Imaging the Nucleon Interior

QCD Lagrangian

Context

- Visualizations are a powerful means to describe and understand complicated phenomena in physics, e.g.
- free body diagrams in Newtonian mechanics
- field lines of Faraday in electricity and magnetism
- Feynman diagrams in quantum field theory
- Physicists have developed the Standard Model which successfully explains the subatomic world.
- Current and planned large-scale facilities should provide a comprehensive set of measurements to inform our understanding of QCD.
- However, the quarks and gluons of QCD are not detectable and the important phenomena are emergent.
- Can this subatomic world be visualized so that the non-expert can begin to appreciate its unique structure?

Earth Rise from the Moon

The Sun as viewed by neutrino detection deep underground

Super-Kamiokande experiment in 4504 days of data taking

From the Hubble web page

Color in Hubble images is used to highlight interesting features of the celestial object being studied. It is added to the separate black-and-white exposures that are combined to make the final image.
Creating color images out of the original black-and-white exposures is equal parts art and science.
We use color:

- To depict how an object might look to us if our eyes were as powerful as Hubble
- To visualize features of an object that would ordinarily be invisible to the human eye
- To bring out an object's subtle details.

An Electron

Microscope to

 Image the Proton

Jefferson Lab OThomas Jefferson National Accelerator Facility

Imaging the Proton

- Scatter electron from the proton
- Exchange a virtual photon of mass $Q^{2}=-q^{\mu} q_{\mu}$
- 1/Q determines the spatial resolution (pixel size) probed
- $\mathrm{W}^{2}=\mathrm{W}^{\mu} \mathrm{W}_{\mu}=\mathrm{M}^{2}+2 \mathrm{Mv}-\mathrm{Q}^{2}$
- Elastic scattering: $\mathrm{W}^{2}=\mathrm{M}^{2}$ so $\mathrm{Q}^{2}=2 \mathrm{Mv}$ Hofstadter electromagnetic structure of proton described by two formfactors $G_{E}\left(Q^{2}\right)$ and $G_{M}\left(Q^{2}\right)$
- High energy, deep inelastic scattering: $W^{2}>4, Q^{2}>1$

Friedman, Kendall, Taylor
quark structure of proton described by structure functions $F_{2}\left(x, Q^{2}\right)$

Proton Viewed in High Energy Electron Scattering: 1 Longitudinal Dimension

- Viewed from boosted frame, length contracted by

$$
\gamma_{\text {Breit }}=\sqrt{1+\frac{Q^{2}}{4 M^{2}}}
$$

- Internal motion of the proton's constituents is slowed down by time dilation - the instantaneous charge distribution of the proton is seen.
- In boosted frame x is understood as the longitudinal momentum fraction valence quarks: $0.1<\mathrm{x}<1$ sea quarks: $\mathrm{x}<0.1$
J. Bjorken, SLAC-PUB-0571 March 1969

Visualization

- The camera is a device to capture an image on a desired medium, e.g. CCD or film.
- Movie cameras capture a series of individual images in time to give the illusion of having captured motion.
- Essential elements of any camera are
- the focus which uses a lens to gather light from a selected image => pixel size
- the shutter which is a door that opens for a definite time to allow selected light to reach the medium.

Shutter speed

High Energy Electron Scattering

Snapshots where $0<x<1$ is the shutter exposure time

Probe non-linear dynamics short exposure time

$$
x \approx 0.3
$$

Probe valence quarks long exposure time

Quark Structure of Proton from
 High-Energy Lepton Scattering

$$
\text { e-p cross section } \approx \sigma_{\text {Mott }} \bullet F_{2}\left(x, Q^{2}\right)
$$

- Snap shots of the charged structure of the proton taken in the boosted frame
- 1/Q spatial resolution: pixel size
- x exposure time, $1 / x$ shutter speed
- QCD prescribes evolution with Q^{2} which connects quarks and gluons
R. Yoshida
C. Gwenlan

Charting the Inner Structure of the

Proton

https://www.youtube.com/watch?v=G-9IObuDi4s

Jefferson Lab

SPUTNIK
 ANIMATION

Quark and Gluon Dynamics Dominate Proton Structure

High x ~0.3

Medium x $\sim 10^{-2}$

Low x ~10-4

Quark and Gluon Dynamics Dominate Proton Structure

Quantum Connections in Sweden-11 Summer School

QCD 50 ${ }^{\text {th }}$ Anniversary

Jun 11-24, 2023 - Högberga Gård

High x ~0.3
Medium x ~ $\mathbf{1 0}^{-\mathbf{2}}$
Low \mathbf{x} ~10-4

Quark and Gluon Dynamics Dominate Proton Structure

High x ~0.3
Medium x ${ }^{\sim 10-2}$
Low x ~10-4

Quark and Gluon Dynamics Dominate Proton Structure

High x ~0.3
Medium x ${ }^{\text {1 }} \mathbf{1 0}^{\mathbf{- 2}}$

$$
\text { Low } x \sim 10^{-4}
$$

Proton Viewed in High Energy Electron Scattering: 1 Longitudinal Dimension

Proton Tomography: 2 New Dimensions Transverse to Longitudinal Momentum

Deeply virtual exclusive processes where proton is left intact

Direction of longitudinal momentum normal to plane of slide

Structure mapped in terms of $\mathbf{b}_{T}=$ transverse position
$\mathbf{k}_{\mathrm{T}}=$ transverse momentum

Nuclei!

Goal:
Unprecedented
$21^{\text {st }}$ Century Imaging of Hadronic Matter

Valence Quarks: JLab 12 GeV Sea Quarks and Gluons: EIC

3D Partonic Picture

Generalized Parton Distributions

Elastic form factors \rightarrow Transverse charge \& current densities $F_{1}(t), F_{2}(t)$.

Deeply exclusive processes \rightarrow GPD's and 3 D images in transverse space and longitudinal momentum.
4 GPDs H, E, $\widetilde{H}, \tilde{E}(x, \xi, t)$

Last 45 years

DIS structure functions \rightarrow Longitudinal parton momentum \& helicity densities, $\mathrm{F}_{2}(\mathrm{x}), \mathrm{g}_{1}(\mathrm{x})$.

Generalized Parton Distributions

(Quantum phase-space quark distribution in the nucleon)

$$
W_{\Gamma}(\mathbf{r}, k)=\frac{1}{2 M_{N}} \int \frac{d^{3} \mathbf{q}}{(2 \pi)^{3}} \mathrm{e}^{-i \mathbf{q} \cdot \mathbf{r}}\langle\mathbf{q} / 2| \hat{\mathcal{W}}_{\Gamma}(0, k)|-\mathbf{q} / 2\rangle,
$$

$$
W_{\Gamma}(\mathbf{r}, \mathbf{k})=\int \frac{d k^{-}}{(2 \pi)^{2}} W_{\Gamma}(\mathbf{r}, k)
$$

Integrate over transverse momentum space

GPDs $\boldsymbol{H} \boldsymbol{E} \tilde{H}, E$

Probe 3D structure 2D euclidean space and 1D momentum space.
D. Müller et al., F. Phys. 42,1994
X. Ji, PRL 78, 610, 1997
A. Radyushkin, PLB 380, 1996Strong QCD Conference, Nanjing

Polarized DVCS probes GPDs. JLab @ 12GeV has broad DVCS program with polarized beams and polarized targets.

GPD H of special Importance as it gives access to the gravitational properties.
M. V. Polyakov, Physics Letters B 555 (2003) 57
I.V. Anikin and O.V. Teryaev, Phys.Rev.D76, 056007 (2007) M. Diehl and D.Y. Ivanov, Eur. Phys. J. C52, 919, (2007)

Deeply Virtual Compton Scattering (DVCS) and GPDs

 DVCS and Generalized Parton Distributions

$$
\begin{gathered}
\gamma^{*} p \rightarrow \gamma p^{\prime} \\
\text { Bjorken regime : } \\
Q^{2} \rightarrow \infty, x_{B} \text { fixed } \\
t \text { fixed } \ll Q^{2}, \xi \rightarrow \frac{x_{B}}{2-x_{B}} \\
\frac{P^{+}}{2 \pi} \int \mathrm{~d} y-\mathrm{e}^{i x P^{+} y^{-}}\left\langle p^{\prime}\right| \bar{\psi}_{q}(0) \gamma^{+}\left(1+\gamma^{5}\right) \psi(y)|p\rangle \\
=\bar{N}\left(p^{\prime}\right)\left[H^{q}(x, \xi, t) \gamma^{+}+E^{q}(x, \xi, t) i \sigma^{+\nu} \frac{\Delta_{\nu}}{2 M}\right. \\
\left.+\tilde{H}^{q}(x, \xi, t) \gamma^{+} \gamma^{5}+\tilde{E}^{q}(x, \xi, t) \gamma^{5} \frac{\Delta^{+}}{2 M}\right] N(p)
\end{gathered}
$$

3-D Imaging conjointly in transverse impact parameter and longitudinal momentum

Deeply Virtual Compton Scattering - Experiment

The Bethe-Heitler and DVCS processes interfere at the amplitude level :

$$
\left|\mathcal{T}_{\mathrm{BH}}+\mathcal{T}_{\mathrm{DVCS}}\right|^{2}=\left|\mathcal{T}_{\mathrm{BH}}\right|^{2}+\left|\mathcal{T}_{\mathrm{DVCS}}\right|^{2}+\mathcal{I}
$$

The GPDs enter the DVCS amplitude through a complex integral. This integral is called a Compton form factor (CFF).

$$
\mathcal{H}(\xi, t)=\int_{-1}^{1} H(x, \xi, t)\left(\frac{1}{\xi-x-i \epsilon}-\frac{1}{\xi+x-i \epsilon}\right) d x
$$

Measured both asymmetries and cross sections

CLAS12

 Deeply Virtual Processes Access to new Generalized Parton Distributions- Our group is a member of the CLAS12 collaboration at Jefferson Lab, VA Have developed with MIT-LNS high performance computing group (computers located at Bates) the capability to run the CLAS12 Monte-Carlo code by collaborators worldwide
- Working on determination of the absolute cross sections for the following processes: $\quad p\left(e, e^{\prime} \pi^{0}\right) p$ - sensitive to GPDs

$$
\begin{aligned}
& \text { p(e, e' } \gamma) p \text { - Deeply Virtual Compton Scattering (DVCS) } \\
& p\left(e, e^{\prime} \varphi\right) p \text { - sensitive to gluonic radius }
\end{aligned}
$$

- Seek new insights into the quark and gluon structure of the proton

Kinematic coverage for Imaging @ 11GeV

DVCS Absolute Cross Section

- Analysis based on Fall 2018 data.
- Much more data already taken.
- Manuscript in preparation

Dr. Sangbaek Lee
(ANL)

(MIT)

Yijie Wang

$0.600 \mathrm{GeV}^{2}<|t|<0.800 \mathrm{GeV}^{2}$
$+\underset{\text { Therry }}{ }+\mathrm{BH}$ (${ }^{\text {Exper }}$
- Theory (BH) \quad Theory (KM15)

DV π^{0} absolute cross section

Dr. Robert Johnston

Dr. Igor Korover

- Analysis based on Fall 2018 data.
- Much more data already taken.
- Analysis note in

Figure 6-2: Reduced Cross Section for $0.3 \mathrm{GeV}^{2}<t<0.3 \mathrm{GeV}^{2}$ in bins of x_{B} (increasing left to right) and Q^{2} (increasing vertically upwards). preparation

DV $p\left(e, e^{\prime} p\right) \Phi$ absolute cross section

Dr. Patrick Moran
(College of Wm\&Mary)

Gluonic radius of proton

Dr. Igor Korover

- Preliminary analysis based on Fall 2018 data.
- Further analysis in progress by

Transverse Momentum

Structure of Nucleon - TMDs

(Quantum phase space quark distribution in the nucleon)
Wigner Function
$W_{\Gamma}(\mathbf{r}, k)=\frac{1}{2 M_{N}} \int \frac{d^{3} \mathbf{q}}{(2 \pi)^{3}} \mathrm{e}^{-i \mathbf{q} \cdot \mathbf{r}}\langle\mathbf{q} / 2| \hat{\mathcal{W}}_{\Gamma}(0, k)|-\mathbf{q} / 2\rangle$

$$
W_{\Gamma}(\mathbf{r}, \mathbf{k})=\int \frac{d k^{-}}{(2 \pi)^{2}} W_{\Gamma}(\mathbf{r}, k)
$$

> Transverse Momentum- dependent Distributions (TMD)

3D imaging of the nucleon in momentum space

Quark spin polarization

N^{9}	U	L	
U	f_{1}		h_{1}^{\perp}
L		g_{1}	$\mathrm{h}_{1 \mathrm{~L}}^{\perp}$
T	$\mathrm{f}_{1 \mathrm{~T}}^{\perp}$	$\mathrm{g}_{1 \mathrm{~T}}$	$\mathbf{h}_{1} \mathrm{~h}_{1 \mathrm{~T}}^{\perp}$

JLab has planned a complete SIDIS program with π / K to access quark TMDs

TMD Handbook

A modern introduction to the physics of Transverse Momentum Dependent distributions

Electron-Ion Collider: add countercirculating electron storage ring in existing RHIC tunnel

- $275 \mathrm{GeV} /$ nucleon max. on 18 GeV e-beam
- High luminosity: 10^{34} e-nucleon $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$
- 70% polarized electron, nucleon beams
- Full range of ions: p to U
- Two collider detectors
- Actively considered since about 2000
- EIC highest priority for new facility construction by NP since 2015
- Blessed by NAS committee 2018
- Project officially launched by US DOE in January 2020
- Present schedule: accelerator turn-on 2031
- Project cost: \$ 2 billion approx.

Large Reach of EIC in x and Q^{2} with greatly increased luminosity inclusive, semi-inclusive, exclusive

Figure 2.1: Left: The $x-Q^{2}$ range covered by the EIC (yellow) in comparison with past and existing polarized $e / \mu+p$ experiments at CERN, DESY, JLab and SLAC, and $p+p$ experiments at RHIC. Right: The $x-Q^{2}$ range for $e+$ A collisions for ions larger than iron (yellow) compared to existing world data.

Collider Specifications from Science

New Tools

Development of a Polarized He-3 Ion Source

Brookhaven National Laboratory
Gregor Atoian, Edward Beebe, Sergey Kondrashev, Deepak Raparia, John Ritter
Massachusetts Institute of Technology
Noah Wuerfel and Richard Milner since 2012
and a
\section*{Polarized He-3 Target}
Jefferson Laboratory
James Brock, Chris Keith, James Maxwell Massachusetts Institute of Technology
Pushpa Pandey and Richard Milner
University of Tennessee
Dien Nguyen
\section*{Using High-Field Optical Pumping}

BNL-MIT Development of MEOP in High Magnetic Field

- Allows polarization of gas directly in EBIS.
- Direct transfer of polarized gas to EBIS vacuum system.
- Motivated development of tandem EBIS configuration which also benefits other ions.
- Polarized ${ }^{3} \mathrm{He}$ ion source for the EIC at RHIC at Brookhaven National Lab

Dr. Noah Wuerfel

Extraction and measurement of $\mathrm{He}-3$ nuclear polarization anticipated in 2025.
A. Zelenski et al., Nucl. Instr. and Meth. A 1055, 168494 (2023)

Figure 1: Schematic diagram of the extended EBIS. The polarized ${ }^{3} \mathrm{He}$ gas is injected into the drift tube of the new "injector" EBIS section. Here, RFQ means Radio Frequency Quadrupole and LEBT is the Low Energy Beam Transport.

Proposed Experiment Using Polarized ${ }^{3} \mathrm{He}$ at CLAS12 JLab

- CLAS12: CEBAF Large Acceptance Spectrometer for operation at 12 GeV
- High luminosity electron scattering
- Multi-particle final-state response
- PR12-20-002: A program of spin-dependent electron scattering using a polarized ${ }^{3} \mathrm{He}$ target at CLAS12
- Spokespeople: H. Avakian, J. Maxwell, R. Milner, and D. Nguyen.
- Approved with A- rating conditionally on the high-field MEOP target development
- Novel target design to accommodate to the standard CLAS12 configuration

Target Development Status

 Physics Research Section A: Accelerators, Spectrometers,Detectors and Associated Equipment Volume 1057, December 2023, 168792

Full Length Article

Metastability exchange optical pumping of ${ }^{3} \mathrm{He}$ at low pressure and high magnetic field

$\underline{\text { X. Li }}^{\mathrm{a}} \circ \boxtimes, \underline{\text { J.D. Maxwell }}^{\mathrm{b}}$, D. Nguyen ${ }^{\text {b }}$, J. Brock ${ }^{\text {b }}$, C.D. Keith ${ }^{\text {b }}$,

 R.G. Milner ${ }^{\text {a }}$, $\underline{X . W_{e i}}{ }^{b}$
$\begin{array}{cc}\text { Dr. Xiaqing Li } & \text { Dr. Pushpa } \\ \text { 2021-2023 } & \text { Pandey }\end{array}$ Beam test
with polarized
target anticipated

Strong QCD Conference, Nanjing.
May 14, 2024

Opportunity for China to Build a World Class QCD Machine in the Next Decade

- Need lepton scattering to access DIS and DVEP
- 10 GeV on fixed target provides access to valence quarks
- Both transversely and longitudinally polarized targets of proton, deuteron and ${ }^{3} \mathrm{He}$
- Determine GPDs and TMDs
- Desire positron as well as electron beam
- beam charge asymmetry for DVEP
- test QED expansion
- Desire complementarity to Jefferson Lab as well as synergy with EIC-China

Realization

- 10 GeV electron/positron storage ring with 200 mA of circulating current
- Is an existing ring available?
- Self polarization of stored $\mathrm{e}+/ \mathrm{e}-\mathrm{using}$ the Sokolov-Ternov effect
- Polarized gas targets of H, D, ${ }^{3} \mathrm{He}$ and unpolarized gas targets
- Dedicated magnetic spectrometer with state-of-the-art particle identification
- Technically unique and complementary to Jefferson Lab
- polarized targets: undiluted, longitudinal and transverse poln.
- high intensity polarized positron beams
- Should come online in about a decade

Summary

- One of the central goals of twenty first century physics is to fully understand QCD.
- Lepton scattering over a broad kinematic range will be the principal experimental tool.
- Theory and simulation will be equal partners to experiment in this ambitious endeavor.
- The U.S. is a major player with the Jefferson Lab world class capability and the EIC anticipated at BNL in about a decade.
- China is building its community and making plans.
- Together we can make enormous progress.

