Quark Models and Multiquark States

Bing-Song Zou

Tsinghua University Institute of Theoretical Physics, CAS

Outline:

- 1. Quenched quark models
- 2. Failures of quenched quark models
- 3. Multi-quark states as hadronic molecules
- 4. Unquenched quark model
- 5. Summary

1. Quenched Quark models

1964 – Invention of constituent Quark Model

Quark-antiquark meson

Three-quark baryon

Successful for SU(3) mesons and baryons of spatial ground states

• 1974 – Cornell potential for cc spectrum

E.Eichten et al., PRL 34 (1975) 369 1281 cites $\hat{H}_0 = \frac{p^2}{m_O} + V_0(r) + V_{\rm SD}(r)$ $V_0(r) = \sigma r - \frac{\frac{4}{3}\alpha_s}{r} + C_0$ (Cornell potential) $V_{SD}(r) = \underbrace{V_{LS}(r)(\boldsymbol{L} \cdot (\boldsymbol{S}_Q + \boldsymbol{S}_{\bar{Q}}))}_{\text{fine structure}} + \underbrace{V_{SS}(r)(\boldsymbol{S}_Q \cdot \boldsymbol{S}_{\bar{Q}})}_{\text{hyperfine structure}}$ $+\underbrace{V_{ST}(r)\Big((\boldsymbol{S}_{Q}\cdot\boldsymbol{S}_{\bar{Q}})-3(\boldsymbol{S}_{Q}\cdot\boldsymbol{n})(\boldsymbol{S}_{\bar{Q}}\cdot\boldsymbol{n})\Big)}_{m_{O}^{2}}\propto\frac{1}{m_{O}^{2}}$ spin tensor force

Extension to light mesons and baryons: surprisingly well !

S. Godfrey, N. Isgur, PRD 32 (1985) 1893221 citesMesons in a relativized quark model with chromodynamics3221 citesS.Capstick, N. Isgur, PRD 34 (1986) 28091464 citesBaryons in a relativized quark model with chromodynamics1464 cites

• 1984 – Chiral Quark Model

A. Manohar, H. Georgi, NPB 234 (1984) 189 2314 cites

quarks with masses generated by SχSB
 pions as Nambu-Goldstone bosons

- K. Shimizu, Phys. Lett. B 148, 418-422 (1984)
 > pseudo-scalar mesons + confining potential (CON)
- I. T. Obukhovsky and A. M. Kusainov, Phys. Lett. B 238, 142-148 (1990).
 > scalar and pseudo-scalar mesons + one-gluon exchange (OGE) + CON
- L. Y. Glozman and D. O. Riska, Phys. Rept. 268, 263-303 (1996); L. Y. Glozman, Nucl. Phys. A 663, 103-112 (2000).

pseudo-scalar and vector mesons + CON to study baryon spectrum

- L. R. Dai, Z. Y. Zhang, Y. W. Yu and P. Wang, Nucl. Phys. A 727, 321-332 (2003).
 > scalar, pseudo-scalar, vector mesons + OGE + CON to study phase shift of NN scattering
- J. Vijande, F. Fernandez and A. Valcarce, J. Phys. G 31, 481 (2005); J. Vijande and A. Valcarce, Phys. Lett. B 677, 36-38 (2009); A. Valcarce, H. Garcilazo, F. Fernandez and P. Gonzalez, Rept. Prog. Phys. 68 (2005), 965-1042.
 - > scalar, pseudo-scalar mesons + OGE + CON to study meson and baryon spectra.
 - > did not include the vector mesons for avoiding the double counting.

slide from Masa Harada

slide from Masa Harada

Problem and Proposal

\Box A chiral quark model with π and σ provides too much strong attractive force between two quarks which form a good diquark:

$$M_{N}^{(exp)} - M_{N}^{(theo)} = 262 \text{ MeV}$$

$$M_{\Lambda_{c}}^{(exp)} - M_{\Lambda_{c}}^{(theo)} = 322 \text{ MeV}$$

$$M_{\Lambda_{b}}^{(exp)} - M_{\Lambda_{b}}^{(theo)} = 359 \text{ MeV}$$

We use best fitted parameters in [J. Vijande, F. Fernandez and A. Valcarce, J. Phys. G 31, 481 (2005)].

 New chiral quark model with vector mesons

 ρ and ω are included based on the Hidden Local Symmetry(HLS)

$$\gg m_{
ho}$$
, $m_{\omega} \sim 780 \ MeV < \Lambda_{\chi}$!

• 2023 – Chiral Quark Model with HLS

B.R.He, M.Harada, B.S.Zou, PRD 108 (2023) 054025; EPJC 83 (2023) 1159

HLS - a systematic way to include (π, K, η, η') & $(\rho, K^*, \omega, \phi)$

Meson exchange ~ quark exchange effect

- Masses of N, Λ_c, Λ_b are fitted well, mainly owing to the effects of ω meson : attractive for qq & repulsive for qq
- Masses of all observed g.s. hadrons are beautifully fitted, with unobserved ones predicted in agreement with LQCD
- **T**_{cc}-molecule-like structure, T_{bb}-diquark-like structure

2. Failures of quenched quark models

• Five-quark components in the proton

Spin "crisis", $\overline{\mathbf{d}} - \overline{\mathbf{u}} \sim \mathbf{0.12}$, $\overline{\mathbf{s}}(\mathbf{x}) \neq \mathbf{s}(\mathbf{x})$ puzzles \rightarrow two possible solutions:

Meson clouds: Thomas, Speth, Weise, Oset, Brodsky, Ma, ...

$$p \ge \sim | uud \ge + \varepsilon_1 | n (udd) \pi^+ (\overline{d}u) \ge \\ + \varepsilon_2 | \Delta^{++} (uuu) \pi^- (\overline{ud}) \ge + \varepsilon' | \Lambda (uds) K^+ (\overline{s}u) \ge \dots$$

diquarks: Riska, Zou, Zhu, ...

 $|\mathbf{p} > \sim |\mathbf{uud} > + \varepsilon_1 | [\mathbf{ud}] | \mathbf{ud} | \mathbf{d} > + \varepsilon' | [\mathbf{ud}] | \mathbf{us} | \mathbf{s} > + \dots$

~30% pentaquarks in proton \rightarrow more in excited baryons !

New view: Pentaquark excitation dominates already for ¹/₂-

Classic quark model:

3q excited states

inject in energy

Pentaquark crucial for baryon spectroscopy and structure !

• Nature of 1/2⁻ baryon nonet with strangeness Zou, EPJA 35 (2008) 325

• Mass pattern : quenched or unquenched ?

uds (L=1) $1/2^- \sim \Lambda^*(1670) \sim [us][ds]$ \overline{s} K $\Xi - \eta\Lambda$ uud (L=1) $1/2^- \sim N^*(1535) \sim [ud][us]$ \overline{s} K $\Sigma - K\Lambda - \eta N$ uds (L=1) $1/2^- \sim \Lambda^*(1405) \sim [ud][su]$ \overline{u} $\overline{K}N - \pi\Sigma$ uus (L=1) $1/2^- \sim \Sigma^*(1390) \sim [us][ud]$ \overline{d} $\overline{K}N - \pi\Sigma - \pi\Lambda$ Zou et al, NPA835 (2010) 199 ; CLAS, PRC87(2013)035206

• Strange decays of N*(1535) and Λ *(1670) : N*(1535) large couplings $g_{N^*N\eta}$, $g_{N^*K\Lambda}$, $g_{N^*N\eta}$, $g_{N^*N\phi}$ Λ *(1670) large coupling $g_{\Lambda^*\Lambda\eta}$

• Nature of the lowest scalar mesons

 $D^*_{s0}(2317) \sim \underline{sc} (L=1) + [q s][qc] + DK + ...$ $D^*_{s1}(2460) \sim \underline{sc} (L=1) + D^*K + ...$ $X(3872) \sim \underline{cc} (L=1) + [q c][qc] + D^*D + ...$

Important implications:

<u>qqqqq</u> in S-state more favorable than <u>qqq</u> with L=1 !
 & qqqq in S-state more favorable than qq with L=1 !

1/2⁻ baryon nonet ~ $\overline{q}q^2q^2$ state + ... 0⁺ meson octet ~ \overline{q}^2q^2 state + ...

Draging out qq from gluon field – an important excitation mechanism for hadrons ! multiquark components are important for hadrons ! 3. Multi-quark states as hadronic molecules
 Prediction of pentaquarks with hidden charm & beauty:
 From KΣ, KN → DΣ_c, DΞ_c → BΣ_b, BΞ_b bound states

"Prediction of narrow N* and Λ* resonances with hidden charm above 4 GeV", Wu, Molina, Oset, Zou, PRL105 (2010) 232001

Vector meson exchange from hidden local symmetry

ssuud → ccuud

• prediction of three P_c pentaquark states $\rightarrow J/\psi$ -p : 1 $D\Sigma_c$ molecule + 2 $D^*\Sigma_c$ molecules

J.J.Wu, R.Molina, E.Oset, B.S.Zou, PRL 105 (2010) 232001 W.L.Wang, F.Huang, Z.Y.Zhang, B.S.Zou, PRC 84 (2011) 015203 J.J.Wu, T.H.Lee, B.S.Zou, PRC 85 (2012) 044002

• 4 more broader P_c states with $\Sigma_c \rightarrow \Sigma_c^*$: 1 $D\Sigma_c^*$ molecule + 3 $D^*\Sigma_c^*$ molecules

C.W.Xiao, J.Nieves, E.Oset, PRD 88 (2013) 056012

LHCb confirms our prediction of 3 narrow P_c states

A milestone for pentaquark search

S.M.Wu, F.Wang, B.S.Zou, PRC108(2023)045201

New Pa	rticles	relevar	relevant thresholds				
Z _c (3900) du cc	D*D	3880 MeV				
Z _c (4020))	D*D*	4020 MeV				
Z _b (1061	0) du bb	B*B	10605 MeV				
Z _b (1065	(0)	B*B*	10650 MeV				
P _c (4312	2) uud cc	$\overline{\mathrm{D}}\Sigma_{\mathbf{c}}$	4318 MeV				
P _c (4440) & P _c (4457)	$\overline{\mathrm{D}}^*\Sigma_{\mathbf{c}}$	4459 MeV				
Hadron-hadron resonances ?							

F.K.Guo, Hanhart, Meissner, Q.Wang, Q.Zhao, Zou, Rev.Mod.Phys.90 (2018)015004

A survey of hadronic molecules with hidden charm X.K.Dong, F.K.Guo, B.S.Zou Progr. Phys. 41 (2021) 65

18

Meson-meson molecules (I=0)

Baryon molecules (I=1) with cc

- Isovector interaction between $D^{(*)}\overline{D}^{(*)}$ from light vector exchange vanishes
- ✓ Charmonia exchange could be important here: J/ψ , ψ' exchange

✓ Z_c (3900,4020) as $\overline{D}^{(*)}D^*$ virtual states

- ✓ $Z_{cs}(3985)$ as $D_s \overline{D}^*$, $D\overline{D}_s^*$ virtual state
- ✓ $Z_c(4430)$ as $\overline{D}^*\overline{D}_1^*$ virtual states

Hadronic molecules with double charm T_{cc}⁺

The lowest possible double charm hadron molecule **DD*** :

A.V.Manohar, M.B.Wise, Nucl. Phys. B 399 (1993) 17 N.A.Törnqvist, Z. Phys. C 61 (1994) 525

$$V_{\pi}\left(\vec{q}\right) = -\frac{8g^2}{f^2} \vec{I}_1 \cdot \vec{I}_2 \ \frac{\left(\vec{S}_{\ell 1} \cdot \vec{q}\right) \left(\vec{S}_{\ell 2} \cdot \vec{q}\right)}{\vec{q}^{\ 2} + m_{\pi}^2}$$

With V_{π} only, BB* is bound, DD* is not bound.

But $V_{\rho,\omega}$ provide additional attractive force for I=0!

$$V_{\rho,\omega}\left(\vec{q}\right) = \frac{g_V^2}{\vec{q}^2 + m_V^2} \left\{ \frac{1}{2} \left(\vec{I}^2 - 3/2\right) + \frac{1}{4} \right\}$$

A survey of heavy-heavy hadronic molecules X.K.Dong, F.K.Guo, B.S.Zou, Commun.Theor.Phys.73(2021)125201

Explaining the many threshold structures in hadron spectrum with heavy quarks

X.K.Dong, F.K.Guo, B.S.Zou, PRL126 (2021) 152001

Prediction of a narrow exotic D^*D_1 molecule with $J^{PC} = 0^{--}$ T.Ji, X.K.Dong, F.K.Guo, B.S.Zou, PRL129 (2022) 102002 $e^+e^- \rightarrow \eta \psi_0(4360) \rightarrow \eta \eta \psi$

Hybrid, Glueball or hadronic molecules ?

Observation of η_1 (1855) with exotic J^{PC}=1⁻⁺ in J/ $\psi \rightarrow \gamma \eta \eta'$ BESIII Collaboration, PRL 129 (2022) 192002

Interpretation of the η₁(1855) as a KK₁ (1400)+ c.c. molecule X.K.Dong, Y.H.Lin, B.S.Zou, SCIENCE CHINA PMA 65 (2022) 261011 M.J.Yan, J.M.Dias, A.Guevara, F.K.Guo, B.S.Zou, Universe 9 (2023) 109

Two dynamical generated a₀ resonances by VV interactions Z.L.Wang, B.S.Zou, EPJC 82 (2022) 509

 $\rho\rho / \rho\omega$ molecules $\rightarrow f_0 (1500) / a_0 (1450)$

 $\overline{K^*K^*(I=0,1)}$ molecules $\rightarrow f_0(1710) / a_0(1710)$

Observation of a₀ (1710) $\rightarrow K_s^0 K^+$ in $D_s^+ \rightarrow K_s^0 K^+ \pi^0$ decay BESIII Collaboration, PRL 129 (2022) 182001

4. Unquenched quark model Unquenching dynamics: gluons → qq crucial for quark confinement & hadron structure

Unquenched quark model study of the charm-strange meson

W.Hao, Y.Lu, B.S.Zou, PRD106 (2022) 074014

TABLE III. Probabilities (in %) of the coupled channels considered in this work. For the convenience of comparison, values from columns 3 to 12 (various coupled channels) are rescaled by $P_{c\bar{s}}$, such that $P_{c\bar{s}} = 100\%$. e.g., for $D_{s0}^*(2317)$, $P_{c\bar{s}}:P_{DK} = 100:45.5$ "-" means that the corresponding channel is open and its contribution to the wave function normalization is discarded, see the discussion below Eq. (15). $P_{c\bar{s}}$ and P_{molecule} represent the probability of the $c\bar{s}$ and the summation of the probability of all the coupled channels, respectively.

$(n_r+1)^{2S+1}L_J$	State	DK	DK^*	D^*K	D^*K^*	$D_s\eta$	$D_s\eta'$	$D_s \phi$	$D_s^*\eta$	$D_s^*\eta'$	$D_s^* \phi$	P _{molecule}	$P_{c\bar{s}}$
$1^{1}S_{0}$	D_s	0.0	4.3	3.5	8.5	0.0	0.0	1.1	0.7	0.2	2.2	17.0	83.0
$1^{3}S_{1}$	D_s^*	2.5	4.2	3.8	13.9	0.4	0.1	1.0	0.7	0.2	3.5	23.2	76.8
$1^{3}P_{0}$	$D_{s0}^{*}(2317)$	45.5	0.0	0.0	19.9	1.7	0.2	0.0	0.0	0.0	4.2	40.3	59.7
1 <i>P</i>	$D_{s1}^{s0}(2460)$	0.0	8.5	42.8	19.1	0.0	0.0	1.3	1.8	0.3	3.8	43.7	56.3
1P'	$D_{s1}(2536)$	_	10.8	_	17.9	_	_	1.7	1.9	0.4	3.4	26.5	73.5
$1^{3}P_{2}$	$D_{s2}^{*}(2573)$	_	8.5	_	22.8	_	0.2	1.4	1.2	0.3	4.0	27.7	72.3
$2^{1}S_{0}^{-}$	$D_{s0}(2590)$	_	20.4	_	26.2	_	_	2.0	4.1	0.4	3.7	36.2	63.8
$2^{3}S_{1}$	$D_{s1}^{*}(2700)$	_	51.3	_	47.3	_	0.2	1.6	_	0.3	4.7	51.3	48.7
$1^{3}D_{1}$	$D_{s1}^{*}(2860)$	_	_	_	47.6	_	0.5	0.6	_	0.1	5.8	35.3	64.7
1 <i>D</i>	_	_	_	_	35.4	_	_	2.0	_	0.4	4.1	29.5	70.5
1D'	_	_	_	_	46.9	_	_	2.3	_	0.4	3.9	34.9	65.1
$1^{3}D_{3}$	$D_{s3}^{*}(2860)$	_	_	_	54.4	_	0.2	1.4	_	0.3	3.8	37.5	62.5
$2^{3}P_{0}^{2}$		_	_	_	167.5	—	0.6	—	_	—	4.0	63.2	36.8

Note: even for Ds (g.s.) there is 17% tetra-quark components

5. Summary and prospects

vector meson exchange is very important for light quark interactions as well as for hadron interactions

quark model needs to be unquenched

• observed multiquark states can be explained as hadronic molecules, many more are predicted

Further experimental confirmation and extension for whole multiquark spectroscopy are necessary

ep/γp@JLab, π10/K10@JPARC, BelleII, BESIII, Eic/EicC, PANDA@FAIR, STCF etc. may play a important role here!

Thank you for your attention!

Strange partners of P_c and P_{cs} states

ΚΣ* ~1880 N*(1875)

N*(2080)

K*Σ ~ 2086 K*Σ* ~ 2280N*(2270)

KE ~1810 KE* ~ 2027 K*E ~ 2210 K*E* ~ 2427 $\Lambda(1/2^{-})$ $\Lambda(3/2^{-})$ $\Lambda(1/2^{-},3/2^{-})$ $\Lambda(1/2^{-},3/2^{-},5/2^{-})$

K*N ~1833 : $\Lambda(1800)1/2^{-}, \Lambda(3/2^{-})$

Strangeness partners of P_c states at BES ?N*(1875)N*(2080)N*(2270)K Σ * ~1880K* Σ ~ 2086K* Σ * ~ 2280

