Hadron physics with BESIII

Chang-Zheng Yuan (yuancz@ihep.ac.cn) (for the BESIII Collaboration)

Nanjing University

May 14 – 17, 2024

Selected topics in Hadron physics with BESIII

Chang-Zheng Yuan (yuancz@ihep.ac.cn) (for the BESIII Collaboration)

Nanjing University

May 14 – 17, 2024

BEPC(II) storage ring and BES(III) detector

Ground breaking: 1984 CM energy : 2 - 5 GeV Major upgrade: 2004 Energy upgrade: 2024

World unique e⁺e⁻ accelerator in τ-charm energy region 1989-2005 (BEPC): L_{peak} =1.0x10³¹/cm²s 2008-now (BEPCII): L_{peak} =1.0x10³³/cm²s (Apr. 5, 2016)

BESIII detector

BESIII Collaboration

Hadrons: conventional & exotic

SU(4) multiplets of mesons & baryons

CZY & S. L. Olsen, Nature Reviews Physics 1, 480 (2019)

- Lots of states with heavy quarks (c, b) and exotic properties were observed since the discovery of the X(3872) in 2003!
- They are candidates of hadronic molecules, hybrids, and multiquark states.

 Z_Q : tetraquark with a $Q\overline{Q}$ pair P_Q : pentaquark with a $Q\overline{Q}$ pair Y: vectors, $J^{PC}=1^{--}$ $T_{QQ'}$: tetraquark with QQ' X: other states

New spectrum emerges although more effort is needed to understand the nature of them.

This workshop:

Bingsong Zou, Ying Chen, Feng-Kun Guo, Qiang Zhao, Jiajun Wu, ...

7

Lots of information on its quantum numbers, mass, width, production and decay properties, and many new measurements are available

Discovery of the X(3872) [$\chi_{c1}(3872)$ in PDG2023]

Mass of the X(3872)

VALUE (MeV)		EVTS		DOCUMENT ID		TECN	COMMENT
$\textbf{3871.65} \pm \textbf{0.06}$	OUR AVERAGE						
$3871.64 \pm 0.06 \pm 0.01$		19.8k	1	AAIJ	2020S	LHCB	$B^+ ightarrow J/\psi \pi^+\pi^- K^+$
$3871.9 \pm \! 0.7 \pm \! 0.2$		20		ABLIKIM	2014	BES3	$e^+~e^- ightarrow J/\psi \pi^+\pi^-\gamma$
$3871.95 \pm 0.48 \pm 0.12$		0.6k		AAIJ	2012H	LHCB	$p \; p o J/\psi \pi^+\pi^- X$
$3871.85 \pm 0.27 \pm 0.19$		170	2	CHOI	2011	BELL	$B ightarrow K \pi^+ \pi^- J/\psi$
$3873 \ ^{+1.8}_{-1.6} \pm 1.3$		27	3	DEL-AMO-SANCH	2010B	BABR	$B ightarrow\omega J/\psi K$
$3871.61 \pm 0.16 \pm 0.19$		6k 4	4, 3	AALTONEN	2009AU	CDF2	$p \; \overline{p} ightarrow J/\psi \pi^+\pi^- X$
$3871.4 \pm \! 0.6 \pm \! 0.1$		93.4		AUBERT	2008Y	BABR	$B^+ o K^+ J/\psi \pi^+ \pi^-$
$3868.7 \pm \! 1.5 \pm \! 0.4$		9.4		AUBERT	2008Y	BABR	$B^0 o K^0_S \; J/\psi \pi^+\pi^-$
$3871.8 \pm 3.1 \pm 3.0$		522 5	5, 3	ABAZOV	2004F	D0	$p \ \overline{p} ightarrow J/\psi \pi^+\pi^- X$

$$\frac{M_{D0} + M_{D^{*0}} = 3871.69 \pm 0.11 \text{ MeV}}{E_{b} = -0.04 \pm 0.12 \text{ MeV}} \quad r_{X} = (8\mu |E_{b}|)^{-1/2} > 5 \text{ fm}$$

$$\frac{E_{b}(\text{deuteron}) = -2.2 \text{ MeV}}{E_{b}(\text{deuteron}) = -2.2 \text{ MeV}} \quad r_{X} = (8\mu |E_{b}|)^{-1/2} > 5 \text{ fm}$$

A coupled channel analysis of the X(3872) line shape at BESIII

$$\frac{dB(D^0\overline{D}^0\pi^0)}{dE} = B \frac{1}{2\pi} \times \frac{g * k_{eff}(E)}{|D(E)|^2} \times Br(D^{*0} \to D^0\pi^0)$$

$$\frac{dB(\pi^+\pi^- J/\psi)}{dE} = B \frac{1}{2\pi} \times \frac{\Gamma_{\pi^+\pi^- J/\psi}}{|D(E)|^2}$$

$$D(E) = E - E_X + \frac{1}{2}g * \left(\kappa_{eff}(E) + ik_{eff}(E) + \kappa_{eff}^c(E) + ik_{eff}^c(E)\right) + \frac{i}{2}\Gamma_0$$

$$k_{eff}(E) = \sqrt{\mu_p} \sqrt{\sqrt{(E - E_R)^2 + \Gamma^2/4} + E - E_R}}$$

$$\kappa_{eff}(E) = -\sqrt{\mu_p} \sqrt{\sqrt{(E - E_R)^2 + \Gamma^2/4} - E_X + E_R}}$$

$$\Gamma_0 = \Gamma_{\pi^+\pi^- J/\psi} + \Gamma_{known} + \Gamma_{unknown}$$

$$E_X = M_X - (m_{D^0} + m_{\overline{D}^0} + m_{\pi^0}) : energy from D^0D^{\pi_0} thresh.$$
Hanhart, Kalashnikova, Nefediev, PRD 81, 094028 (2010)

superscript c: charged $D^{+}D^{-}$

* Due to the limited statistics, $\Gamma_{unknown}/\Gamma_{\pi^+\pi^- J/\psi}$ is fixed

[Chunhua Li, Chang-Zheng Yuan, PRD 100, 094003 (2019)]

• Fit parameters: g, $\Gamma_{\pi^+\pi^- J/\psi}$, M_X

X(3872) line shape @ BESIII

PRL132, 151903(2024)

Pole positions

Two sheets with respect to $D^{*0}\overline{D}^0$ branch cut

- Sheet I: $E E_X g\sqrt{-2\mu(E E_R + i\Gamma/2)}$
- Sheet II: $E E_X + g\sqrt{-2\mu(E E_R + i\Gamma/2)}$

 $E_{\rm I} = (7.04 \pm 0.15^{+0.07}_{-0.08}) + (-0.19 \pm 0.08^{+0.14}_{-0.19})i \text{ MeV}$ $E_{\rm II} = (0.26 \pm 5.74^{+5.14}_{-38.32}) + (-1.71 \pm 0.90^{+0.60}_{-1.96})i \text{ MeV}$

Parameters	BESIII	LHCb	
g	$0.16 \pm 0.10 \substack{+1.12 \\ -0.11}$	$0.108 \pm 0.003 \substack{+0.005 \\ -0.006}$	
$Re[E_I]$ [MeV]	$7.04 \pm 0.15 \substack{+0.07 \\ -0.08}$	7.10	
$Im[E_I]$ [MeV]	$-0.19\pm0.08^{+0.14}_{-0.19}$	-0.13	
$\Gamma(\pi^+\pi^- J/\psi)/\Gamma(D^0\overline{D}^{*0})$	$0.05 \pm 0.01 \substack{+0.01 \\ -0.02}$	0.11 ± 0.03	
FWHM (MeV)	$0.44\substack{+0.13 \\ -0.35 \\ -0.25}\substack{+0.38 \\ -0.25}$	$0.22\substack{+0.06 + 0.25 \\ -0.08 - 0.17}$	
Z	0.18	0.15	

Weinberg's compositeness: Z = 1: pure elementary state; Z = 0: pure bound (composite) state.

PRD107, 112011 (2023)

X(3872) line shape @ Belle

- $m_{\rm BW} = 3873.71^{+0.56}_{-0.50}({\rm stat}) \pm 0.13({\rm syst}) \ {\rm MeV}/c^2,$ $\Gamma_{\rm BW} = 5.2^{+2.2}_{-1.5}({\rm stat}) \pm 0.4({\rm syst}) \ {\rm MeV}.$
- > Fit $D^0 \overline{D}^{*0}$ mode only, not a coupled-channel analysis

Flatté parametrization

- BW is favored over Flatté parametrization
- coupled-channel analysis highly recommended

Y(4260) is now Y(4230) [$\psi(4230)$ in PDG2023]

ESI A new decay mode $Y(4230) \rightarrow K^+K^-J/\psi$ and a new Y(4500) state

✓ First observation of Y(4230) → K⁺K⁻J/ ψ (29 σ)

$$0.02 < \frac{\mathcal{B}(Y(4230) \to K^+ K^- J/\psi)}{\mathcal{B}(Y(4230) \to \pi^+ \pi^- J/\psi)} < 0.26$$

CPC46, 111002 (2022)

- ✓ Significance of the $Y(4500) > 8\sigma$
 - ➤ A 5S-4D mixing state (J. Z. Wang et al., PRD 99, 114003 (2019))
 - A heavy-antiheavy hadronic molecule

(X. K. Dong et al., Prog. Phys. 41, 65 (2021))

A $(cs\bar{c}\bar{s})$ state on LQCD (T. W. Chiu et al., PRD 73, 094510 (2006))

-		Parameters	Solution I	Solution II	
4		$M({ m MeV})$	$4225.3 \pm 2.3 \pm 21.5$		
3	Y(4230)	$\Gamma_{tot}(MeV)$	$72.9 \pm 6.1 \pm 30.8$		
1		$\Gamma_{ee} \mathcal{B}(eV)$	$0.42 \pm 0.04 \pm 0.15$	$0.29 \pm 0.02 \pm 0.10$	
_		$M({ m MeV})$	$4484.7 \pm 13.3 \pm 24.1$		
3	Y(4500)	$\Gamma_{tot}(MeV)$	$111.1 \pm 30.1 \pm 15.2$		
		$\Gamma_{ee}\mathcal{B}(eV)$	$1.35 \pm 0.14 \pm 0.06$	$0.41 \pm 0.08 \pm 0.13$	
	phase angle	$\varphi(\mathrm{rad})$	$1.72 \pm 0.09 \pm 0.52$	$5.49 \pm 0.35 \pm 0.58$	
6				17	

Y(4630)=Y(4660)? Are there other decay modes?

 $e^+e^- \rightarrow \pi^+\pi^-\psi'$

Recent measurements

 $e^+e^- \rightarrow \Lambda^+_c \Lambda^-_c$

4708⁺¹⁷-15^{±21}

Y(4710)

 126^{+27} _-23 ± 30

 $>5\sigma$

5S vector charmonium states?

ESI A new vector charmoniumlike state Y(4790) in $e^+e^- \rightarrow D_s^{*+}D_s^{*-}$?

arXiv: 2305.10789, PRL 131, 151903 (2023)

 $\sigma^{e^+e^- \rightarrow Ds^{*+}Ds^{*-}}_{Born}(pb)$

- The peak position depends on the parametrization of the background amplitudes.
- Data at around 4.8 GeV are needed to understand the line shape.
- > Could it be the Y(4710) in KKJ/ ψ ?

How many vectors in charmonium energy region?

High precision measurement of $e^+e^- \rightarrow D_s^+ D_s^-$

arXiv: 2403.14998v1, submitted to PRL

High precision measurement of $e^+e^- \rightarrow D^+D^-$ and $D^0\overline{D}{}^0$

arXiv: 2402.03829v1, submitted to PRL

 $D^0\overline{D}^0$: Statistical error + 7.0% common systematic error D^+D^- : Statistical error + 6.5% common systematic error

Estia Eichten et al., Phys. Rev. D21 (1980) 203

Phenomenological studies:

- S. G. Salnikov & A. I. Milstein, arXiv:2404.06160
- N. Husken, et al., arXiv:2404.03896
- Z. Y. Lin, et al., arXiv:2403.01727
- S. X. Nakamura, et al., arXiv:2312.17658

Sophisticated models are necessary!

 $D^0 \overline{D}^0$

100

100

200

200

E (MeV)

E (MeV)

300

300

N. Husken, et al., arXiv:2404.03896

FIG. 2. Fit result for Model 1. Left: $e^+e^- \rightarrow D^0\bar{D}^0$. Right: $e^+e^- \rightarrow D^+D^-$. Open data points are the Born cross section values based on observed cross sections, as reported in Ref. [18]; closed data points are from Ref. [1].

FIG. 3. Fit result for Model 1. Left: $e^+e^- \rightarrow D^*\bar{D}$. Right: $e^+e^- \rightarrow D^*\bar{D}^*$. The red region indicates the 68% confidence level. while green is the 90% confidence level. Black data points are from BESIII [21], red data is from CLEO-c [23] [24], blue data is from Belle 22

E (MeV)

S. G. Salnikov & A. I. Milstein, arXiv:2404.06160

▲ Belle 2008

400

400

FIG. 1. Energy dependence of the cross sections for the production of neutral particles. Experimental data are taken from Refs. [32, 34-36, 39].

FIG. 2. Energy dependence of the cross sections for production of charged particles. Experimental data are taken from Refs. [3

S. X. Nakamura, et al., arXiv:2312.17658

Charged quarkoniumlike states must have at least 4 quarks!

M(D⁰D*-)

The Z_c states with u,d-quark

×

4.05

2014

16

4.3 Μ_{Ψ'π}-(GeV)

18

 $M_{\psi,\pi^{-}}^{2}$ [GeV²]

20

Z_c(4020), 2013

Z_c(4430), 2008 All are observed in π +charmonium (J/ ψ , h_c, $\psi(2S)$) final states, candidate c c d u tetraquark states \rightarrow Existence of states with $d \rightarrow s$? → Search for states decay into $K^{\pm}J/\psi$, $\overline{D}^*D_s + \overline{D}D^*_s!$ 20 22

Do their isospin partners exist? May BESIII see Z_{cs} in $e^+e^- \rightarrow K^+K^-J/\psi$?

> Minimal quark content $c\bar{c}s\bar{d}$? Mass and width consistent with charged $Z_{cs} \rightarrow isospin partner$

29

No Z_{cs} in BESIII $e^+e^- \rightarrow K^+K^-J/\psi$ data!

PRL131, 211902 (2023)

Calculated with data in PRL 112, 022001 (2014)

- 1. We did observe hadronic molecules close to the thresholds
- 2. There must be dynamics beyond molecule to explain many other states far from thresholds of narrow hadrons

More data are coming

Summary

- Lots of progress in the experimental study of hadron spectroscopy.
- Spectroscopy of hadronic molecules to be further investigated.
- States formed by other dynamics may have been discovered.
- More results to come (Belle II, BESIII, LHCb, ...), and lots of opportunities and challenges ahead.
- Theoretical efforts needed to understand the hadron spectroscopy and the strong interaction.

Backup slides

ESE X(3872) pole search & effective range expansion **PRL132, 151903(2024)**

- Two sheets with respect to $D^{*0}\overline{D}^{0}$ branch cut
 - Sheet I: $E E_X g\sqrt{-2\mu(E E_R + i\Gamma/2)}$
 - Sheet II: $E E_X + g\sqrt{-2\mu(E E_R + i\Gamma/2)}$
- $E_{\rm I} = (7.04 \pm 0.15^{+0.07}_{-0.08}) + (-0.19 \pm 0.08^{+0.14}_{-0.19})i$ MeV
- $E_{\text{II}} = (0.26 \pm 5.74^{+5.14}_{-38.32}) + (-1.71 \pm 0.90^{+0.60}_{-1.96})i \text{ MeV}$

• Near threshold, scattering amplitude can be expanded as the power series of the momentum

$$k = \sqrt{2\mu(E - E_R)}$$

• S-Wave
$$f^{-1}(E) \sim \frac{1}{a} + \frac{r_e}{2}k^2 - ik + \mathcal{O}(k^4)$$

- In the limit of $\Gamma_0 \rightarrow 0$ and stable D^*
 - scattering length $a = (-16.5^{+7.0}_{-27.6})$ fm
 - effective range: $r_e = (-4.1^{+0.9}_{-3.3} + 2.8)_{-4.4}$ fm

The effective range expansion

[S. Weinberg, Phys. Rev. 137, B672 (1965)]

Z: field renormalization constant • *Z* = 0: pure bound (composite) state • *Z* = 1: pure elementary state $\beta^{-1} \approx \frac{1}{m_{\pi}} \approx 1.4$ fm, for both deuteron and the *X*(3872) $\gamma = \sqrt{2\mu E_b}$

Parameters	<i>X</i> (3872)	deuteron	
Nearby threshold	$D^{*0}\overline{D}{}^{0}$	pn	
a	$-16.5^{+7.0}_{-27.6}$ $^{+5.6}_{-27.7}$ fm	-5.41 fm	Different sign, may suggest an
r_e	$-4.1^{+0.9}_{-3.3}{}^{+2.8}_{-4.4}$ fm	1.75 fm	elementary cc core [A. Esposito PRD 105, L031503]
Range correction	negligible	important for r_e	\Rightarrow Close to 0 but can not be solved
Ζ	≈ 0.18	_	model-independently due to the range correction

Effective Range Expansion \rightarrow scattering length *a* and effective range r_e