Hadron physics at J-PARC

K. Shirotori

Research Center for Nuclear Physics (RCNP) Osaka University

Strong QCD from Hadron Structure Experiments - VI

14th May. 2024

J-PARC & Hadron Experimental Facility

World's highest level intensity proton beam \Rightarrow Beam power 80 kW

Hadron physics at J-PARC hadron facility

* Explore Origin & Evolution of Matter more deeply

 \Rightarrow Experiments using hadron beams: π^{\pm} , K⁻, proton/anti-proton

- Secondary beams: < 2 GeV/c by current beam lines
- \Rightarrow 2–20 GeV/c by high-p(π 20) beam line
- Primary proton beam @ 30 GeV

Current beam line		$\pi 20$ beam line
Hadron in nuclei		Nucleon structure
Λ^* resonance	Hadron structure	Charmed baryon spectroscopy
H dibaryon search		$Ξ/\Omega$ baryon spectroscopy
Kaonic nuclei		Non-strange dibaryon search
Hyperon-N scattering	Hadron interaction	High-mom. Hyperon-N scattering
Λ hypernuclear spectroscopy		øn resonance study
Ξ hypernuclear spectroscopy		Ξ-N/ Ω-N scattering

Topics of hadron investigation at J-PARC

- Spectroscopy of heavier flavors for understanding "Baryon system"
- ⇒ Systematic spectroscopic measurements by high-momentum beams
 - Charmed (Λ_c / Σ_c) , Ξ , Ω baryons
- Hadron in nuclei for understanding "Mass generation"
- ⇒ Hadron property measurements in nuclei
 - Modification of mass: e.g., Vector meson (φ)
- Investigation of exotic states for understanding "Exotic property"
- \Rightarrow Specific measurements by dedicated experiments
 - $\Lambda(1405)$, narrow Λ^* , ϕN resonances

Hadron spectroscopy with high-momentum hadron beam

Charmed (Λ_c / Σ_c) , Ξ , Ω baryons

Baryon structure in the low-energy regime

*How quarks build hadrons?

• Dynamics of non-trivial QCD vacuum ⇒ Dynamics of Effective DoF

- Short-range spin-spin correlation: Diquark correlation
- Origin of spin-dependent force
- Quark motions in "quark core" with "cloud"

*Instanton: A topological object of gluon that mediates the $U_A(1)$ breaking interaction proposed by Kobayashi, Maskawa, and 't Hoot

High-p beam line for 2^{ndary} beam: $\pi 20$

***** High-p: 2^{ndary} beams can be provided from the primary proton beam.

- High intensity: >10⁷ /spill for π^{\pm} , p (>10⁵ /spill for K⁻, anti-p) up to 20 GeV/c
- High momentum-resolution beam: $\Delta p/p = 0.1\%(\sigma)$

Charmed baryon spectroscopy experiment

"Excitation mode": λ and ρ modes reflected by Diquark correlation

***** Dynamical information: Production rates and absolute decay branching ratios

• $\pi^- p \rightarrow D^{*-} Y_c^{*+}$ reaction @ 20 GeV/c

Production rates by hadronic reaction

- $\pi^- p \rightarrow D^{*-} Y_c^{*+}$ reaction @ 20 GeV/c
 - Production cross section(0°): Overlap of wave function $\rightarrow |R \sim \langle \varphi_f | \sqrt{2} \sigma_- \exp(i \vec{q}_{eff} \vec{r}) | \varphi_i \rangle$
 - \Rightarrow Sensitive to excitation modes
 - Large production rate of highly excited states
 - Both one- and two-quark processes ($\sigma_{\Lambda}:\sigma_{\Sigma}=2:1$)

Two-quark process

Mom. Trans.: *q_{eff}*~1.4 GeV/c α ~0.4 GeV ([Baryon size]⁻¹)

 $I_L \sim (q_{eff}/\alpha)^L \exp(-q_{eff}^2/\alpha^2)$

* λ -mode states w/ finite *L* are populated.

One-quark process

* Comparable ρ-mode states are expected.

S.H. Kim, A. Hosaka, H.C. Kim, H. Noumi, K. Shirotori PTEP 103D01 (2014).

Production rates by hadronic reaction

- $\pi^- p \rightarrow D^{*-} Y_c^{*+}$ reaction @ 20 GeV/c
 - Production cross section(0°): Overlap of wave function $\rightarrow R \sim \langle \varphi_f | \sqrt{2} \sigma_- \exp(i \vec{q}_{eff} \vec{r}) | \varphi_i \rangle$
 - \Rightarrow Sensitive to excitation modes
 - Large production rate of highly excited states
 - Both one- and two-quark processes ($\sigma_{\Lambda}:\sigma_{\Sigma}=2:1$)

 $|I_L \sim |(q_{eff}/\alpha)^L \exp(-q_{eff}^2/\alpha^2)|$

MARQ spectrometer

From F. Sakuma

Hadron Experimental Facility eXtension (HEF-ex) Project **Expand research programs at the Present HEF Extended HEF K10** Hadron Experimental Facility to explore (2009~) **Origin & Evolution of Matter HIHR** K1.8 more deeply **K1.8BR KL2** K1.8 KL **K1.8BR** High-p K1.1/K1.1BR 30 GeV Extended hall High-p (π 20) primary COMET **1** production target (T1) COMET 1 secondary-charged beamline (K1.8/K1.8BR) + 1 new production target (T2) **1** neutral beamline (KL) + 4 new beamlines (HIHR, K1.1/K1.1BR, KL2, K10) **1** primary beamline (High-p) 2 updated beamlines (High-p (π 20), Test-BL) 1 muon beamline (COMET)

High-momentum hadron beam lines: $\pi 20$ and K10

- $\pi 20: 2^{ndary}$ beam (unseparated, mainly π)
 - High intensity: >10⁷ /spill for π^- up to 20 GeV/c
- K10: K⁻ beam (K/ $\pi \sim 1/2$, anti-p/ $\pi \sim 2/1$)
 - High intensity: >10⁶ /spill for K⁻ up to 10 GeV/c
 - Anti-p intensity: >10⁶/spill

- Diquark correlation
 - *ud* diquark: Λ_c / Σ_c
 - us/ds diquark: Ξ
 - Only axial-vector diquark: Ω
- Spin-dependent forces
 - Excited state data of Λ_c / Σ_c , Ξ , Ω systems

K10

High-p (π20)

Heavy flavors for revealing diquark correlation

***** Systematic studies for baryon systems with heavier flavors: *c* & *s*

- Charmed baryon: Disentangle *ud* diquark correlation
- Ξ baryon: *us/ds* diquark correlation \Rightarrow Flavor dependence
- Ω baryon: Only axial-vector diquark correlation \Rightarrow Reference system

Role of Ω baryon: Single flavor system

- $\Omega(sss)$ baryon: Flavor symmetric system
- Free from Pion Cloud: Investigation of "Quark core" region (Non-perturbative region)
- \Rightarrow Origin of spin-dependent forces and quark motion
 - In terms of One Gluon Exchange(OGE), Instanton Induced Interaction(III) and Pion cloud

Studies of Ξ/Ω baryons

- Investigate spin-dependent forces and quark motion
 - From LS partners and Roper-like resonances

- Systematics of LS force
 - $\Omega(2012)^{-}(3/2^{-}?) \Leftrightarrow \Omega^{*-}(1/2^{-}?)$
 - $\Xi(1820)^{-}(3/2^{-}?) \Leftrightarrow \Xi^{*-}(1/2^{-}?)$
 - LS partners (L=2 states)

- Systematics of Roper-like resonances
 - Small excitation energy and wide width ?
 - Mass & width of Ω w/o π cloud
 - \Rightarrow Width: Quark core size

Ω baryon 2S state

***** Measurement of 2S state width(Γ)

 \Rightarrow Γ ~ $\langle p_q^2
angle$

- Internal quark momentum: $\langle p_q^2 \rangle$
- $\Rightarrow \left< r_q^2 \right> \sim 1/\langle p_q^2 \rangle$
 - J. Arifi et al., PRD105, 094006 (2023)
 - J. Arifi et al., PRD103, 094003 (2021)
- \Rightarrow Size of "quark core": $\langle r_q^2 \rangle$
 - Essential of free from π cloud

***** Effects of K cloud need to be investigated.

- Minor contribution ?: $M_K/M_{\pi} = 3.5 \Rightarrow$ Range of Yukawa coupling ~0.4 fm
- Branching ratio of $\Omega^{*-} \rightarrow K + \Xi$: Coupling of K and Ω
- (Future study) ΩN bound state: Strength of K meson exchange

Expected mass spectra: K⁻ p reactions

- Reaction: K⁻ p → K⁺ Ξ^{*-} / K⁻ p → K^{*0} Ξ^{*0}
 Beam: 5-8 GeV/c
- Missing mass: K⁺ / K^{*0}
 - Mass resolution: $\Delta M \sim 7 \text{ MeV}(\sigma)$

- Reaction: $\mathbf{K}^- \mathbf{p} \rightarrow \Omega^{*-} \mathbf{K}^{*0} \mathbf{K}^+$
 - Beam: 7–10 GeV/c
- Missing mass: K^{*0} & K⁺
 - Mass resolution: $\Delta M \sim 5 \text{ MeV}(\sigma)$

***** Only a few established states in PDG

 \Rightarrow Systematic measurements: Identification of λ/ρ mode and SS/LS studies

Hadron in nuclei

Current physics program at high-p beam line

***** Attack mass-generation mechanism of hadrons

- QCD vacuum: Quark-Gluon condensations
 - 98% of proton mass: Dynamically generated
- How to examine ?
 - To probe property of QCD condensation
 - \Rightarrow Hadron mass modification in nuclei
- Experiment on nuclear targets
 - Vector meson produced in 30 GeV p + A reaction
 - Dilepton measurement: $\phi \rightarrow e^+e^- \, (B.R.{\sim}10^{-4})$
 - Velocity & nuclear size dependences
 - Momentum dependence

22

W.Weise NPA553, 59 (1993).

Hatsuda & Lee, PRC46('92)R34

High-p beam line and preparation status

- Protons branches off from the primary line at SM1
- 30 GeV primary proton: 10¹⁰/spill (2 seconds)
- High statistics experiment
 - Reaction rate: 10M (10¹⁰/spill×0.1% targets (C, Cu, Pb))
 - High-rate capability: 100k detector channel

On-going commissioning finalized until May 2024
 ⇒ Physics run from Autumn 2024 (Beam time in November)

Experimental setup

βγ

Hadron spectroscopy by dedicated experiments

Recent results: $\Lambda(1405)$ Narrow Λ^* , ϕ N resonances

$\Lambda(1405)$: Hadron molecule state (Near KN threshold)

K

Ν

- ***** $J^{P} = 1/2^{-}, I = 0, M_{\Lambda(1405)} < M_{KbarN}$
- Study by $K^-d \rightarrow \pi \Sigma n @ 1 \text{ GeV/c (E31)}$
 - S-wave $\overline{K}N \rightarrow \pi\Sigma$ scattering below $\overline{K}N$ threshold

Scattering amplitude analysis

 $\Rightarrow \text{Pole: } 1417.7^{+6.0}_{-7.4}{}^{+1.1}_{-1.0} + \left[-26.1^{+6.0}_{-7.9}{}^{+1.7}_{-2.0}\right]i \text{ MeV}/c^2$

- S. Aikawa et al., Phys. Lett. B 837 (2023) 137637
- Higher pole (KN) consists with the Chiral Unitary Model based calculations

Hadron resonance studies

- Search for a narrow Λ^* resonance (E72)
 - Near A\eta threshold: ~1.66 GeV/ c^2
 - Narrow width: ~10 MeV
 - Spin/parity ?: $J = 1/2^- \Leftrightarrow J = 3/2^-$
- $\Rightarrow K^- p \rightarrow \eta \ \Lambda \ reaction \ @ \ 0.73 \ GeV/c$
 - Maturement of angular distribution: J = 3/2
- Study of ϕ N resonance (P95)
 - **Bump structure** by photon reaction
 - Hidden $q\overline{q}$ pentaquark ? : $P_c \Leftrightarrow P_s$
- $\Rightarrow \pi^- p \rightarrow \phi$ n reaction @ 1.6–2.4 GeV/c
 - *s*-channel production (π⁻ beam)
 ⇔ *t*-channel pomeron dominance (γ beam)
 - Confirm bump structure
 - Measure decay angular distribution

Summary

Hadron physics at J-PARC hadron facility

* Explore Origin & Evolution of Matter more deeply

 \Rightarrow Experiments using hadron beams: π^{\pm} , K⁻, proton/anti-proton

- Secondary beams: < 2 GeV/c by current beam lines
- \Rightarrow 2–20 GeV/c by high-p(π 20) beam line
- Primary proton beam @ 30 GeV

Current beam line		$\pi 20$ beam line
Hadron in nuclei		Nucleon structure
Λ^* resonance	Hadron structure	Charmed baryon spectroscopy
H dibaryon search		$Ξ/\Omega$ baryon spectroscopy
Kaonic nuclei		Non-strange dibaryon search
Hyperon-N scattering	Hadron interaction	High-mom. Hyperon-N scattering
Λ hypernuclear spectroscopy		øn resonance study
Ξ hypernuclear spectroscopy		Ξ -N/ Ω-N scattering

Summary

- Hadron physics at J-PARC hadron facility
 - Explore Origin & Evolution of Matter more deeply
 - Experiments using hadron beams: π^{\pm} , K⁻, proton/anti-proton
- Spectroscopy of heavier flavors for understanding "Baryon system"
 - Systematic spectroscopy of Λ_c / Σ_c , Ξ , Ω baryons with high-momentum beams
- Hadron in nuclei for understanding "Mass generation"
 - Vector meson (φ) property measurements on nuclear targets
- Investigation of exotic states for understanding "Exotic property"
 - Specific measurements of exotics state property by dedicated experiments

*** J-PARC** hadron experimental facility provides us unique opportunities for hadron physics experiments.