

NG UNI

Meson Structure Program at EicC

Weizhi Xiong Shandong University On Behalf of the EicC Exclusive Physics Working Group

Strong QCD from Hadron Structure Experiments - VI May 14th – 17th 2024

Outline

- Physics motivation
- EicC and its capacity in meson structure measurements
- Current projections and future tasks
- Summary

Physics Motivation

0.5

- π/K form factors and structure functions are of special interests in hadron structure physics
 - > pion: lightest QCD quark system
 - kaon: replaces one light quark with a heavier strange quark
- Important in checking the **Emergent Hadron Mass (EHM)** mechanism and the interplay between EHM and Higgs Boson mechanism
 - Talk by Prof. Roberts tomorrow morning (May 15)

- T. Horn and C. D. Roberts. J. Phys. G 43 (2016) 7, 073001
- L. Chang et al. Phys. Rev. Lett. 111 (2013) 14, 141802

Physics Motivation

 Important test ground for many theoritical preditions: Lattice QCD, Dyson-Schiwinger method and many more:

M. Ding et al, Phys. Rev. D 101 (2020) 054014;
Z.-F. Cui et al, Eur. Phys. J. A 57 (2021) 5;
Z.-F. Cui et al, Eur. Phys. J. C 80 (2020) 1064;
T. Nguyen et al, Phys. Rev. C 83 (2011) 062201;
Chen Chen et al, Phys. Rev. D 93 (2016) 074021;
Chao Shi et al, Phys. Rev. D 98 (2018) 5, 054029
Lei Chang et al, Phys. Rev. Lett. 111 (2013) 141802;
Fei Gao et al, Phys. Rev. D 96 (2017) 034024
X. Gao et al, Phys. Rev. Lett. 128 (2022) 142003;
H.-W. Lin et al, Phys. Rev. D 103 (2021) 014516;
Z. Fan, H.-W. Lin, Phys. Lett. B 823 (2021) 136778;
Salas-Chavira et al, Phys. Rev. D 106 (2022) 094510

C. D. Roberts, D. G. Richards, T. Horn and L. Chang, PPNP 120, 103883 (2021)

H. T. Ding et al. arXiv:2404.04412

...

Accessing Meson Structure

Meson Form Factor

- Elastic scattering of high energy meson beam from atomic electron target
 - Model independent way to measure form factor
 - Limited at low Q², need TeV meson to reach Q² = ~1GeV²
 - $r_{\pi} = 0.657 \pm 0.012$ fm
 - $r_{\rm K} = 0.560 \pm 0.031 \, {\rm fm}$

Meson Structure Function

- Drell-Yan process: quark-antiquark annihilation between pion's and proton's, virtual photon decays into lepton pair
- Information about the quark-gluon momentum fractions

$$\frac{d^2\sigma}{dx_{\pi}dx_N} = \frac{4\pi\alpha_{em}^2}{9M_{\gamma}^2} \sum_q e_q^2 [q_{\pi}(x_{\pi})\bar{q}_N(x_N) + \bar{q}_{\pi}(x_{\pi})q_N(x_N)]$$

C. D. Roberts, D. G. Richards, T. Horn and L. Chang, PPNP 120, 103883 (2021)

Accessing Meson Structure - Sullivan Process

Sullivan processes at small t (<0.6/0.9 GeV²) is sensitive to pion and kaon structures.

Exclusive processes for meson form factor measurements.

Leading baryon semi-inclusive deep inelastic scattering

processes for meson structure measurements

Essential processes to access meson structures at JLab, EIC and EicC

Electron-Ion Collider in China (EicC)

- Nominal beam energy setting and luminosity
 - > 3.5 GeV electron x 20 GeV proton, with luminosity 4.25 x 10³³ s⁻¹ cm⁻²
 - Center of mass energy: 16.7 GeV
- 50 mrad crossing angle
- Polarized e and ion beams

EicC Central Detector

Current Design for EicC Far-Forward (FF) Region

Current Design for EicC Far-Forward (FF) Region

Three quadrupole magnets: used for ion beam focusing

Ion going directio

Electron going direction

Two dipole magnets: used for charged particle tracking and e-ion beam separation

Current Design for EicC Far-Forward (FF) Region

Roman Pot Station:

- Located inside the ion beam pipe
- Positive Charged particle with E ~ E_{beam}
- $5 \text{ mr } \theta < 16 \text{ mr around ion beam}$

Zero degree calorimeter (ZDC):

• Neutrons and photons with $\theta < 15$ mr around ion beam

Endcap Dipole Tracker (EDT):

• Detect charged particles and photons with $15mr < \theta < 60mr$ around ion beam

Off Momentum Detector (OMD):

 Detect positive charged fragments (spectators) with 0.4 < p/p_{beam} < 0.8

Meson Structure Measurement with EicC

- Scattered electron and meson very well covered by central detector
- Acceptance and resolution studied extensively for central detector, fast simulation exist
 - > Eff. > 95% for both particles

3.5 GeV (e) x 20 GeV (p)

14

Meson Structure Measurement with EicC

- "Spectator" neutron and Λ move very close to the initial p-beam, very difficult to detect, need farforward detectors
- Pion FF and SF require ZDC for neutron detection
- Kaon FF and SF need all detectors in far-forward region for Λ :
 - > $\Lambda \rightarrow \pi^0 n$ with 36% chance (neutral decay)
 - > $\Lambda \rightarrow \pi^- p$ with 64% chance (charged decay)

Neutron Detection for Pion FF and SF

- Main detector for neutron is ZDC:
 - 15 mrad acceptance around the ion beam
 - Nearly 100% accept rate for neutrons of interest
 - Energy resolution : 1.9% + 48.5%/sqrt(E [GeV])
 - Position resolution : 2.4 mr /sqrt(E [GeV])

Accept/Throw Ratio for 15 GeV neutron

Weizhi Xiong

Weizhi Xiong

Λ Detection for Kion FF and SF (Neutral Channel)

- $\Lambda \rightarrow \pi^0 n$ with 36% branching ratio
- Neutrons only detected by ZDC (15 mr acceptance)

ECal (15 mr)

HCai

 Photons can be detected by ZDC, EDT-ECal and EMCal on central detector ion endcap

$\eta < 3$

ToF

DIRC

RICH

EDT-ECal (20-60 mr)

E,

EicC

FWD

Λ Detection for Kion FF and SF (Charged Channel)

- $\Lambda \rightarrow \pi^- p$ with 64% branching ratio
- π^- can only be detected by EDT (16 60 mr)
- Proton will be detected by EDT, Roman pots (~5-16mrad) as well as OMD
- EDT resolution: ~0.6% for p, 0.2mr for θ
- RP resolution: ~6.0% for p, 1.2mr for θ

EDT trackers

Off-momentum detectors

Forward **A** Detection

- Crucial for kaon form factor and structure-function study using Sullivan process: $ep \rightarrow e\Lambda K^+/X$
- As go mostly forward, as well as their decay products
- Potentially very good complementary to EIC kaon structure measurement
 - > Most Λ s decay before reaching far-forward region
 - Probably much better acceptance for charged decay channel

Forward **A** Detection

- As go mostly forward, as well as their decay products
 - 1. neutral channel: $\Lambda \rightarrow n\pi^0$, with BR 36%

count

count

- 2. charged channel: $\Lambda \rightarrow p\pi^{-}$, with BR 64%
- Require all FF detectors work collectively
- overall efficiency: ~ 40%

Meson From Factor Extraction

> Generally, one can apply L-T separation (like JLab) and isolate σ_L , where the meson factors live

> Measure two CS at same Q² and W, and solve for σ_L and σ_T

$$\sigma_1 = \sigma_T + \epsilon_1 \sigma_L$$

$$\sigma_2 = \sigma_T + \epsilon_2 \sigma_L$$

$$\frac{\Delta \sigma_L}{\sigma_L} = \frac{1}{(\epsilon_1 - \epsilon_2)} \frac{1}{\sigma_L} \sqrt{\Delta \sigma_1^2 + \Delta \sigma_2^2}.$$

- > $\Delta \varepsilon$ amplifies uncertainty, ideally nedd $\Delta \delta^2 \ge 0.2$ (need small center-of-mass energy), difficult for EIC
- > Alternatively, one may also use models to isolate σ_{L} (with additional uncertainties) = $\frac{1+Q^2}{1+Q^2}$

> L-T separation possible at EicC, but definitely not the entire kinematic region Weizhi Xiong

[Horn et al., PRL 97, (2006) 192001]

Event Generator for Pion FF

To write an event generator and to estimate the statistics, we adapt the π -pole model for the differential cross-section:

Previous pion FF projection study done by

Rong Wong from IMP

$\frac{d^3\sigma}{dQ^2dx_Bdt} = \Gamma(Q^2, x_B, s) \left[\frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt}\right]$

$$\Gamma(Q^2, x_B, s) = \frac{\alpha y^2 (1 - x_B)}{2\pi x_B (1 - \epsilon)Q^2}$$

$$\epsilon = \frac{1 - y - \frac{Q^2}{4E^2}}{1 - y + \frac{y^2}{2} + \frac{Q^2}{4E^4}}$$
Pion pole and
 $N \frac{d\sigma_L}{dt} = 4\hbar c (eg_{\pi NN}(t))^2 \frac{-t}{(t - m_{\pi}^2)^2} Q^2 F_{\pi}^2(Q^2)$

$$N = 32\pi (W^2 - m_p^2) \sqrt{(W^2 - m_p^2)^2 + Q^4 + 2Q^2(W^2 + m_p^2)}$$

$$g_{\pi NN}(t) = g_{\pi NN}(m_{\pi}^2) \left(\frac{\Lambda_{\pi}^2 - m_{\pi}^2}{\Lambda_{\pi}^2 - t}\right)$$

$$F_{\pi}(Q^2) = \frac{1}{1 + Q^2 / \Lambda_{\pi}^2}$$

Weizhi Xiong

Event Generator for Pion FF

Use DEMPgen for EIC (arXiv2403.06000)

- Regge-based p(e,e'π+)n model of T.K. Choi, K.J. Kong, B.G. Yu (CKY)
 (*J. Korean Phys. Soc.* 67 (2015) 7, 1089-1094)
- Encounter some issues with the generator at lower energies
- Developmental group (Prof. G. Huber, L. Preet, S. Kay and W. Li) been very helpful and provided fixes very quickly

Pion FF Projections

 σ_T at high enough Q² and W² At the moment, assume 0_0.3 consetvatively 100% UNCenterinty iner $\pm d \sigma_{\mu}$ -0.3

10.0 mgde (by btraction of the busices) $8.0 < Q^2 \le 10.0$ $30.0 < W^2 \le 40.0$ $8.0 < Q^2 \le 10.0$

4.0**∂**Ω²0**€00**⁻ 30.0 < W² ≤ 40.0

 $4.0 < Q^2 \le 6.0$

60

ło

20

6

In reality, uncertainty of R maybe better controlled by board kinematic coverage and π^{-}/π^{+} measurement from eD <u>0</u>0.3 -0.25 $\sigma[n(\underline{e}_{0,2}e'\pi^{-}p)]$ $^{-0.3}R =$ $\sigma[p_{(Black)}, \sigma_{T}, \rho_{O}], \sigma_{T}(p_{O}), \sigma_{T}(p_{O})$ $30.0 < W^2 \le 40.0$ $13.0 < Q^2 \le 16.0$

₄Weizhi Xiong

2

15

30

20

5

10

0

15

10

10

Pion FF Projections

- energy setting: 3.5 GeV e x 20 GeV p
- Integrated luminosity: 50 fb⁻¹
- Include full detector acceptance
- 100% uncertainty in $R = \sigma_T / \sigma_L$ from model subtraction
- 2.5% point-to-point syst. uncertainty
 12% scaling syst. uncertainty
- Projection for kaon FF on-going, have DEMPgen and CKY model to kaon

Event Generator for Pion SF

Weizhi Xiong

Pion Structure Function Projection

 Comparisons with RAPGAP generator (provided by Jixie Zhang), reasonable agreement over a board range

 $x_{L} > 0.75, P_{T}^{n} < 0.5 \text{ GeV}, \theta_{n} < 15 \text{ mrad} M_{\chi} > 0.5 \text{ GeV}$ EicC 50 fb⁻¹

Possibility of L-T Separation with EicC

- $\Delta \varepsilon$ increase at higher Q² and higher W
- Typical event rates drop at higher Q² and higher W

Need accurate event rate estimation to draw a definite conclusion, work in progress ϵ diffrence between 5x26 GeV runs and 2.8x12 GeV runs

Additional Improvement to Think About

ZDC: only device capable of neutron detection for EicC, 15mrad acceptance not enough in many cases

2. A second roman pot station here to improve mom. reso.?

Working iteratively with the accelerator folks on these improvements

1. Additional compact HCal after the EDT?

Many Other Interesting Exclusive Physics

- Deeply virtual Compton scattering (DVCS)
- Exotic states: X 3872, Zc 3900...
- Meson form factor, structure functions, GPD...
- Diffractive measurements
- Spectator tagging for tagged DIS, SIDIS, SRC...
- J/ψ production near threshold

Summary

- Meson structure: ideal test ground for many physics production, essential for checking EHM
- EicC offers a unique and complemetary meson structure program to JLab and EIC
 - CM energy ~16.7 GeV, in between JLab and EIC
- Full simulation for EicC central and far-forward detectors
- Preliminary pion FF projection obtained with the EicC, working actively on pion SF and kaon structure measurements
 - Aiming to have projections for all by end of July
 - Aiming for publication by end of the year
- Special thanks to Prof. Huber, Prof. Horn and Prof. Roberts for many helpful discussions

Weizhi Xiong