quarks with different k0 and kz

can have the same x, and moreover, the both x > 0 and
x < 0 distributions contain contributions from quarks and
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3 Quantum phase-space distributions

Suppose we have a one-dimensional quantum mechanical
system with wave function ψ(x), the Wigner distribution
is defined as

W (x, p) =
∫

dηeipηψ∗(x − η/2)ψ(x + η/2) , (5)

where we have set ! = 1. When integrating out the coor-
dinate x, one gets the momentum density |ψ(p)|2, which
is positive definite. When integrating out p, the positive-
definite coordinate space density |ψ(x)|2 follows. For ar-
bitrary p and x, the Wigner distribution is not positive
definite and does not have a probability interpretation.
Nonetheless, for calculating the physical observables, one
can just take averages over the phase-space as if it is a
classical distribution
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tribution can be used to calculate the averages of all one-
body operators. Sign changes in the phase-space are a hint
that it carries non-trivial quantum phase information.
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where r is the quark phase-space position and k the phase-
space four-momentum conjugated to the spacetime sepa-
ration η. Γ is a Dirac matrix defining the types of quark
densities because the quarks are spin-1/2 relativistic par-
ticles. Depending on the choice of Γ , we can have vector,
axial vector, or tensor density.

For non-relativistic systems for which the center-of-
mass is well-defined and fixed, one can define the phase-
space distributions by taking the expectation value of the
above Wigner operators in the R = 0 state. For the pro-
ton for which the recoil effect cannot be neglected, the
rest-frame state cannot be uniquely defined. Here we fol-
low Sachs, defining a rest-frame matrix element as that in
the Breit frame, averaging over all possible 3-momentum
transfers. Therefore, we construct the quantum phase-
space quark distribution in the proton as,
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where the plane-wave states are normalized relativisti-
cally. The most general phase-space distribution depends
on seven independent variables.

The only way we know how to probe the single-particle
distributions is through high-energy processes, in which
the light-cone energy k− = (k0 − kz)/

√
2 is difficult to

measure, where the z-axis refers to the momentum direc-
tion of a probe. Moreover, the leading observables in these
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the quark (gluon) fields in the sense of light-cone quantiza-
tion [10], which can be selected by Γ = γ+, γ+γ5, or σ+⊥
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2. The direction of the gauge
link, nµ, is then determined by the trajectories of high-
energy partons traveling along the light-cone (1, 0, 0, −1)
[11,12]. Therefore, from now on, we restrict ourselves to
the reduced Wigner distributions by integrating out k−,

WΓ (r,k) =
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dk−

(2π)2
WΓ (r, k) , (9)

with a light-cone gauge link is now implied. Unfortunately,
there is no known experiment at present capable of mea-
suring this 6-dimensional distribution which may be called
the master or mother distribution.

Further phase-space reductions lead to measurable
quantities. Integrating out the transverse momentum of
partons, we obtain a 4-dimensional quantum distribution
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1

2MN
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man variable xp+ (p+ = Eq/
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above expression, one finds pair creations and annihila-
tion terms. However, this is also true for the usual charge
density. Therefore we can speak of S(k) as a distribution
of vector charges and currents, but not a particle den-
sity. In nuclear physics where the non-relativistic dynam-
ics dominates, the proton spectral function in the nucleus
is positive definite and can be regarded as a particle den-
sity. The nuclear spectral function is directly measurable
through pick-up and knock-out experiments, in which E
and k are called the missing energy and missing momen-
tum, respectively (see for example [9]).

It is now easy to see that in the rest frame of the
proton, the Feynman quark distribution is

q(x) =
√
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(2π)4
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The x variable is simply a special combination of the
off-shell energy k0 and momentum kz. The parton dis-
tribution is the spectral function of quarks projected
along a special direction in the four-dimensional energy-
momentum space. The quarks with different k0 and kz

can have the same x, and moreover, the both x > 0 and
x < 0 distributions contain contributions from quarks and
anti-quarks.

3 Quantum phase-space distributions

Suppose we have a one-dimensional quantum mechanical
system with wave function ψ(x), the Wigner distribution
is defined as

W (x, p) =
∫

dηeipηψ∗(x − η/2)ψ(x + η/2) , (5)

where we have set ! = 1. When integrating out the coor-
dinate x, one gets the momentum density |ψ(p)|2, which
is positive definite. When integrating out p, the positive-
definite coordinate space density |ψ(x)|2 follows. For ar-
bitrary p and x, the Wigner distribution is not positive
definite and does not have a probability interpretation.
Nonetheless, for calculating the physical observables, one
can just take averages over the phase-space as if it is a
classical distribution

⟨Ô(x, p)⟩ =
∫

dxdp W (x, p)O(x, p) (6)

where the operators are ordered according to the Weyl
association rule. For a single-particle system, the Wigner
distribution contains everything there is in the quantum
wave function. For a many-body system, the Wigner dis-
tribution can be used to calculate the averages of all one-
body operators. Sign changes in the phase-space are a hint
that it carries non-trivial quantum phase information.

In QCD, the single-particle wave function must be re-
placed by (gauge-invariant) quantum fields, and hence it
is natural to introduce the Wigner operator,

ŴΓ (r, k) =
∫

d4ηeik·ηΨ(r − η/2)ΓΨ(r + η/2) , (7)

where r is the quark phase-space position and k the phase-
space four-momentum conjugated to the spacetime sepa-
ration η. Γ is a Dirac matrix defining the types of quark
densities because the quarks are spin-1/2 relativistic par-
ticles. Depending on the choice of Γ , we can have vector,
axial vector, or tensor density.

For non-relativistic systems for which the center-of-
mass is well-defined and fixed, one can define the phase-
space distributions by taking the expectation value of the
above Wigner operators in the R = 0 state. For the pro-
ton for which the recoil effect cannot be neglected, the
rest-frame state cannot be uniquely defined. Here we fol-
low Sachs, defining a rest-frame matrix element as that in
the Breit frame, averaging over all possible 3-momentum
transfers. Therefore, we construct the quantum phase-
space quark distribution in the proton as,

WΓ (r, k)=
1

2MN
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(2π)3
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where the plane-wave states are normalized relativisti-
cally. The most general phase-space distribution depends
on seven independent variables.

The only way we know how to probe the single-particle
distributions is through high-energy processes, in which
the light-cone energy k− = (k0 − kz)/

√
2 is difficult to

measure, where the z-axis refers to the momentum direc-
tion of a probe. Moreover, the leading observables in these
processes are associated with the “good” components of
the quark (gluon) fields in the sense of light-cone quantiza-
tion [10], which can be selected by Γ = γ+, γ+γ5, or σ+⊥

where γ+ = (γ0 + γz)/
√

2. The direction of the gauge
link, nµ, is then determined by the trajectories of high-
energy partons traveling along the light-cone (1, 0, 0, −1)
[11,12]. Therefore, from now on, we restrict ourselves to
the reduced Wigner distributions by integrating out k−,

WΓ (r,k) =
∫

dk−

(2π)2
WΓ (r, k) , (9)

with a light-cone gauge link is now implied. Unfortunately,
there is no known experiment at present capable of mea-
suring this 6-dimensional distribution which may be called
the master or mother distribution.

Further phase-space reductions lead to measurable
quantities. Integrating out the transverse momentum of
partons, we obtain a 4-dimensional quantum distribution
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(Quantum phase space quark distribution in the nucleon) 
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Quark spin polarization

JLab has planned a complete 
SIDIS program with π/K to 
access quark TMDs
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Electron-Ion Collider: add counter-
circulating electron storage ring in 

existing RHIC tunnel
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• 275 GeV/nucleon max. on 18 GeV e-beam
• High luminosity: 1034 e-nucleon  cm-2s-1

• 70% polarized electron, nucleon beams
• Full range of ions: p to U
• Two collider detectors
• Actively considered since about 2000
• EIC highest priority for new facility 

construction by NP since 2015
• Blessed by NAS committee 2018
• Project officially launched by US DOE in  

January 2020
• Present schedule: accelerator turn-on 2031 
• Project cost: $ 2 billion approx.

Richard Milner



Large Reach of EIC in x and Q2

with greatly increased luminosity
inclusive, semi-inclusive, exclusive
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Collider Specifications from Science
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Brookhaven National Laboratory
Gregor Atoian, Edward Beebe, Sergey Kondrashev, Deepak Raparia, John Ritter

Massachusetts Institute of Technology
                                             Noah Wuerfel and Richard Milner                since 2012

Development of a Polarized He-3 Ion Source

 
and a 

Polarized He-3 Target
 

 
Using High-Field Optical Pumping

Jefferson Laboratory
James Brock, Chris Keith, James Maxwell 
Massachusetts Institute of Technology

 Pushpa Pandey and Richard Milner   
University of Tennessee

                                                   Dien Nguyen                                since 2021
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BNL-MIT Development of MEOP in High 
Magnetic Field

39

• Allows polarization of gas directly in EBIS.

• Direct transfer of polarized gas to EBIS 
vacuum system.

• Motivated development of tandem EBIS 
configuration which also benefits other 
ions.

• Polarized 3He ion source for the EIC at RHIC 
at Brookhaven National Lab

A. Zelenski et al., Nucl. Instr. 
and Meth. A 1055, 168494 
(2023)

Extraction and measurement
of He-3 nuclear polarization

anticipated in 2025.

Dr. Noah Wuerfel
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Proposed Experiment Using Polarized 
3He at CLAS12 JLab

40

• CLAS12: CEBAF Large Acceptance 
Spectrometer for operation at 12 GeV
• High luminosity electron scattering
• Multi-particle final-state response

• PR12-20-002: A program of spin-dependent 
electron scattering using a polarized 3He 
target at CLAS12
• Spokespeople: H. Avakian, J. Maxwell, R. 

Milner, and D. Nguyen.
• Approved with A- rating conditionally on the 

high-field MEOP target development

• Novel target design to accommodate to the 
standard CLAS12 configuration

5-T solenoid surrounding the interaction region
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Target Development Status

Beam test 
with polarized

target anticipated 
in 2026.

Dr. Pushpa 
Pandey
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Dr. Xiaqing Li
  2021-2023



Opportunity for China to Build a World 
Class QCD Machine in the Next Decade
• Need lepton scattering to access DIS and DVEP
 - 10 GeV on fixed target provides access to valence quarks

• Both transversely and longitudinally polarized 
targets of proton, deuteron and 3He

 - Determine GPDs and TMDs
• Desire positron as well as electron beam
 - beam charge asymmetry for DVEP 
 - test QED expansion
• Desire complementarity to Jefferson Lab as well as 

synergy with EIC-China
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Realization
• 10 GeV electron/positron storage ring with 200 mA of 

circulating current
  - Is an existing ring available?
• Self polarization of stored e+/e- using the Sokolov-Ternov effect
• Polarized gas targets of H, D, 3He and unpolarized gas targets
• Dedicated magnetic spectrometer with state-of-the-art particle 

identification
• Technically unique and complementary to Jefferson Lab 
  - polarized targets: undiluted, longitudinal and transverse poln.  
  - high intensity polarized positron beams
• Should come online in about a decade
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Summary
• One of the central goals of twenty first century physics is 

to fully understand QCD.
• Lepton scattering over a broad kinematic range will be 

the principal experimental tool.
• Theory and simulation will be equal partners to 

experiment in this ambitious endeavor.
• The U.S. is a major player with the Jefferson Lab world 

class capability and the EIC anticipated at BNL in about a 
decade.

• China is building its community and making plans.
• Together we can make enormous progress.
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