

All-orders evolution of PDFs and proton spin

J. Rodríguez-Quintero

Strong QCD from Hadron Structure Experiments, May 14th - 17th, 2024.

QCD: Basic Facts

QCD is characterized by two emergent phenomena: confinement and dynamical generation of mass (DGM).

- Quarks and gluons not *isolated* in nature.
- → Formation of colorless bound states: "<u>Hadrons</u>"
- I-fm scale size of hadrons?

$$\begin{split} \mathcal{L}_{\text{QCD}} &= \sum_{j=u,d,s,\dots} \bar{q}_j [\gamma_\mu D_\mu + m_j] q_j + \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu}, \\ D_\mu &= \partial_\mu + i g \frac{1}{2} \lambda^a A^a_\mu, \\ G^a_{\mu\nu} &= \partial_\mu A^a_\nu + \partial_\nu A^a_\mu - \underline{g f^{abc}} A^b_\mu A^c_\nu, \end{split}$$

 Emergence of hadron masses (EHM) from QCD dynamics

QCD: Basic Facts

QCD is characterized by two emergent phenomena: confinement and dynamical generation of mass (DGM).

Can we trace them down to fundamental d.o.f ?

Emergence of hadron masses (EHM) from QCD dynamics (Dynamical Chiral Symmetry Breaking) **Dynamical masses Schwinger** Ge/ M(k) [GeV] DCSB 0.100 0.3 mg(k). masses Bottom 0.2Charm 0.010 Strange M₀(k) Jp/Down 0.1 Chiral limit 0.001 0.0 2 3 k [GeV] 3 0 2 $S_f^{-1}(p) = Z_f^{-1}(p^2)(i\gamma \cdot p + \mathbf{M_f(p^2)})$ k / GeV Gluon and guark running masses

 $\mathcal{L}_{\text{QCD}} = \sum \bar{q}_j [\gamma_\mu D_\mu + m_j] q_j + \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu},$

j=u,d,s,...

 $D_{\mu} = \partial_{\mu} + ig\frac{1}{2}\lambda^a A^a_{\mu} \,,$

 $G^a_{\mu\nu} = \partial_\mu A^a_\nu + \partial_\nu A^a_\mu - g f^{abc} A^b_\mu A^c_\nu,$

QCD: Basic Facts

Confinement and the EHM are tightly connected with QCD's running coupling.

• Fully-dressed valence quarks

(quasiparticles)

• Unveiling of glue and sea d.o.f.

(partons)

- Fully-dressed valence quarks
- At this scale, **all properties** of the hadron are contained within their valence quarks.
- QCD constraints are defined from here (e.g. large-x behavior of the PDF)

$$u^{\pi}(x;\zeta) \stackrel{x \simeq 1}{\sim} (1-x)^{\beta = 2+\gamma(\zeta)}$$

- Fully-dressed valence quarks
- At this scale, **all properties** of the hadron are contained within their valence quarks.
- QCD constraints are defined from here (e.g. large-x behavior of the PDF)

$$u^{\pi}(x;\zeta) \stackrel{x \simeq 1}{\sim} (1-x)^{\beta = 2+\gamma(\zeta)}$$

- **CSM** results produce:
 - EHM-induced dilated distributions
 - Soft end-point behavior

2

- Unveiling of glue and sea d.o.f.
- > **Experimental** data is given here.
- The interpretation of parton distributions from cross sections demands special care.
- In addition, the synergy with lattice QCD and phenomenological approaches is welcome.

- Unveiling of glue and sea d.o.f.
- Experimental data is given here.
- The interpretation of parton distributions from cross sections demands special care.
- In addition, the synergy with lattice QCD and phenomenological approaches is welcome.

- Fully-dressed valence quarks
- At this scale, all properties of the hadron are contained within their valence quarks.
- QCD constraints are defined from here (e.g. large-x behavior of the PDF)

$$u^{\pi}(x;\zeta) \stackrel{x \simeq 1}{\sim} (1-x)^{\beta = 2+\gamma(\zeta)}$$

- Unveiling of glue and sea d.o.f.
- Experimental data is given here.
- The interpretation of parton distributions from cross sections demands special care.
- In addition, the synergy with lattice QCD and phenomenological approaches is welcome.

- Fully-dressed valence quarks
- At this scale, all properties of the hadron are contained within their valence quarks.
- QCD constraints are defined from here (e.g. large-x behavior of the PDF)

$$u^{\pi}(x;\zeta) \stackrel{x \simeq 1}{\sim} (1-x)^{\beta = 2+\gamma(\zeta)}$$

- Unveiling of glue and sea d.o.f.
- Experimental data is given here.
- The interpretation of parton distributions from cross sections demands special care.
- In addition, the synergy with lattice QCD and phenomenological approaches is welcome.

Raya:2021zrz Cui:2020tdf

$$\left\{ \zeta^2 \frac{d}{d\zeta^2} \int_0^1 dy \delta(y-x) \ - \ \frac{\alpha(\zeta^2)}{4\pi} \int_x^1 \ \frac{dy}{y} \left(\begin{array}{cc} P_{qq}^{\rm NS} \left(\frac{x}{y}\right) & 0\\ 0 & \mathbf{P}^{\rm S} \left(\frac{\mathbf{x}}{\mathbf{y}}\right) \end{array} \right) \right\} \left(\begin{array}{c} H_{\pi}^{\rm NS,+}(y,t;\zeta) \\ \mathbf{H}_{\pi}^{\rm S}(y,t;\zeta) \end{array} \right) \ = \ 0$$

DGLAP leading-order evolution equations

Assumption: define an effective charge such that

Assumption: define an effective charge such that

PDFs DGLAP evolutions equations, expressed by the corresponding massless splitting functions:

$$\begin{aligned} \zeta^2 \frac{d}{d\zeta^2} q_{\mathsf{H}}(x) &= \frac{\alpha(\zeta^2)}{4\pi} \int_x^1 \frac{dy}{y} P_{q \leftarrow q}\left(\frac{x}{y}\right) q_{\mathsf{H}}(y) & \text{singlet combination} \\ \zeta^2 \frac{d}{d\zeta^2} \Sigma_{\mathsf{H}}^q(x) &= \frac{\alpha(\zeta^2)}{4\pi} \int_x^1 \frac{dy}{y} \left\{ P_{q \leftarrow q}\left(\frac{x}{y}\right) \Sigma_{\mathsf{H}}^q(y) + 2P_{q \leftarrow g}^\zeta\left(\frac{x}{y}\right) g_{\mathsf{H}}(y) \right\} \\ \zeta^2 \frac{d}{d\zeta^2} g_{\mathsf{H}}(x) &= \frac{\alpha(\zeta^2)}{4\pi} \int_x^1 \frac{dy}{y} \left\{ P_{g \leftarrow q}\left(\frac{x}{y}\right) \Sigma_{\mathsf{H}}^q(y) + 2P_{q \leftarrow g}^\zeta\left(\frac{x}{y}\right) g_{\mathsf{H}}(y) \right\} \end{aligned}$$

PDFs DGLAP evolutions equations, expressed by the corresponding massless splitting functions:

$$\begin{aligned} & \zeta^2 \frac{d}{d\zeta^2} q_{\mathsf{H}}(x) \ = \ \frac{\alpha(\zeta^2)}{4\pi} \int_x^1 \frac{dy}{y} P_{q \leftarrow q}\left(\frac{x}{y}\right) q_{\mathsf{H}}(y) \\ & \zeta^2 \frac{d}{d\zeta^2} \varphi_{\mathsf{H}}(x) \ = \ \frac{\alpha(\zeta^2)}{4\pi} \int_x^1 \frac{dy}{y} \left\{ P_{q \leftarrow q}\left(\frac{x}{y}\right) \Sigma_{\mathsf{H}}^q(y) + 2P_{q \leftarrow g}^\zeta\left(\frac{x}{y}\right) g_{\mathsf{H}}(y) \right\} \\ & \zeta^2 \frac{d}{d\zeta^2} g_{\mathsf{H}}(x) \ = \ \frac{\alpha(\zeta^2)}{4\pi} \int_x^1 \frac{dy}{y} \left\{ P_{q \leftarrow q}\left(\frac{x}{y}\right) \Sigma_{\mathsf{H}}^q(y) + 2P_{q \leftarrow g}^\zeta\left(\frac{x}{y}\right) g_{\mathsf{H}}(y) \right\} \\ & \zeta^2 \frac{d}{d\zeta^2} g_{\mathsf{H}}(x) \ = \ \frac{\alpha(\zeta^2)}{4\pi} \int_x^1 \frac{dy}{y} \left\{ P_{g \leftarrow q}\left(\frac{x}{y}\right) \Sigma_{\mathsf{H}}^q(y) + P_{g \leftarrow g}\left(\frac{x}{y}\right) g_{\mathsf{H}}(y) \right\} \end{aligned}$$

Valence-quark PDF in Mellin space

$$\zeta^2 \frac{d}{d\zeta^2} \langle x^n \rangle_{q_H}^{\zeta} = -\frac{\alpha(\zeta^2)}{4\pi} \gamma_{qq}^n \langle x^n \rangle_{q_H}^{\zeta}$$

PDFs DGLAP evolutions equations, expressed by the corresponding massless splitting functions:

splitting functions:

$$\frac{\zeta^2 \frac{d}{d\zeta^2} q_{\mathsf{H}}(x) = \frac{\alpha(\zeta^2)}{4\pi} \int_x^1 \frac{dy}{y} P_{q \leftarrow q}\left(\frac{x}{y}\right) q_{\mathsf{H}}(y)}{\int_x^2 \frac{d}{d\zeta^2} \Sigma_{\mathsf{H}}^q(x) = \frac{\alpha(\zeta^2)}{4\pi} \int_x^1 \frac{dy}{y} \left\{ P_{q \leftarrow q}\left(\frac{x}{y}\right) \Sigma_{\mathsf{H}}^q(y) + 2P_{q \leftarrow g}^{\zeta}\left(\frac{x}{y}\right) g_{\mathsf{H}}(y) \right\} \\
\zeta^2 \frac{d}{d\zeta^2} g_{\mathsf{H}}(x) = \frac{\alpha(\zeta^2)}{4\pi} \int_x^1 \frac{dy}{y} \left\{ P_{q \leftarrow q}\left(\frac{x}{y}\right) \Sigma_{\mathsf{H}}^q(y) + 2P_{q \leftarrow g}^{\zeta}\left(\frac{x}{y}\right) g_{\mathsf{H}}(y) \right\} \\
\zeta^2 \frac{d}{d\zeta^2} g_{\mathsf{H}}(x) = \frac{\alpha(\zeta^2)}{4\pi} \int_x^1 \frac{dy}{y} \left\{ P_{g \leftarrow q}\left(\frac{x}{y}\right) \Sigma_{\mathsf{H}}^q(y) + P_{g \leftarrow g}\left(\frac{x}{y}\right) g_{\mathsf{H}}(y) \right\}$$

Valence-quark PDF in Mellin space

$$\zeta^2 \frac{d}{d\zeta^2} \langle x^n \rangle_{q_H}^{\zeta} = -\frac{\alpha(\zeta^2)}{4\pi} \gamma_{qq}^n \langle x^n \rangle_{q_H}^{\zeta}$$

$$\langle x^n \rangle_{q_H}^{\zeta} = \langle x^n \rangle_{q_H}^{\zeta_H} \exp\left(-\frac{\gamma_{qq}^n}{2\pi} \int_{\zeta_H}^{\zeta} \frac{dz}{z} \alpha(z^2)\right)$$

PDFs DGLAP evolutions equations, expressed by the corresponding massless splitting functions:

0.0

0.01

0.1

k/GeV

Moments' evolution is controlled by the integrated "strength" of the coupling beyond the hadron scale

10

PDFs DGLAP evolutions equations, expressed by the corresponding massless splitting functions:

$$\begin{split} & \sum_{q \in Q} \frac{\zeta^2}{d\zeta^2} q_{\mathsf{H}}(x) \ = \ \frac{\alpha(\zeta^2)}{4\pi} \int_x^1 \frac{dy}{y} P_{q \leftarrow q}\left(\frac{x}{y}\right) q_{\mathsf{H}}(y) \\ & \zeta^2 \frac{d}{d\zeta^2} \Sigma_{\mathsf{H}}^q(x) \ = \ \frac{\alpha(\zeta^2)}{4\pi} \int_x^1 \frac{dy}{y} \left\{ P_{q \leftarrow q}\left(\frac{x}{y}\right) \Sigma_{\mathsf{H}}^q(y) + 2P_{q \leftarrow g}^\zeta\left(\frac{x}{y}\right) g_{\mathsf{H}}(y) \right\} \\ & \zeta^2 \frac{d}{d\zeta^2} g_{\mathsf{H}}(x) \ = \ \frac{\alpha(\zeta^2)}{4\pi} \int_x^1 \frac{dy}{y} \left\{ P_{q \leftarrow q}\left(\frac{x}{y}\right) \Sigma_{\mathsf{H}}^q(y) + 2P_{q \leftarrow g}^\zeta\left(\frac{x}{y}\right) g_{\mathsf{H}}(y) \right\} \\ & \zeta^2 \frac{d}{d\zeta^2} g_{\mathsf{H}}(x) \ = \ \frac{\alpha(\zeta^2)}{4\pi} \int_x^1 \frac{dy}{y} \left\{ P_{g \leftarrow q}\left(\frac{x}{y}\right) \Sigma_{\mathsf{H}}^q(y) + P_{g \leftarrow g}\left(\frac{x}{y}\right) g_{\mathsf{H}}(y) \right\} \end{split}$$

Valence-quark PDF in Mellin space

$$\zeta^2 \frac{d}{d\zeta^2} \langle x^n \rangle_{q_H}^{\zeta} = -\frac{\alpha(\zeta^2)}{4\pi} \gamma_{qq}^n \langle x^n \rangle_{q_H}^{\zeta}$$

$$\langle x^n \rangle_{q_H}^{\zeta} = \langle x^n \rangle_{q_H}^{\zeta_H} \exp\left(-\frac{\gamma_{qq}^n}{2\pi} \int_{\zeta_H}^{\zeta} \frac{dz}{z} \alpha(z^2)\right) = \langle x^n \rangle_{q_H}^{\zeta_H} \underbrace{\left[S(\zeta_H, \zeta)\right]}^{\gamma_{qq}^n/\gamma_{qq}}$$

The ratio of lightcone momentum fractions encodes the required information of the charge $\frac{\langle x \rangle_{q_H}^{\zeta}}{\langle x \rangle_{q_H}^{\zeta_H}} = \exp\left(-\frac{\gamma_{qq}}{2\pi}\int_{\zeta_H}^{\zeta}\frac{dz}{z}\alpha(z^2)\right)$

Implication 1: valence-quark PDF

$$\langle x^n \rangle_{q_H}^{\zeta} = \langle x^n \rangle_{q_H}^{\zeta_H} \exp\left(-\frac{\gamma_{qq}^n}{2\pi} \int_{\zeta_H}^{\zeta} \frac{dz}{z} \alpha(z^2)\right) = \langle x^n \rangle_{q_H}^{\zeta_H} \left[\frac{\langle x \rangle_{q_H}^{\zeta}}{\langle x \rangle_{q_H}^{\zeta_H}}\right]^{\gamma_{qq}/\gamma_{qq}}$$

Direct connection bridging from hadron to experimental scale: only one input is needed to evolve "all" the Mellin moments up and reconstruct the PDF.

This ratio encodes the information of the charge

- n / -.

Implication 1: valence-quark PDF

$$\langle x^n \rangle_{q_\pi}^{\zeta} = \langle x^n \rangle_{q_\pi}^{\zeta_H} \exp\left(-\frac{\gamma_{qq}^n}{2\pi} \int_{\zeta_H}^{\zeta} \frac{dz}{z} \alpha(z^2)\right) = \langle x^n \rangle_{q_\pi}^{\zeta_H} \left[\langle 2x \rangle_{q_\pi}^{\zeta}\right]^{\gamma_{qq}^n/\gamma_{qq}}$$

Direct connection bridging from hadron to experimental scale: only one input is needed to evolve "all" the Mellin moments up and reconstruct the PDF.

This ratio encodes the information of the charge and use isospin symmetry (pion case) $\langle x \rangle_{u_{\pi}}^{\zeta_{H}} = \langle x \rangle_{d_{\pi}}^{\zeta_{H}} = \frac{1}{2}$

Implication 1: valence-quark PDF

$$\langle x^n \rangle_{q_\pi}^{\zeta} = \langle x^n \rangle_{q_\pi}^{\zeta_H} \exp\left(-\frac{\gamma_{qq}^n}{2\pi} \int_{\zeta_H}^{\zeta} \frac{dz}{z} \alpha(z^2)\right) = \langle x^n \rangle_{q_\pi}^{\zeta_H} \left[\langle 2x \rangle_{q_\pi}^{\zeta}\right]^{\gamma_{qq}^n/\gamma_{qq}}$$

Direct connection bridging from hadron to experimental scale: only one input is needed to evolve "all" the Mellin moments up and reconstruct the PDF.

This ratio encodes the information of the charge and use isospin symmetry (pion case) $\langle x \rangle_{u_{\pi}}^{\zeta_{H}} = \langle x \rangle_{d_{\pi}}^{\zeta_{H}} = \frac{1}{2}$

Capitalizing on the Mellin moments of asymptotically large order:

$$egin{aligned} q(x;\zeta) &\sim \ x o 1 \ x$$

Implication 1: valence-quark PDF

$$\langle x^n \rangle_{q_\pi}^{\zeta} = \langle x^n \rangle_{q_\pi}^{\zeta_H} \exp\left(-\frac{\gamma_{qq}^n}{2\pi} \int_{\zeta_H}^{\zeta} \frac{dz}{z} \alpha(z^2)\right) = \langle x^n \rangle_{q_\pi}^{\zeta_H} \left[\langle 2x \rangle_{q_\pi}^{\zeta}\right]^{\gamma_{qq}^n/\gamma_{qq}}$$

Direct connection bridging from hadron to experimental scale: only one input is needed to evolve "all" the Mellin moments up and reconstruct the PDF.

This ratio encodes the information of the charge and use isospin symmetry (pion case) $\langle x \rangle_{u_{\pi}}^{\zeta_{H}} = \langle x \rangle_{d_{\pi}}^{\zeta_{H}} = \frac{1}{2}$

Capitalizing on the Mellin moments of asymptotically large order:

$$egin{aligned} q(x;\zeta) &\sim \ x o 1 \ x$$

Under a sensible assumption at large momentum scale:

$$q(x;\zeta) \underset{x o 0}{\sim} x^{lpha(\zeta)} (1 + \mathcal{O}(x))$$

 $1 + lpha(\zeta) = rac{3}{2} \langle x(\zeta)
angle \ln rac{\langle x(\zeta_H)
angle}{\langle x(\zeta)
angle} + eta(\zeta_H) \langle x(\zeta)
angle + \mathcal{O}\left(rac{\langle x(\zeta)
angle}{\ln rac{\langle x(\zeta_H)
angle}{\langle x(\zeta)
angle}}
ight)$

Implication 1: valence-quark PDF

$$\langle x^n \rangle_{q_\pi}^{\zeta} = \langle x^n \rangle_{q_\pi}^{\zeta_H} \exp\left(-\frac{\gamma_{qq}^n}{2\pi} \int_{\zeta_H}^{\zeta} \frac{dz}{z} \alpha(z^2)\right) = \langle x^n \rangle_{q_\pi}^{\zeta_H} \left[\langle 2x \rangle_{q_\pi}^{\zeta}\right]^{\gamma_{qq}^n/\gamma_{qq}}$$

Direct connection bridging from hadron to experimental scale: only one input is needed to evolve "all" the Mellin moments up and reconstruct the PDF.

Capitalizing on the Mellin moments of asymptotically large order:

$$q(x;\zeta) \underset{x \to 1}{\sim} (1-x)^{eta(\zeta)} (1+\mathcal{O}(1-x)) \ eta(\zeta) = eta(\zeta_H) + rac{3}{2} \ln rac{\langle x(\zeta_H)
angle}{\langle x(\zeta)
angle}$$

Under a sensible assumption at large momentum scale:

 $q(x;\zeta) \underset{x \to 0}{\sim} x^{\alpha(\zeta)} (1 + \mathcal{O}(x))$ $1 + \alpha(\zeta) = \frac{3}{2} \langle x(\zeta) \rangle \ln \frac{\langle x(\zeta_H) \rangle}{\langle x(\zeta) \rangle} + \beta(\zeta_H) \langle x(\zeta) \rangle + \mathcal{O}\left(\frac{\langle x(\zeta) \rangle}{\ln \frac{\langle x(\zeta_H) \rangle}{\langle x(\zeta) \rangle}}\right)$

This ratio encodes the information of the charge and use isospin symmetry (pion case) $\langle x \rangle_{u_{\pi}}^{\zeta_{H}} = \langle x \rangle_{d_{\pi}}^{\zeta_{H}} = \frac{1}{2}$

Implication 2: recursion of Mellin moments (pion case)

$$\begin{split} \langle x^{2n+1} \rangle_{u_{\pi}}^{\zeta_{H}} &= \frac{1}{2(n+1)} \\ \times \sum_{j=0,1,\dots}^{2n} (-)^{j} \left(\begin{array}{c} 2(n+1) \\ j \end{array} \right) \langle x^{j} \rangle_{u_{\pi}}^{\zeta_{H}} \end{split}$$

• Since isospin symmetry limit implies:

$$q(x;\zeta_H) = q(1-x;\zeta_H)$$

 Odd moments can be expressed in terms of previous even moments.

Implication 2: recursion of Mellin moments (pion case)

$$\begin{split} \langle x^{2n+1} \rangle_{u_{\pi}}^{\zeta} &= \frac{(\langle 2x \rangle_{u_{\pi}}^{\zeta}) \gamma_0^{2n+1} / \gamma_0^1}{2(n+1)} \\ &\times \sum_{j=0,1,\dots}^{2n} (-)^j \left(\begin{array}{c} 2(n+1) \\ j \end{array} \right) \langle x^j \rangle_{u_{\pi}}^{\zeta} (\langle 2x \rangle_{u_{\pi}}^{\zeta})^{-\gamma_0^j / \gamma_0^1}. \end{split}$$

• Since isospin symmetry limit implies:

$$q(x;\zeta_H) = q(1-x;\zeta_H)$$

 Odd moments can be expressed in terms of previous even moments.

Implication 2: recursion of Mellin moments (pion case)

$$\begin{split} \langle x^{2n+1} \rangle_{u_{\pi}}^{\zeta} &= \frac{(\langle 2x \rangle_{u_{\pi}}^{\zeta}) \gamma_{0}^{2n+1} / \gamma_{0}^{1}}{2(n+1)} \\ &\times \sum_{j=0,1,\dots}^{2n} (-)^{j} \begin{pmatrix} 2(n+1) \\ j \end{pmatrix} \langle x^{j} \rangle_{u_{\pi}}^{\zeta} (\langle 2x \rangle_{u_{\pi}}^{\zeta})^{-\gamma_{0}^{j} / \gamma_{0}^{1}}. \end{split}$$

Since isospin symmetry limit implies:

- Odd moments can be expressed in terms of previous even moments.
- Thus arriving at the recurrence **relation** on the left which is satisfied if, and only if, the source distribution is related by evolution to a symmetric one at the initial scale .

Implication 2: recursion of Mellin moments (pion case)

$$\begin{split} \langle x^{2n+1} \rangle_{u_{\pi}}^{\zeta} &= \frac{(\langle 2x \rangle_{u_{\pi}}^{\zeta}) \gamma_{0}^{2n+1} / \gamma_{0}^{1}}{2(n+1)} \\ &\times \sum_{j=0,1,\dots}^{2n} (-)^{j} \begin{pmatrix} 2(n+1) \\ j \end{pmatrix} \langle x^{j} \rangle_{u_{\pi}}^{\zeta} (\langle 2x \rangle_{u_{\pi}}^{\zeta})^{-\gamma_{0}^{j} / \gamma_{0}^{1}}. \end{split}$$

Reported lattice moments agree very well with the recursion formula

- 15	$\langle x^n \rangle_1^n$	ς5 μ _π
n	Ref. [99]	Eq. (17)
1	0.230(3)(7)	0.230
2	0.087(5)(8)	0.087
3	0.041(5)(9)	0.041
4	0.023(5)(6)	0.023
5	0.014(4)(5)	0.015
6	0.009(3)(3)	0.009
7		0.0078

Since isospin symmetry limit implies:

- Odd moments can be expressed in terms of previous even moments.
- Thus arriving at the recurrence **relation** on the left which is satisfied if, and only if, the source distribution is related by evolution to a symmetric one at the initial scale .

Implication 2: recursion of Mellin moments (pion case)

$$\begin{split} \langle x^{2n+1} \rangle_{u_{\pi}}^{\zeta} &= \frac{(\langle 2x \rangle_{u_{\pi}}^{\zeta}) \gamma_{0}^{2n+1} / \gamma_{0}^{1}}{2(n+1)} \\ &\times \sum_{j=0,1,\dots}^{2n} (-)^{j} \begin{pmatrix} 2(n+1) \\ j \end{pmatrix} \langle x^{j} \rangle_{u_{\pi}}^{\zeta} (\langle 2x \rangle_{u_{\pi}}^{\zeta})^{-\gamma_{0}^{j} / \gamma_{0}^{1}}. \end{split}$$

Reported lattice moments agree very well with the recursion formula and so also does and estimate for the 7-th moment from lattice reconstruction.

	$\langle x^n \rangle_i^q$	5 4π
n	Ref. [99]	Eq. (17)
1	0.230(3)(7)	0.230
2	0.087(5)(8)	0.087
3	0.041(5)(9)	0.041
4	0.023(5)(6)	0.023
5	0.014(4)(5)	0.015
6	0.009(3)(3)	0.009
7	0.0065(24)	0.0078

Since isospin symmetry limit implies:

- Odd moments can be expressed in terms of previous even moments.
- Thus arriving at the recurrence **relation** on the left which is satisfied if, and only if, the source distribution is related by evolution to a symmetric one at the initial scale .

Implication 2: recursion of Mellin moments (pion case)

$$\langle x^{2n+1} \rangle_{u_{\pi}}^{\zeta} = \frac{(\langle 2x \rangle_{u_{\pi}}^{\zeta}) \gamma_{0}^{2n+1} / \gamma_{0}^{1}}{2(n+1)} \\ \times \sum_{j=0,1,\dots}^{2n} (-)^{j} \begin{pmatrix} 2(n+1) \\ j \end{pmatrix} \langle x^{j} \rangle_{u_{\pi}}^{\zeta} (\langle 2x \rangle_{u_{\pi}}^{\zeta})^{-\gamma_{0}^{j} / \gamma_{0}^{1}}.$$

Reported lattice moments agree very well with the recursion formula and so also does and estimate for the 7-th moment from lattice reconstruction.

Moments from global fits can be also compared to the estimated from recursion !

[99] C. Alexandrou et	I., PRD104(2021)05	4504
-----------------------	--------------------	------

 $\langle x^n \rangle_{u_\pi}^{\zeta_5}$ Ref. [99] Eq. (17) 1|0.230(3)(7)|0.2300.087(5)(8)0.0873|0.041(5)|0.0414 | 0.023(5)0.0235|0.0140.0150.0096|0.009(3)(3)|.0065(240.0078

Since isospin symmetry limit implies:

- Odd moments can be expressed in terms of previous even moments.
- Thus arriving at the recurrence **relation** on the left which is satisfied if, and only if, the source distribution is related by evolution to a symmetric one at the initial scale .

Implication 3: physical bounds (pion case).

Keeping isospin symmetry, implying:

$$q(x;\zeta_H) = q(1-x;\zeta_H)$$

$$\langle x^n \rangle_{u_\pi}^{\zeta} (\langle 2x \rangle_{u_\pi}^{\zeta})^{-\gamma_0^n/\gamma_0^1}$$

Implication 3: physical bounds (pion case).

$$\frac{1}{2^n} \leq \langle x^n \rangle_{u_\pi}^{\zeta} (\langle 2x \rangle_{u_\pi}^{\zeta})^{-\gamma_0^n/\gamma_0^1}$$

$$q(x; \zeta_H) = \delta(x - 1/2)$$

Keeping isospin symmetry, implying:

$$q(x;\zeta_H) = q(1-x;\zeta_H)$$

• Lower bound is imposed by considering the limit of a system of two strongly massive and maximally correlated) partons: both carry half of the momentum.

Implication 3: physical bounds (pion case).

$$\frac{1}{2^n} \leq \langle x^n \rangle_{u_\pi}^{\zeta} (\langle 2x \rangle_{u_\pi}^{\zeta})^{-\gamma_0^n/\gamma_0^1} \leq \frac{1}{1+n}$$

$$q(x; \zeta_H) = \delta(x-1/2) \qquad q(x; \zeta_H) = 1$$

Keeping isospin symmetry, implying:

$$q(x;\zeta_H) = q(1-x;\zeta_H)$$

- Lower bound is imposed by considering the limit of a system of two strongly massive and maximally correlated) partons: both carry half of the momentum.
- Upper bound comes out from considering the opposite limit of a weekly interacting system of two (then fully decorrelated) partons: all the momentum fractions are equally probable.

Implication 3: physical bounds (pion case)

$$\frac{1}{2^n} \leq \langle x^n \rangle_{u_\pi}^{\zeta} (\langle 2x \rangle_{u_\pi}^{\zeta})^{-\gamma_0^n/\gamma_0^1} \leq \frac{1}{1+n}$$

$$q(x;\zeta_H) = \delta(x-1/2) \qquad q(x;\zeta_H) = 1$$

Keeping isospin symmetry, implying:

$$q(x;\zeta_H) = q(1-x;\zeta_H)$$

- Lower bound is imposed by considering the limit of a system of two strongly massive and maximally correlated) partons: both carry half of the momentum.
- Upper bound comes out from considering the opposite limit of a weekly interacting system of two (then fully decorrelated) partons: all the momentum fractions are equally probable.

n	[61]	[62]	[63]
1	0.254(03)	0.18(3)	0.23(3)(7)
2	0.094(12)	0.064(10)	0.087(05)(08)
3	0.057(04)	0.030(05)	0.041(05)(09)
4			0.023(05)(06)
5			0.014(04)(05)
6			0.009(03)(03)

Lattice moments verifying the recurrence relation too.

Cui:2020tdf PDFs DGLAP evolutions equations, expressed by the corresponding massless splitting functions:

$$\begin{aligned} \zeta^2 \frac{d}{d\zeta^2} q_{\mathsf{H}}(x) &= \frac{\alpha(\zeta^2)}{4\pi} \int_x^1 \frac{dy}{y} P_{q \leftarrow q}\left(\frac{x}{y}\right) q_{\mathsf{H}}(y) & \text{singlet combination} \\ \zeta^2 \frac{d}{d\zeta^2} \Sigma^q_{\mathsf{H}}(x) &= \frac{\alpha(\zeta^2)}{4\pi} \int_x^1 \frac{dy}{y} \left\{ P_{q \leftarrow q}\left(\frac{x}{y}\right) \Sigma^q_{\mathsf{H}}(y) + 2P^{\zeta}_{q \leftarrow g}\left(\frac{x}{y}\right) g_{\mathsf{H}}(y) \right\} \\ \zeta^2 \frac{d}{d\zeta^2} g_{\mathsf{H}}(x) &= \frac{\alpha(\zeta^2)}{4\pi} \int_x^1 \frac{dy}{y} \left\{ P_{q \leftarrow q}\left(\frac{x}{y}\right) \Sigma^q_{\mathsf{H}}(y) + 2P^{\zeta}_{q \leftarrow g}\left(\frac{x}{y}\right) g_{\mathsf{H}}(y) \right\} \end{aligned}$$

Quark singlet and glue PDFs in Mellin space

Hard-wall threshold

Quark singlet and glue PDFs in Mellin space
$$\begin{aligned} \mathcal{P}_{q}^{\zeta} &= \theta(\zeta - M_{q}) \\ \zeta^{2} \frac{d}{d\zeta^{2}} \langle x^{n} \rangle_{\Sigma_{H}^{q}}^{\zeta} &= -\frac{\alpha(\zeta^{2})}{4\pi} \left\{ \gamma_{qq}^{n} \langle x^{n} \rangle_{\Sigma_{H}^{q}}^{\zeta} + 2\mathcal{P}_{q}^{\zeta} \gamma_{qg}^{n} \langle x^{n} \rangle_{g_{H}}^{\zeta} \right\} \\ \zeta^{2} \frac{d}{d\zeta^{2}} \langle x^{n} \rangle_{g_{H}}^{\zeta} &= -\frac{\alpha(\zeta^{2})}{4\pi} \left\{ \sum_{q} \gamma_{gq}^{n} \langle x^{n} \rangle_{\Sigma_{H}^{q}}^{\zeta} + \gamma_{gg}^{n} \langle x^{n} \rangle_{g_{H}}^{\zeta} \right\} \end{aligned}$$
PDFs DGLAP evolutions equations, expressed by the corresponding massless splitting functions:

Hard-wall threshold $\mathcal{P}_{q}^{\zeta} = \theta(\zeta - M_{q})$

 $\zeta^{2} \frac{d}{d\zeta^{2}} \langle x^{n} \rangle_{\Sigma_{H}^{q}}^{\zeta} = -\frac{\alpha(\zeta^{2})}{4\pi} \left\{ \gamma_{qq}^{n} \langle x^{n} \rangle_{\Sigma_{H}^{q}}^{\zeta} + 2\mathcal{P}_{q}^{\zeta} \gamma_{qg}^{n} \langle x^{n} \rangle_{g_{H}}^{\zeta} \right\}$ $\zeta^{2} \frac{d}{d\zeta^{2}} \langle x^{n} \rangle_{g_{H}}^{\zeta} = -\frac{\alpha(\zeta^{2})}{4\pi} \left\{ \sum_{q} \gamma_{gq}^{n} \langle x^{n} \rangle_{\Sigma_{H}^{q}}^{\zeta} + \gamma_{gg}^{n} \langle x^{n} \rangle_{g_{H}}^{\zeta} \right\}$

Quark singlet and glue PDFs in Mellin space

Sea-quark PDF

$$\langle x^n \rangle_{S_H^q}^{\zeta} = \langle x^n \rangle_{\Sigma_H^q}^{\zeta} - \langle x^n \rangle_{q_H}^{\zeta}$$

PDFs DGLAP evolutions equations, expressed by the corresponding massless splitting functions: $\Sigma_{i}^{q}(x) = a_{i}(x) + \bar{a}_{i}(x)$

$$\zeta^{2} \frac{d}{d\zeta^{2}} q_{\mathsf{H}}(x) = \frac{\alpha(\zeta^{2})}{4\pi} \int_{x}^{1} \frac{dy}{y} P_{q \leftarrow q}\left(\frac{x}{y}\right) q_{\mathsf{H}}(y) \qquad \text{singlet combination}$$

$$\zeta^{2} \frac{d}{d\zeta^{2}} \Sigma_{\mathsf{H}}^{q}(x) = \frac{\alpha(\zeta^{2})}{4\pi} \int_{x}^{1} \frac{dy}{y} \left\{ P_{q \leftarrow q}\left(\frac{x}{y}\right) \Sigma_{\mathsf{H}}^{q}(y) + 2P_{q \leftarrow g}^{\zeta}\left(\frac{x}{y}\right) g_{\mathsf{H}}(y) \right\}$$

$$\zeta^{2} \frac{d}{d\zeta^{2}} g_{\mathsf{H}}(x) = \frac{\alpha(\zeta^{2})}{4\pi} \int_{x}^{1} \frac{dy}{y} \left\{ P_{g \leftarrow q}\left(\frac{x}{y}\right) \Sigma_{\mathsf{H}}^{q}(y) + P_{g \leftarrow g}\left(\frac{x}{y}\right) g_{\mathsf{H}}(y) \right\}$$
Hard-wall threshold
Quark singlet and glue PDFs in Mellin space
$$\mathcal{P}_{q}^{\zeta} = \theta(\zeta - M_{q})$$

$$\zeta^{2} \frac{d}{d\zeta^{2}} \langle x^{n} \rangle_{\Sigma_{H}}^{\zeta} = -\frac{\alpha(\zeta^{2})}{4\pi} \left\{ \gamma_{uu}^{n} \langle x^{n} \rangle_{\Sigma_{H}}^{\zeta} + 2n_{f} \mathcal{P}_{q}^{\zeta} \gamma_{ug}^{n} \langle x^{n} \rangle_{g_{H}}^{\zeta} \right\}$$
Sea-quark PDF
Full singlet and sea

$$\langle x^n \rangle_{S_H^q}^{\zeta} = \langle x^n \rangle_{\Sigma_H^q}^{\zeta} - \langle x^n \rangle_{q_H}^{\zeta} \qquad \qquad \langle x^n \rangle_{\Sigma_H}^{\zeta} = \sum_q \langle x^n \rangle_{\Sigma_H^q}^{\zeta} , \langle x^n \rangle_{S_H}^{\zeta} = \sum_q \langle x^n \rangle_{S_H^q}^{\zeta}$$

Implication 4: glue and sea from valence

$$\zeta^2 \frac{d}{d\zeta^2} \left(\begin{array}{c} \langle x^n \rangle_{\Sigma_H}^{\zeta} \\ \langle x^n \rangle_{g_H}^{\zeta} \end{array} \right) = \left(\begin{array}{c} \gamma_{uu}^n & 2n_f \gamma_{ug}^n \\ \gamma_{gu}^n & \gamma_{gg}^n \end{array} \right) \left(\begin{array}{c} \langle x^n \rangle_{\Sigma_H}^{\zeta} \\ \langle x^n \rangle_{g_H}^{\zeta} \end{array} \right)$$

 $M_q = \zeta_H, \; \forall q$ All quarks active

Implication 4: glue and sea from valence

 $M_q = \zeta_H, \; \forall q$ All quarks active

$$\begin{aligned} \zeta^2 \frac{d}{d\zeta^2} \begin{pmatrix} \langle x^n \rangle_{\Sigma_H}^{\zeta} \\ \langle x^n \rangle_{g_H}^{\zeta} \end{pmatrix} &= \begin{pmatrix} \gamma_{uu}^n & 2n_f \gamma_{ug}^n \\ \gamma_{gu}^n & \gamma_{gg}^n \end{pmatrix} \begin{pmatrix} \langle x^n \rangle_{\Sigma_H}^{\zeta} \\ \langle x^n \rangle_{g_H}^{\zeta} \end{pmatrix} \\ &= \begin{pmatrix} \alpha_+^n S_-^n + \alpha_-^n S_+^n & \beta_{\Sigma g}^n \left(S_-^n - S_+^n \right) \\ \beta_{g\Sigma}^n \left(S_-^n - S_+^n \right) & \alpha_-^n S_-^n + \alpha_+^n S_+^n \end{pmatrix} \begin{pmatrix} \langle x^n \rangle_{\Sigma_H}^{\zeta_H} \\ \langle x^n \rangle_{g_H}^{\zeta_H} \end{pmatrix} \end{aligned}$$

$$\alpha_{\pm}^{n} = \pm \frac{\lambda_{\pm}^{n} - \gamma_{uu}^{n}}{\lambda_{+}^{n} - \lambda_{-}^{n}}$$
$$\beta_{\Sigma g}^{n} = -\frac{2n_{f}\gamma_{ug}^{n}}{\lambda_{+}^{n} - \lambda_{-}^{n}}$$
$$S_{\pm}^{n} = [S(\zeta_{H}, \zeta)]^{\lambda_{\pm}^{n}/\gamma_{uu}}$$
$$\beta_{g\Sigma}^{n} = \frac{(\lambda_{+}^{n} - \gamma_{uu}^{n})(\lambda_{-}^{n} - \gamma_{uu}^{n})}{2n_{f}\gamma_{ug}^{n}(\lambda_{+}^{n} - \lambda_{-}^{n})}$$

Implication 4: glue and sea from valence

 $M_q = \zeta_H, \; \forall q$ All quarks active

$$\begin{split} \zeta^{2} \frac{d}{d\zeta^{2}} \begin{pmatrix} \langle x^{n} \rangle_{\Sigma_{H}}^{\zeta} \\ \langle x^{n} \rangle_{gH}^{\zeta} \end{pmatrix} &= \begin{pmatrix} \gamma_{uu}^{n} & 2n_{f} \gamma_{ug}^{n} \\ \gamma_{gu}^{n} & \gamma_{gg}^{n} \end{pmatrix} \begin{pmatrix} \langle x^{n} \rangle_{\Sigma_{H}}^{\zeta} \\ \langle x^{n} \rangle_{gH}^{\zeta} \end{pmatrix} \\ &= \begin{pmatrix} \alpha_{+}^{n} S_{-}^{n} + \alpha_{-}^{n} S_{+}^{n} & \beta_{\Sigma g}^{n} \left(S_{-}^{n} - S_{+}^{n} \right) \\ \beta_{g\Sigma}^{n} \left(S_{-}^{n} - S_{+}^{n} \right) & \alpha_{-}^{n} S_{-}^{n} + \alpha_{+}^{n} S_{+}^{n} \end{pmatrix} \begin{pmatrix} \langle x^{n} \rangle_{\Sigma_{H}}^{\zeta_{H}} \\ \langle x^{n} \rangle_{gH}^{\zeta_{H}} \end{pmatrix} \\ &\alpha_{\pm}^{n} = \pm \frac{\lambda_{\pm}^{n} - \gamma_{uu}^{n}}{\lambda_{+}^{n} - \lambda_{-}^{n}} & \lambda_{\pm}^{n} = \frac{1}{2} \text{Tr} \left(\Gamma^{n} \right) \pm \sqrt{\frac{1}{4} \text{Tr}^{2} \left(\Gamma^{n} \right) - \text{Det} \left(\Gamma^{n} \right)} \\ &\beta_{\Xi}^{n} = \left[S(\zeta_{H}, \zeta) \right]^{\lambda_{\pm}^{n} / \gamma_{uu}} \\ &\beta_{g\Sigma}^{n} = \frac{(\lambda_{+}^{n} - \gamma_{uu}^{n})(\lambda_{-}^{n} - \gamma_{uu}^{n})}{2n_{f} \gamma_{ug}^{n} (\lambda_{+}^{n} - \lambda_{-}^{n})} \end{split}$$

Implication 4: glue and sea from valence

 $M_q = \zeta_H, \; \forall q$ All guarks active

$$\begin{split} \zeta^{2} \frac{d}{d\zeta^{2}} \begin{pmatrix} \langle x^{n} \rangle_{\Sigma_{H}}^{\zeta} \\ \langle x^{n} \rangle_{g_{H}}^{\zeta} \end{pmatrix} &= \begin{pmatrix} \gamma_{uu}^{n} & 2n_{f} \gamma_{ug}^{n} \\ \gamma_{gu}^{n} & \gamma_{gg}^{n} \end{pmatrix} \begin{pmatrix} \langle x^{n} \rangle_{\Sigma_{H}}^{\zeta} \\ \langle x^{n} \rangle_{g_{H}}^{\zeta} \end{pmatrix} \\ &= \begin{pmatrix} \alpha_{+}^{n} S_{-}^{n} + \alpha_{-}^{n} S_{+}^{n} & \beta_{\Sigma_{g}}^{n} \left(S_{-}^{n} - S_{+}^{n} \right) \\ \beta_{g\Sigma}^{n} \left(S_{-}^{n} - S_{+}^{n} \right) & \alpha_{-}^{n} S_{-}^{n} + \alpha_{+}^{n} S_{+}^{n} \end{pmatrix} \begin{pmatrix} \langle x^{n} \rangle_{\Sigma_{H}}^{\zeta} \\ 0 \end{pmatrix} \end{pmatrix} \\ &\alpha_{\pm}^{n} = \pm \frac{\lambda_{\pm}^{n} - \gamma_{uu}^{n}}{\lambda_{+}^{n} - \lambda_{-}^{n}} & \lambda_{\pm}^{n} = \frac{1}{2} \text{Tr} \left(\Gamma^{n} \right) \pm \sqrt{\frac{1}{4} \text{Tr}^{2} \left(\Gamma^{n} \right) - \text{Det} \left(\Gamma^{n} \right)} \\ &\beta_{\Sigma_{g}}^{n} = -\frac{2n_{f} \gamma_{ug}^{n}}{\lambda_{+}^{n} - \lambda_{-}^{n}} & S_{\pm}^{n} = \left[S(\zeta_{H}, \zeta) \right]^{\lambda_{\pm}^{n} / \gamma_{uu}} \\ &\beta_{g\Sigma}^{n} = \frac{(\lambda_{+}^{n} - \gamma_{uu}^{n})(\lambda_{-}^{n} - \gamma_{uu}^{n})}{2n_{f} \gamma_{ug}^{n} (\lambda_{+}^{n} - \lambda_{-}^{n})} \end{split}$$

.

Implication 4: glue and sea from valence

$$\frac{d}{d\zeta^2} \begin{pmatrix} \langle x^n \rangle_{\Sigma_H}^{\zeta} \\ \langle x^n \rangle_{g_H}^{\zeta} \end{pmatrix} = \begin{pmatrix} \gamma_{uu}^n & 2n_f \gamma_{ug}^n \\ \gamma_{gu}^n & \gamma_{gg}^n \end{pmatrix} \begin{pmatrix} \langle x^n \rangle_{\Sigma_H}^{\zeta} \\ \langle x^n \rangle_{g_H}^{\zeta} \end{pmatrix}$$
$$\begin{pmatrix} \langle x^n \rangle_{\Sigma_H}^{\zeta} \\ \langle x^n \rangle_{g_H}^{\zeta} \end{pmatrix} = \begin{pmatrix} \alpha_+^n S_-^n + \alpha_-^n S_+^n \\ \beta_{g\Sigma}^n \left(S_-^n - S_+^n \right) \end{pmatrix} \sum_q \langle x^n \rangle_q^{\zeta_H}$$

$$M_q = \zeta_H, \; \forall q$$

All quarks active

In terms of the moments for the sum of all valence-quark distributions at hadronic scale

$$\begin{aligned} \alpha_{\pm}^{n} &= \pm \frac{\lambda_{\pm}^{n} - \gamma_{uu}^{n}}{\lambda_{\pm}^{n} - \lambda_{-}^{n}} \qquad \lambda_{\pm}^{n} = \frac{1}{2} \operatorname{Tr} \left(\Gamma^{n} \right) \pm \sqrt{\frac{1}{4} \operatorname{Tr}^{2} \left(\Gamma^{n} \right) - \operatorname{Det} \left(\Gamma^{n} \right)} \\ \beta_{\Sigma g}^{n} &= -\frac{2n_{f} \gamma_{ug}^{n}}{\lambda_{\pm}^{n} - \lambda_{-}^{n}} \\ S_{\pm}^{n} &= \left[S(\zeta_{H}, \zeta) \right]^{\lambda_{\pm}^{n} / \gamma_{uu}} \\ \beta_{g\Sigma}^{n} &= \frac{(\lambda_{\pm}^{n} - \gamma_{uu}^{n})(\lambda_{-}^{n} - \gamma_{uu}^{n})}{2n_{f} \gamma_{ug}^{n} (\lambda_{\pm}^{n} - \lambda_{-}^{n})} \end{aligned}$$

~_)

Implication 4: glue and sea from valence

$$\frac{1}{2} \frac{d}{d\zeta^2} \begin{pmatrix} \langle x^n \rangle_{\Sigma_H}^{\zeta} \\ \langle x^n \rangle_{g_H}^{\zeta} \end{pmatrix} = \begin{pmatrix} \gamma_{uu}^n & 2n_f \gamma_{ug}^n \\ \gamma_{gu}^n & \gamma_{gg}^n \end{pmatrix} \begin{pmatrix} \langle x^n \rangle_{\Sigma_H}^{\zeta} \\ \langle x^n \rangle_{g_H}^{\zeta} \end{pmatrix} \\ \begin{pmatrix} \langle x^n \rangle_{\Sigma_H}^{\zeta} \\ \langle x^n \rangle_{g_H}^{\zeta} \end{pmatrix} = \begin{pmatrix} \alpha_+^n S_-^n + \alpha_-^n S_+^n \\ \beta_{g\Sigma}^n \left(S_-^n - S_+^n \right) \end{pmatrix} \sum_q \langle x^n \rangle_q^{\zeta_H}$$

 $M_q = \zeta_H, \; \forall q$ All quarks active

9

In terms of the moments for the sum of all valence-quark distributions at hadronic scale

 $\alpha_{\pm}^{n} = \pm \frac{\lambda_{\pm}^{n} - \gamma_{uu}^{n}}{\lambda_{+}^{n} - \lambda_{-}^{n}}$ $\beta_{\Sigma g}^{n} = -\frac{2n_{f}\gamma_{ug}^{n}}{\lambda_{+}^{n} - \lambda_{-}^{n}}$

$$S^n_{\pm} = \left[S(\zeta_H, \zeta)\right]^{\lambda^n_{\pm}/\gamma_{uu}}$$

$$\beta_{g\Sigma}^n = \frac{(\lambda_+^n - \gamma_{uu}^n)(\lambda_-^n - \gamma_{uu}^n)}{2n_f \gamma_{ug}^n (\lambda_+^n - \lambda_-^n)}$$

$$\lambda_{\pm}^{n} = \frac{1}{2} \operatorname{Tr}\left(\Gamma^{n}\right) \pm \sqrt{\frac{1}{4} \operatorname{Tr}^{2}\left(\Gamma^{n}\right) - \operatorname{Det}\left(\Gamma^{n}\right)}$$

Compute all the moments and reconstruct:

х

Implication 4: glue and sea from valence

$${}^{2}\frac{d}{d\zeta^{2}}\left(\begin{array}{c} \langle x^{n}\rangle_{\Sigma_{H}}^{\zeta} \\ \langle x^{n}\rangle_{g_{H}}^{\zeta} \end{array}\right) = \left(\begin{array}{c} \gamma_{uu}^{n} & 2n_{f}\gamma_{ug}^{n} \\ \gamma_{gu}^{n} & \gamma_{gg}^{n} \end{array}\right) \left(\begin{array}{c} \langle x^{n}\rangle_{\Sigma_{H}}^{\zeta} \\ \langle x^{n}\rangle_{g_{H}}^{\zeta} \end{array}\right) \\ \left(\begin{array}{c} \langle x^{n}\rangle_{\Sigma_{H}}^{\zeta} \\ \langle x^{n}\rangle_{g_{H}}^{\zeta} \end{array}\right) = \left(\begin{array}{c} \alpha_{+}^{n}S_{-}^{n} + \alpha_{-}^{n}S_{+}^{n} \\ \beta_{g\Sigma}^{n}\left(S_{-}^{n} - S_{+}^{n}\right) \end{array}\right) \sum_{q} \langle x^{n}\rangle_{q}^{\zeta_{H}}$$

 $M_q = \zeta_H, \ \forall q$ All quarks active

In terms of the moments for the sum of all valence-quark distributions at hadronic scale

$$\lambda_{\pm}^{n} = \frac{1}{2} \operatorname{Tr}\left(\Gamma^{n}\right) \pm \sqrt{\frac{1}{4} \operatorname{Tr}^{2}\left(\Gamma^{n}\right) - \operatorname{Det}\left(\Gamma^{n}\right)}$$

Implication 4: glue and sea from valence

$$\begin{aligned} \zeta^2 \frac{d}{d\zeta^2} \begin{pmatrix} \langle x^n \rangle_{\Sigma_H}^{\zeta} \\ \langle x^n \rangle_{g_H}^{\zeta} \end{pmatrix} &= \begin{pmatrix} \gamma_{uu}^n & 2n_f \gamma_{ug}^n \\ \gamma_{gu}^n & \gamma_{gg}^n \end{pmatrix} \begin{pmatrix} \langle x^n \rangle_{\Sigma_H}^{\zeta} \\ \langle x^n \rangle_{g_H}^{\zeta} \end{pmatrix} \\ &= \begin{pmatrix} \alpha_+^n S_-^n + \alpha_-^n S_+^n \\ \beta_{g\Sigma}^n \left(S_-^n - S_+^n \right) \end{pmatrix} \sum_q \langle x^n \rangle_q^{\zeta_H} & \text{In terr sum of distribution} \end{aligned}$$

 $M_q = \zeta_H, \; \forall q$ All quarks active

In terms of the moments for the sum of all valence-quark distributions at hadronic scale

$$\begin{aligned} \alpha_{\pm}^{n} &= \pm \frac{\lambda_{\pm}^{n} - \gamma_{uu}^{n}}{\lambda_{\pm}^{n} - \lambda_{-}^{n}} \\ \beta_{\Sigma g}^{n} &= -\frac{2n_{f}\gamma_{ug}^{n}}{\lambda_{\pm}^{n} - \lambda_{-}^{n}} \end{aligned} \qquad \lambda_{\pm}^{n} = \frac{1}{2}\mathrm{Tr}\left(\Gamma^{n}\right) \pm \sqrt{\frac{1}{4}\mathrm{Tr}^{2}\left(\Gamma^{n}\right) - \mathrm{Det}\left(\Gamma^{n}\right)} \\ \mathbf{n=1 \ case} \\ n_{f} = 4 \end{aligned} \qquad \langle x \rangle_{\Sigma_{H}}^{\zeta} &= \sum_{q} \langle x \rangle_{q_{H}}^{\zeta} + \langle x \rangle_{S_{H}}^{\zeta} = \frac{3}{7} + \frac{4}{7} \left[S(\zeta_{H}, \zeta)\right]^{7/4} \\ \langle x \rangle_{\Xi_{\pm}}^{\zeta} &= \left[S(\zeta_{H}, \zeta)\right]^{\lambda_{\pm}^{n}/\gamma_{uu}} \end{aligned}$$

$$\beta_{g\Sigma}^{n} = \frac{(\lambda_{+}^{n} - \gamma_{uu}^{n})(\lambda_{-}^{n} - \gamma_{uu}^{n})}{2n_{f}\gamma_{ug}^{n}(\lambda_{+}^{n} - \lambda_{-}^{n})}$$
The only required input is the the momentum fraction at the probed empirical scale!!

Implication 4: glue and sea from valence

1

-2

 $M_q = \zeta_H, \ \forall q$ All quarks active

$$\frac{d}{d\zeta^2} \begin{pmatrix} \langle x^n \rangle_{\Sigma_H}^{\zeta} \\ \langle x^n \rangle_{g_H}^{\zeta} \end{pmatrix} = \begin{pmatrix} \gamma_{uu}^n & 2n_f \gamma_{ug}^n \\ \gamma_{gu}^n & \gamma_{gg}^n \end{pmatrix} \begin{pmatrix} \langle x^n \rangle_{\Sigma_H}^{\zeta} \\ \langle x^n \rangle_{g_H}^{\zeta} \end{pmatrix}$$
$$\begin{pmatrix} \langle x^n \rangle_{\Sigma_H}^{\zeta} \\ \langle x^n \rangle_{g_H}^{\zeta} \end{pmatrix} = \begin{pmatrix} \alpha_+^n S_-^n + \alpha_-^n S_+^n \\ \beta_{g\Sigma}^n \left(S_-^n - S_+^n \right) \end{pmatrix} \sum_q \langle x^n \rangle_q^{\zeta_H} \|_{st}$$

In terms of the moments for the sum of all valence-quark distributions at hadronic scale

$$\begin{aligned} \alpha_{\pm}^{n} &= \pm \frac{\lambda_{\pm}^{n} - \gamma_{uu}^{n}}{\lambda_{+}^{n} - \lambda_{-}^{n}} & \lambda_{\pm}^{n} = \frac{1}{2} \operatorname{Tr} \left(\Gamma^{n} \right) \pm \sqrt{\frac{1}{4}} \operatorname{Tr}^{2} \left(\Gamma^{n} \right) - \operatorname{Det} \left(\Gamma^{n} \right) \\ \beta_{\Sigma g}^{n} &= -\frac{2n_{f} \gamma_{ug}^{n}}{\lambda_{+}^{n} - \lambda_{-}^{n}} & n = 1 \operatorname{case} \\ n_{f} = 4 & \langle x \rangle_{\Sigma_{\pi}}^{\zeta} = \langle 2x \rangle_{q_{\pi}}^{\zeta} + \langle x \rangle_{S_{\pi}}^{\zeta} = \frac{3}{7} + \frac{4}{7} \left[S(\zeta_{H}, \zeta) \right]^{7/4} \\ \langle x \rangle_{g_{\pi}}^{\zeta} = \frac{4}{7} \left(1 - \left[S(\zeta_{H}, \zeta) \right]^{7/4} \right) \\ \beta_{g\Sigma}^{n} &= \frac{(\lambda_{+}^{n} - \gamma_{uu}^{n})(\lambda_{-}^{n} - \gamma_{uu}^{n})}{2n_{f} \gamma_{ug}^{n} (\lambda_{+}^{n} - \lambda_{-}^{n})} & \frac{\zeta_{5}}{\operatorname{Ref} \left[55 \right]} \left[\begin{array}{c} 0.412(36) & 0.449(19) & 0.138(17) \\ 0.40(4) & 0.45(2) & 0.14(2) \end{array} \right] \end{aligned}$$

. .

The only required input is the the momentum fraction at the probed empirical scale!!

Z-F. Cui et al., arXiv:2006.1465

Implication 4: glue and sea from valence

1

1 >

-2

 $M_q = \zeta_H, \; orall q$ All quarks active

$$\frac{d}{d\zeta^2} \begin{pmatrix} \langle x^n \rangle_{\Sigma_H}^{\zeta} \\ \langle x^n \rangle_{g_H}^{\zeta} \end{pmatrix} = \begin{pmatrix} \gamma_{uu}^n & 2n_f \gamma_{ug}^n \\ \gamma_{gu}^n & \gamma_{gg}^n \end{pmatrix} \begin{pmatrix} \langle x^n \rangle_{\Sigma_H}^{\zeta} \\ \langle x^n \rangle_{g_H}^{\zeta} \end{pmatrix} \\ \begin{pmatrix} \langle x^n \rangle_{\Sigma_H}^{\zeta} \\ \langle x^n \rangle_{g_H}^{\zeta} \end{pmatrix} = \begin{pmatrix} \alpha_+^n S_-^n + \alpha_-^n S_+^n \\ \beta_{g\Sigma}^n \left(S_-^n - S_+^n \right) \end{pmatrix} \sum_q \langle x^n \rangle_q^{\zeta_H} \|_{SU}^{SU} du$$

In terms of the moments for the sum of all valence-quark distributions at hadronic scale

$$\begin{aligned} \alpha_{\pm}^{n} &= \pm \frac{\lambda_{\pm}^{n} - \gamma_{uu}^{n}}{\lambda_{+}^{n} - \lambda_{-}^{n}} \\ \beta_{\Sigma g}^{n} &= -\frac{2n_{f}\gamma_{ug}^{n}}{\lambda_{+}^{n} - \lambda_{-}^{n}} \\ S_{\pm}^{n} &= [S(\zeta_{H}, \zeta)]^{\lambda_{\pm}^{n}/\gamma_{uu}} \\ S_{\pm}^{n} &= [\frac{S(\zeta_{H}, \zeta)}{2n_{f}\gamma_{ug}^{n}(\lambda_{+}^{n} - \lambda_{-}^{n})} \end{aligned} \qquad \begin{aligned} \lambda_{\pm}^{n} &= \frac{1}{2}\mathrm{Tr}\left(\Gamma^{n}\right) \pm \sqrt{\frac{1}{4}}\mathrm{Tr}^{2}\left(\Gamma^{n}\right) - \mathrm{Det}\left(\Gamma^{n}\right) \\ n=1 \,\mathrm{case} \\ n_{f} &= 4 \end{aligned} \qquad \\ \langle x \rangle_{\Sigma_{\pi}}^{\zeta} &= \langle 2x \rangle_{q_{\pi}}^{\zeta} + \langle x \rangle_{S_{\pi}}^{\zeta} &= \frac{3}{7} + \frac{4}{7}\left[S(\zeta_{H}, \zeta)\right]^{7/4} \\ &\quad \langle x \rangle_{g_{\pi}}^{\zeta} &= \frac{4}{7}\left(1 - \left[S(\zeta_{H}, \zeta)\right]^{7/4}\right) \\ &\quad \frac{\zeta_{5}}{2n_{f}\gamma_{ug}^{n}(\lambda_{+}^{n} - \gamma_{uu}^{n})} \\ &\quad \frac{\zeta_{5}}{2n_{f}\gamma_{ug}^{n}(\lambda_{+}^{n} - \lambda_{-}^{n})} \end{aligned}$$

* \

The only required input is the the momentum fraction at the probed empirical scale!!

Z-F. Cui et al., arXiv:2006.1465 R.S. Sufian et al., arXiv:2001.04960

Implication 4: glue and sea from valence

 $\zeta^{2} \frac{d}{d\zeta^{2}} \begin{pmatrix} \langle x^{n} \rangle_{\Sigma_{H}}^{\zeta} \\ \langle x^{n} \rangle_{g_{H}}^{\zeta} \end{pmatrix} = \begin{pmatrix} \gamma_{uu}^{n} & 2n_{f} \gamma_{ug}^{n} \\ \gamma_{gu}^{n} & \gamma_{gg}^{n} \end{pmatrix} \begin{pmatrix} \langle x^{n} \rangle_{\Sigma_{H}}^{\zeta} \\ \langle x^{n} \rangle_{g_{H}}^{\zeta} \end{pmatrix}$ $\begin{pmatrix} \langle x^{n} \rangle_{\Sigma_{H}}^{\zeta} \\ \langle x^{n} \rangle_{g_{H}}^{\zeta} \end{pmatrix} = \begin{pmatrix} \alpha_{+}^{n} S_{-}^{n} + \alpha_{-}^{n} S_{+}^{n} \\ \beta_{g\Sigma}^{n} \left(S_{-}^{n} - S_{+}^{n} \right) \end{pmatrix} \sum_{q} \langle x^{n} \rangle_{q}^{\zeta_{H}}$ In term sum of distributions of the second secon

$$M_q = \zeta_H, \ \forall q$$

All quarks active

In terms of the moments for the sum of all valence-quark distributions at hadronic scale

$$\begin{aligned} \alpha_{\pm}^{n} &= \pm \frac{\lambda_{\pm}^{n} - \gamma_{uu}^{n}}{\lambda_{\pm}^{n} - \lambda_{-}^{n}} \\ \beta_{\Sigma g}^{n} &= -\frac{2n_{f}\gamma_{ug}^{n}}{\lambda_{\pm}^{n} - \lambda_{-}^{n}} \end{aligned} \qquad \lambda_{\pm}^{n} = \frac{1}{2}\mathrm{Tr}\left(\Gamma^{n}\right) \pm \sqrt{\frac{1}{4}\mathrm{Tr}^{2}\left(\Gamma^{n}\right) - \mathrm{Det}\left(\Gamma^{n}\right)} \\ \mathbf{n=1 \ case} \\ n_{f} = 4 \end{aligned} \qquad \lambda_{\pm}^{n} = \sum_{q} \langle x \rangle_{q_{H}}^{\zeta} + \langle x \rangle_{S_{H}}^{\zeta} = \frac{3}{7} + \frac{4}{7} \left[S(\zeta_{H}, \zeta)\right]^{7/4} \\ \langle x \rangle_{\Xi}^{\zeta} = \frac{1}{7} \left[S(\zeta_{H}, \zeta)\right]^{7/4} \\ \langle x \rangle_{g_{H}}^{\zeta} = \frac{4}{7} \left(1 - \left[S(\zeta_{H}, \zeta)\right]^{7/4}\right) \end{aligned}$$

$$\beta_{g\Sigma}^n = \frac{(\lambda_+^n - \gamma_{uu}^n)(\lambda_-^n - \gamma_{uu}^n)}{2n_f \gamma_{ug}^n (\lambda_+^n - \lambda_-^n)}$$

The only required input is the the pion momentum fraction at the probed empirical scale (assuming charge universality)!!

Implication 4: glue and sea from valence

$${}^{2}\frac{d}{d\zeta^{2}}\left(\begin{array}{c} \langle x^{n}\rangle_{\Sigma_{H}}^{\zeta} \\ \langle x^{n}\rangle_{g_{H}}^{\zeta} \end{array}\right) = \left(\begin{array}{c} \gamma_{uu}^{n} & 2n_{f}\gamma_{ug}^{n} \\ \gamma_{gu}^{n} & \gamma_{gg}^{n} \end{array}\right) \left(\begin{array}{c} \langle x^{n}\rangle_{\Sigma_{H}}^{\zeta} \\ \langle x^{n}\rangle_{g_{H}}^{\zeta} \end{array}\right)$$
$$\left(\begin{array}{c} \langle x^{n}\rangle_{\Sigma_{H}}^{\zeta} \\ \langle x^{n}\rangle_{g_{H}}^{\zeta} \end{array}\right) = \left(\begin{array}{c} \alpha_{+}^{n}S_{-}^{n} + \alpha_{-}^{n}S_{+}^{n} \\ \beta_{g\Sigma}^{n}\left(S_{-}^{n} - S_{+}^{n}\right) \end{array}\right) \sum_{q} \langle x^{n}\rangle_{q}^{\zeta_{H}}$$

$$M_q = \zeta_H, \; \forall q$$

All quarks active

In terms of the moments for the sum of all valence-quark distributions at hadronic scale

$$\begin{aligned} \alpha_{\pm}^{n} &= \pm \frac{\lambda_{\pm}^{n} - \gamma_{uu}^{n}}{\lambda_{\pm}^{n} - \lambda_{-}^{n}} \\ \beta_{\Sigma g}^{n} &= -\frac{2n_{f}\gamma_{ug}^{n}}{\lambda_{\pm}^{n} - \lambda_{-}^{n}} \end{aligned} \qquad \lambda_{\pm}^{n} = \frac{1}{2}\mathrm{Tr}\left(\Gamma^{n}\right) \pm \sqrt{\frac{1}{4}\mathrm{Tr}^{2}\left(\Gamma^{n}\right) - \mathrm{Det}\left(\Gamma^{n}\right)} \\ \mathbf{n=1 \ case} \\ n_{f} = 4 \end{aligned} \qquad \langle x \rangle_{\Sigma_{H}}^{\zeta} \stackrel{=}{_{\zeta^{2} \to \infty}} \langle x \rangle_{S_{H}}^{\zeta} \stackrel{=}{_{\zeta^{2} \to \infty}} \frac{3}{7} \\ \langle x \rangle_{g_{H}}^{\zeta} \stackrel{=}{_{\zeta^{2} \to \infty}} \frac{4}{7} \end{aligned}$$

Asymptotic limit: G. Altarelli, Phys. Rep. 81, 1 (1982)

$$\beta_{g\Sigma}^n = \frac{(\lambda_+^n - \gamma_{uu}^n)(\lambda_-^n - \gamma_{uu}^n)}{2n_f \gamma_{ug}^n (\lambda_+^n - \lambda_-^n)}$$

The only required input is the the pion momentum fraction at the probed empirical scale (assuming charge universality)!!

Implication 4: glue and sea from valence

$$\zeta^{2} \frac{d}{d\zeta^{2}} \begin{pmatrix} \langle x^{n} \rangle_{\Sigma_{H}}^{\zeta} \\ \langle x^{n} \rangle_{g_{H}}^{\zeta} \end{pmatrix} = \begin{pmatrix} \gamma_{uu}^{n} & 2n_{f} \gamma_{ug}^{n} \\ \gamma_{gu}^{n} & \gamma_{gg}^{n} \end{pmatrix} \begin{pmatrix} \langle x^{n} \rangle_{\Sigma_{H}}^{\zeta} \\ \langle x^{n} \rangle_{g_{H}}^{\zeta} \end{pmatrix} \\ \begin{pmatrix} \langle x^{n} \rangle_{\Sigma_{H}}^{\zeta} \\ \langle x^{n} \rangle_{g_{H}}^{\zeta} \end{pmatrix} = \begin{pmatrix} \alpha_{+}^{n} S_{-}^{n} + \alpha_{-}^{n} S_{+}^{n} \\ \beta_{g\Sigma}^{n} \left(S_{-}^{n} - S_{+}^{n} \right) \end{pmatrix} \sum_{q} \langle x^{n} \rangle_{q}^{\zeta_{H}}$$

$$M_q = \zeta_H, \; \forall q$$

All quarks active

In terms of the moments for the sum of all valence-quark distributions at hadronic scale

$$\begin{aligned} \alpha_{\pm}^{n} &= \pm \frac{\lambda_{\pm}^{n} - \gamma_{uu}^{n}}{\lambda_{+}^{n} - \lambda_{-}^{n}} \\ \beta_{\Sigma g}^{n} &= -\frac{2n_{f}\gamma_{ug}^{n}}{\lambda_{+}^{n} - \lambda_{-}^{n}} \end{aligned} \qquad \lambda_{\pm}^{n} = \frac{1}{2}\mathrm{Tr}\left(\Gamma^{n}\right) \pm \sqrt{\frac{1}{4}\mathrm{Tr}^{2}\left(\Gamma^{n}\right) - \mathrm{Det}\left(\Gamma^{n}\right)} \\ \mathbf{n} = 1 \operatorname{case} \\ n_{f} = 4 \end{aligned} \qquad \langle x \rangle_{\Sigma_{H}}^{\zeta} \underset{\zeta^{2} \to \infty}{=} \langle x \rangle_{S_{H}}^{\zeta} \underset{\zeta^{2} \to \infty}{=} \frac{3}{7} \\ \langle x \rangle_{g_{H}}^{\zeta} \underset{\zeta^{2} \to \infty}{=} \frac{4}{7} \end{aligned}$$

Asymptotic limit: G. Altarelli, Phys. Rep. 81, 1 (1982)

$$\begin{split} \langle x^n \rangle_{\Sigma_H}^{\zeta} &= \langle x^n \rangle_{S_H}^{\zeta} = \langle x^n \rangle_{g_H}^{\zeta} = 0, & \text{for } n > 1 \\ \text{owing to } \lambda_{\pm}^n > 0 \end{split}$$

The only required input is the the pion momentum fraction at the probed empirical scale (assuming charge universality)!!

 $\beta_{g\Sigma}^n = \frac{(\lambda_+^n - \gamma_{uu}^n)(\lambda_-^n - \gamma_{uu}^n)}{2n_f \gamma_{ug}^n (\lambda_+^n - \lambda_-^n)}$

Implication 4: glue and sea from valence

$${}^{2}\frac{d}{d\zeta^{2}}\left(\begin{array}{c} \langle x^{n}\rangle_{\Sigma_{H}}^{\zeta} \\ \langle x^{n}\rangle_{g_{H}}^{\zeta} \end{array}\right) = \left(\begin{array}{c} \gamma_{uu}^{n} & 2n_{f}\gamma_{ug}^{n} \\ \gamma_{gu}^{n} & \gamma_{gg}^{n} \end{array}\right) \left(\begin{array}{c} \langle x^{n}\rangle_{\Sigma_{H}}^{\zeta} \\ \langle x^{n}\rangle_{g_{H}}^{\zeta} \end{array}\right)$$
$$\left(\begin{array}{c} \langle x^{n}\rangle_{\Sigma_{H}}^{\zeta} \\ \langle x^{n}\rangle_{g_{H}}^{\zeta} \end{array}\right) = \left(\begin{array}{c} \alpha_{+}^{n}S_{-}^{n} + \alpha_{-}^{n}S_{+}^{n} \\ \beta_{g\Sigma}^{n}\left(S_{-}^{n} - S_{+}^{n}\right) \end{array}\right) \sum_{q} \langle x^{n}\rangle_{q}^{\zeta_{H}}$$

$$M_q = \zeta_H, \; \forall q$$

All quarks active

In terms of the moments for the sum of all valence-quark distributions at hadronic scale

r

x

$$\beta_{g\Sigma}^n = \frac{(\lambda_+^n - \gamma_{uu}^n)(\lambda_-^n - \gamma_{uu}^n)}{2n_f \gamma_{ug}^n (\lambda_+^n - \lambda_-^n)}$$

The only required input is the the pion momentum fraction at the probed empirical scale (assuming charge universality)!!

Implication 5: correlating glue and sea

 $M_q = \zeta_H, \; orall q$ All quarks active

$$\begin{pmatrix} \langle x^n \rangle_{\Sigma_H}^{\zeta} \\ \langle x^n \rangle_{g_H}^{\zeta} \end{pmatrix} = \begin{pmatrix} \alpha_+^n S_-^n + \alpha_-^n S_+^n & \beta_{\Sigma_g}^n \left(S_-^n - S_+^n \right) \\ \beta_{g\Sigma}^n \left(S_-^n - S_+^n \right) & \alpha_-^n S_-^n + \alpha_+^n S_+^n \end{pmatrix} \begin{pmatrix} \langle x^n \rangle_{\Sigma_H}^{\zeta_H} \\ \langle x^n \rangle_{g_H}^{\zeta_H} \end{pmatrix}$$

Implication 5: correlating glue and sea

 $M_q = \zeta_H, \; \forall q$ All quarks active

$$\begin{pmatrix} \alpha_{+}^{n} \left[S_{-}^{n} \right]^{-1} + \alpha_{-}^{n} \left[S_{+}^{n} \right]^{-1} & \beta_{\Sigma g}^{n} \left(\left[S_{-}^{n} \right]^{-1} - \left[S_{+}^{n} \right]^{-1} \right) \\ \beta_{g\Sigma}^{n} \left(\left[S_{-}^{n} \right]^{-1} - \left[S_{+}^{n} \right]^{-1} \right) & \alpha_{-}^{n} \left[S_{-}^{n} \right]^{-1} + \alpha_{+}^{n} \left[S_{+}^{n} \right]^{-1} \end{pmatrix} \begin{pmatrix} \langle x^{n} \rangle_{\Sigma_{H}}^{\zeta} \\ \langle x^{n} \rangle_{g_{H}}^{\zeta} \end{pmatrix} = \begin{pmatrix} \langle x^{n} \rangle_{\Sigma_{H}}^{\zeta} \\ \langle x^{n} \rangle_{g_{H}}^{\zeta} \end{pmatrix}$$

The equation can be easily inverted

Implication 5: correlating glue and sea

 $M_q = \zeta_H, \; \forall q$ All quarks active

$$\begin{pmatrix} \alpha_{+}^{n} \left[S_{-}^{n} \right]^{-1} + \alpha_{-}^{n} \left[S_{+}^{n} \right]^{-1} & \beta_{\Sigma g}^{n} \left(\left[S_{-}^{n} \right]^{-1} - \left[S_{+}^{n} \right]^{-1} \right) \\ \beta_{g\Sigma}^{n} \left(\left[S_{-}^{n} \right]^{-1} - \left[S_{+}^{n} \right]^{-1} \right) & \alpha_{-}^{n} \left[S_{-}^{n} \right]^{-1} + \alpha_{+}^{n} \left[S_{+}^{n} \right]^{-1} \end{pmatrix} \begin{pmatrix} \langle x^{n} \rangle_{\Sigma_{H}}^{\zeta} \\ \langle x^{n} \rangle_{g_{H}}^{\zeta} \end{pmatrix} = \begin{pmatrix} \langle x^{n} \rangle_{\Sigma_{H}}^{\zeta} \\ 0 \end{pmatrix}$$

The equation can be easily inverted and, relying on the hadronic scale definition, delivers a constraint for all Mellin moments of glue and sea at any experimental scale:

$$\frac{\langle x^n \rangle_{\Sigma_{\pi}}^{\zeta}}{\langle x^n \rangle_{g_{\pi}}^{\zeta}} = \frac{\langle x^n \rangle_{\mathcal{S}_{\pi}}^{\zeta} + \langle 2x^n \rangle_{u_{\pi}}^{\zeta}}{\langle x^n \rangle_{g_{\pi}}^{\zeta}} = \frac{\alpha_-^n S_+^n + \alpha_+^n S_-^n}{\beta_{g\Sigma}^n \left(S_-^n - S_+^n\right)}$$

Implication 5: correlating glue and sea

 $M_q = \zeta_H, \; \forall q$ All quarks active

$$\begin{pmatrix} \alpha_{+}^{n} \left[S_{-}^{n} \right]^{-1} + \alpha_{-}^{n} \left[S_{+}^{n} \right]^{-1} & \beta_{\Sigma g}^{n} \left(\left[S_{-}^{n} \right]^{-1} - \left[S_{+}^{n} \right]^{-1} \right) \\ \beta_{g\Sigma}^{n} \left(\left[S_{-}^{n} \right]^{-1} - \left[S_{+}^{n} \right]^{-1} \right) & \alpha_{-}^{n} \left[S_{-}^{n} \right]^{-1} + \alpha_{+}^{n} \left[S_{+}^{n} \right]^{-1} \end{pmatrix} \begin{pmatrix} \langle x^{n} \rangle_{\Sigma_{H}}^{\zeta} \\ \langle x^{n} \rangle_{g_{H}}^{\zeta} \end{pmatrix} = \begin{pmatrix} \langle x^{n} \rangle_{\Sigma_{H}}^{\zeta} \\ 0 \end{pmatrix}$$

The equation can be easily inverted and, relying on the hadronic scale definition, delivers a constraint for all Mellin moments of glue and sea at any experimental scale:

Consider, for the sake of simplicity, three flavors and $\,\zeta \leq M_s$

$$\begin{split} \zeta^{2} \frac{d}{d\zeta^{2}} \langle x^{n} \rangle_{q_{H}}^{\zeta} &= -\frac{\alpha(\zeta^{2})}{4\pi} \gamma_{uu}^{n} \langle x^{n} \rangle_{q_{H}}^{\zeta} &\qquad \gamma_{qq}^{n} = \gamma_{uu}^{n}, \ \gamma_{gq}^{n} = \gamma_{gu}^{n}, \ \gamma_{qg}^{n} = \gamma_{ug}^{n} \\ q = u, d, s \end{split}$$

$$\begin{split} \zeta^{2} \frac{d}{d\zeta^{2}} \langle x^{n} \rangle_{\Sigma_{H}}^{\zeta} &= -\frac{\alpha(\zeta^{2})}{4\pi} \gamma_{uu}^{n} \langle x^{n} \rangle_{\Sigma_{H}}^{\zeta} \\ \langle x^{n} \rangle_{g_{H}}^{\zeta} &= -\frac{\alpha(\zeta^{2})}{4\pi} \begin{pmatrix} \gamma_{uu}^{n} & 4\gamma_{ug}^{n} \\ \gamma_{gu}^{n} & \gamma_{gg}^{n} \end{pmatrix} \begin{pmatrix} \langle x^{n} \rangle_{\Sigma_{H}}^{\zeta} \\ \langle x^{n} \rangle_{g_{H}}^{\zeta} \end{pmatrix} = -\frac{\alpha(\zeta^{2})}{4\pi} \begin{pmatrix} \gamma_{uu}^{n} & 4\gamma_{ug}^{n} \\ \gamma_{gu}^{n} & \gamma_{gg}^{n} \end{pmatrix} \begin{pmatrix} \langle x^{n} \rangle_{\Sigma_{H}}^{\zeta} \\ \langle x^{n} \rangle_{g_{H}}^{\zeta} \end{pmatrix} - \frac{\alpha(\zeta^{2})}{4\pi} \begin{pmatrix} 0 \\ \gamma_{gu}^{n} \langle x^{n} \rangle_{\Sigma_{H}}^{\zeta} \end{pmatrix} \end{split}$$

Consider, for the sake of simplicity, three flavors and $\zeta \leq M_s$, such that the singlet combinations can be rearranged and the strange decoupled from the light flavors.

$$\begin{split} \zeta^{2} \frac{d}{d\zeta^{2}} \langle x^{n} \rangle_{q_{H}}^{\zeta} &= -\frac{\alpha(\zeta^{2})}{4\pi} \gamma_{uu}^{n} \langle x^{n} \rangle_{q_{H}}^{\zeta} & \gamma_{qg}^{n} = \gamma_{uu}^{n}, \gamma_{gq}^{n} = \gamma_{gu}^{n}, \gamma_{qg}^{n} = \gamma_{ug}^{n} \\ \zeta^{2} \frac{d}{d\zeta^{2}} \langle x^{n} \rangle_{\Sigma_{H}^{s}}^{\zeta} &= -\frac{\alpha(\zeta^{2})}{4\pi} \gamma_{uu}^{n} \langle x^{n} \rangle_{\Sigma_{H}^{s}}^{\zeta} \\ \zeta^{2} \frac{d}{d\zeta^{2}} \left(\frac{\langle x^{n} \rangle_{\Sigma_{H}^{u+d}}^{\zeta}}{\langle x^{n} \rangle_{g_{H}}^{\zeta}} \right) = -\frac{\alpha(\zeta^{2})}{4\pi} \left(\gamma_{uu}^{n} 4\gamma_{ug}^{n} \\ \gamma_{gu}^{n} \gamma_{gg}^{n} \right) \left(\frac{\langle x^{n} \rangle_{\Sigma_{H}^{u+d}}^{\zeta}}{\langle x^{n} \rangle_{g_{H}}^{\zeta}} \right) \end{split}$$

Consider, for the sake of simplicity, three flavors and $\zeta \leq M_s$, such that the singlet combinations can be rearranged and the strange decoupled from the light flavors. Specializing for the averaged momentum fraction.

In pion's (proton's) case $\langle x \rangle$

$$\langle x \rangle_{s_{\pi}}^{\zeta_H} = 0$$

$$\begin{split} \langle x \rangle_{\Sigma_{\pi}^{s}}^{\zeta} &\equiv 0 \\ \begin{pmatrix} \langle x \rangle_{\Sigma_{\pi}^{u+d}}^{\zeta} \\ \langle x \rangle_{g_{\pi}}^{\zeta} \end{pmatrix} &= \begin{pmatrix} \frac{3}{11} + \frac{8}{11} \left[S(\zeta_{H}, \zeta]^{11/8} \\ \frac{8}{11} \left(1 - \left[S(\zeta_{H}, \zeta]^{11/8} \right) \right) \\ S(\zeta_{H}, \zeta) &= \exp\left(-\frac{\gamma_{uu}}{2\pi} \int_{\zeta_{H}}^{\zeta} \frac{dz}{z} \alpha(z^{2}) \right) \end{split}$$

$$\begin{split} \zeta^{2} \frac{d}{d\zeta^{2}} \langle x^{n} \rangle_{q_{H}}^{\zeta} &= -\frac{\alpha(\zeta^{2})}{4\pi} \gamma_{uu}^{n} \langle x^{n} \rangle_{q_{H}}^{\zeta} &\qquad \gamma_{qq}^{n} = \gamma_{uu}^{n}, \ \gamma_{gq}^{n} = \gamma_{gu}^{n}, \ \gamma_{qg}^{n} = \gamma_{uu}^{n}, \ \gamma_{qu}^{n}, \ \gamma_{qu}^{n}, \ \gamma_{qu}^{n}, \ \gamma_{qu}^{n}, \$$

Consider, for the sake of simplicity, three flavors and $\zeta \leq M_s$, such that the singlet combinations can be rearranged and the strange decoupled from the light flavors. Specializing for the averaged momentum fraction.

In pion's (proton's) case
$$\langle x \rangle_{s_{\pi}}^{\zeta_{H}} = 0$$

 $\langle x \rangle_{\Sigma_{\pi}}^{\zeta} \equiv 0$
 $\begin{pmatrix} \langle x \rangle_{\Sigma_{\pi}}^{\zeta} \\ \langle x \rangle_{g_{\pi}}^{\zeta} \end{pmatrix} = \begin{pmatrix} \frac{3}{11} + \frac{8}{11} \left[S(\zeta_{H}, \zeta]^{11/8} \\ \frac{8}{11} \left(1 - \left[S(\zeta_{H}, \zeta]^{11/8} \right] \right) \end{pmatrix}$
 $S(\zeta_{H}, \zeta) = \exp\left(-\frac{\gamma_{uu}}{2\pi} \int_{\zeta_{H}}^{\zeta} \frac{dz}{z} \alpha(z^{2})\right)$

$$\begin{split} \zeta^{2} \frac{d}{d\zeta^{2}} \langle x^{n} \rangle_{q_{H}}^{\zeta} &= -\frac{\alpha(\zeta^{2})}{4\pi} \gamma_{uu}^{n} \langle x^{n} \rangle_{q_{H}}^{\zeta} &\qquad \gamma_{qq}^{n} = \gamma_{uu}^{n}, \ \gamma_{gq}^{n} = \gamma_{gu}^{n}, \ \gamma_{qg}^{n} = \gamma_{ug}^{n} \\ q = u, d, s \end{split}$$

$$\begin{split} \zeta^{2} \frac{d}{d\zeta^{2}} \langle x^{n} \rangle_{\Sigma_{H}^{s}}^{\zeta} &= -\frac{\alpha(\zeta^{2})}{4\pi} \gamma_{uu}^{n} \langle x^{n} \rangle_{\Sigma_{H}^{s}}^{\zeta} \\ \zeta^{2} \frac{d}{d\zeta^{2}} \left(\frac{\langle x^{n} \rangle_{\Sigma_{H}^{u+d}}}{\langle x^{n} \rangle_{g_{H}}^{\zeta}} \right) = -\frac{\alpha(\zeta^{2})}{4\pi} \left(\gamma_{uu}^{n} \ 4\gamma_{ug}^{n} \\ \gamma_{gu}^{n} \ \gamma_{gg}^{n} \end{array} \right) \left(\frac{\langle x^{n} \rangle_{\Sigma_{H}^{u+d}}}{\langle x^{n} \rangle_{g_{H}}^{\zeta}} \right) - \frac{\alpha(\zeta^{2})}{4\pi} \left(\frac{\gamma_{uu}^{n} \langle x^{n} \rangle_{\Sigma_{H}^{s}}}{\gamma_{gu}^{n} \ \gamma_{gg}^{n}} \right) \end{split}$$

Consider, for the sake of simplicity, three flavors and $\zeta \leq M_s$, such that the singlet combinations can be rearranged and the strange decoupled from the light flavors. Specializing for the averaged momentum fraction.

In pion's (proton's) case
$$\langle x \rangle_{\delta_{\pi}}^{\varsigma_{H}} = 0$$

 $\langle x \rangle_{\Sigma_{\pi}}^{\zeta} \equiv 0$
 $\begin{pmatrix} \langle x \rangle_{\Sigma_{\pi}}^{\zeta} \equiv 0 \\ \langle x \rangle_{g_{\pi}}^{\zeta} \end{pmatrix} = \begin{pmatrix} \frac{3}{11} + \frac{8}{11} \left[S(\zeta_{H}, \zeta]^{11/8} \\ \frac{8}{11} \left(1 - \left[S(\zeta_{H}, \zeta]^{11/8} \right] \right) \end{pmatrix}$
 $S(\zeta_{H}, \zeta) = \exp\left(-\frac{\gamma_{uu}}{2\pi} \int_{\zeta_{H}}^{\zeta} \frac{dz}{z} \alpha(z^{2}) \right)$
 $\langle x \rangle_{\Sigma_{K}}^{\zeta} = s_{0} S(\zeta_{H}, \zeta)$
 $\begin{pmatrix} \langle x \rangle_{\Sigma_{K}}^{\zeta} \\ \frac{8}{11} \left(1 - \left[S(\zeta_{H}, \zeta]^{11/8} \right] \right) \end{pmatrix}$
 $S(\zeta_{H}, \zeta) = \exp\left(-\frac{\gamma_{uu}}{2\pi} \int_{\zeta_{H}}^{\zeta} \frac{dz}{z} \alpha(z^{2}) \right)$
 $\langle x \rangle_{\Sigma_{H}}^{\zeta} = \sum_{q=u,d,s,c} \langle x^{n} \rangle_{Z_{H}}^{\zeta} = \sum_{q=u,d,s,c} \langle x^{n} \rangle_{Z_$

In general, at any momentum scale $\zeta \ge M_c$ and again specializing for the averaged momentum fraction, the solutions are:

In general, at any momentum scale $\zeta \ge M_c$ and again specializing for the averaged momentum fraction, the solutions are:

$$\langle x \rangle_{q_H}^{\zeta} = \langle x \rangle_{q_H}^{\zeta_H} S(\zeta_H, \zeta) \qquad \langle x \rangle_{g_H}^{\zeta} = \frac{4}{7} - \tau(M_s, M_c) \left[\langle 2x \rangle_{u_\pi}^{\zeta} \right]^{7/4}$$

$$\tau(M_s, M_c) = -\frac{12}{175} \left[\langle 2x \rangle_{u_\pi}^{M_c} \right]^{-7/4} - \frac{24}{275} \left[\langle 2x \rangle_{u_\pi}^{M_c} \right]^{-3/16} \left[\langle 2x \rangle_{u_\pi}^{M_s} \right]^{-25/16} + \frac{8}{11} \left[\langle 2x \rangle_{u_\pi}^{M_c} \langle 2x \rangle_{u_\pi}^{M_s} \right]^{-3/16}$$

.

Capitalizing on the universality of the effective charge, **all hadrons'** momentum fraction averages can be expressed in terms of **pion's** ones.

In general, at any momentum scale $\zeta \ge M_c$ and again specializing for the averaged momentum fraction, the solutions are:

$$\langle x \rangle_{q_{H}}^{\zeta} = \langle x \rangle_{q_{H}}^{\zeta_{H}} S(\zeta_{H}, \zeta)$$

$$\langle x \rangle_{g_{H}}^{\zeta} = \frac{4}{7} - \tau(M_{s}, M_{c}) \left[\langle 2x \rangle_{u_{\pi}}^{\zeta} \right]^{7/4}$$

$$\tau(M_{s}, M_{c}) = -\frac{12}{175} \left[\langle 2x \rangle_{u_{\pi}}^{M_{c}} \right]^{-7/4} - \frac{24}{275} \left[\langle 2x \rangle_{u_{\pi}}^{M_{c}} \right]^{-3/16} \left[\langle 2x \rangle_{u_{\pi}}^{M_{s}} \right]^{-25/16} + \frac{8}{11} \left[\langle 2x \rangle_{u_{\pi}}^{M_{c}} \langle 2x \rangle_{u_{\pi}}^{M_{s}} \right]^{-3/16}$$

$$\tau(\zeta_{H}, M_{c}) = -\frac{12}{175} \left[\langle 2x \rangle_{u}^{M_{c}} \right]^{-7/4} + \frac{16}{25} \left[\langle 2x \rangle_{u}^{M_{c}} \right]^{-3/16}$$

$$3 \text{ (always) active flavors}$$

.

In general, at any momentum scale $\zeta \ge M_c$ and again specializing for the averaged momentum fraction, the solutions are:

$$\langle x \rangle_{q_{H}}^{\zeta} = \langle x \rangle_{q_{H}}^{\zeta_{H}} S(\zeta_{H}, \zeta)$$

$$\langle x \rangle_{g_{H}}^{\zeta} = \frac{4}{7} - \tau(M_{s}, M_{c}) \left[\langle 2x \rangle_{u_{\pi}}^{\zeta} \right]^{7/4}$$

$$\tau(M_{s}, M_{c}) = -\frac{12}{175} \left[\langle 2x \rangle_{u_{\pi}}^{M_{c}} \right]^{-7/4} - \frac{24}{275} \left[\langle 2x \rangle_{u_{\pi}}^{M_{c}} \right]^{-3/16} \left[\langle 2x \rangle_{u_{\pi}}^{M_{s}} \right]^{-25/16} + \frac{8}{11} \left[\langle 2x \rangle_{u_{\pi}}^{M_{c}} \langle 2x \rangle_{u_{\pi}}^{M_{s}} \right]^{-3/16}$$

$$\tau(\zeta_{H}, M_{c}) = -\frac{12}{175} \left[\langle 2x \rangle_{u}^{M_{c}} \right]^{-7/4} + \frac{16}{25} \left[\langle 2x \rangle_{u}^{M_{c}} \right]^{-3/16}$$

$$\tau(\zeta_{H}, \zeta_{H}) = \frac{4}{7}$$

$$4 \text{ (always) active flavors}$$

Thus recovering the previous result!

In general, at any momentum scale $\zeta \ge M_c$ and again specializing for the averaged momentum fraction, the solutions are:

$$\begin{split} \langle x \rangle_{q_{H}}^{\zeta} &= \langle x \rangle_{q_{H}}^{\zeta_{H}} S(\zeta_{H}, \zeta) \\ \tau(M_{s}, M_{c}) &= -\frac{12}{175} \left[\langle 2x \rangle_{u_{\pi}}^{M_{c}} \right]^{-7/4} - \frac{24}{275} \left[\langle 2x \rangle_{u_{\pi}}^{M_{c}} \right]^{-3/16} \left[\langle 2x \rangle_{u_{\pi}}^{M_{s}} \right]^{-25/16} + \frac{8}{11} \left[\langle 2x \rangle_{u_{\pi}}^{M_{c}} \langle 2x \rangle_{u_{\pi}}^{M_{s}} \right]^{-3/16} \\ \langle x \rangle_{S_{H}}^{\zeta} &= \langle x \rangle_{\Sigma_{H}}^{\zeta} - \langle x \rangle_{q_{H}}^{\zeta} = \theta(\zeta - M_{q}) \frac{1}{3\pi} \int_{M_{q}}^{\zeta} \frac{dz}{z} \alpha(z^{2}) \langle x \rangle_{g_{H}}^{z} S(z, \zeta) \end{split}$$

.

In general, at any momentum scale $\zeta \ge M_c$ and again specializing for the averaged momentum fraction, the solutions are:

In general, at any momentum scale $\zeta \ge M_c$ and again specializing for the averaged momentum fraction, the solutions are:

Mo

PDFs DGLAP evolutions equations, expressed by the corresponding massless splitting functions

$$\begin{split} \zeta^2 \frac{d}{d\zeta^2} q_{\mathsf{H}}(x) &= \frac{\alpha(\zeta^2)}{4\pi} \int_x^1 \frac{dy}{y} P_{q \leftarrow q}\left(\frac{x}{y}\right) q_{\mathsf{H}}(y) \\ \zeta^2 \frac{d}{d\zeta^2} \Sigma_{\mathsf{H}}^q(x) &= \frac{\alpha(\zeta^2)}{4\pi} \int_x^1 \frac{dy}{y} \left\{ P_{q \leftarrow q}\left(\frac{x}{y}\right) \Sigma_{\mathsf{H}}^q(y) + 2 \frac{P_{q \leftarrow g}^{\zeta}\left(\frac{x}{y}\right)}{y} g_{\mathsf{H}}(y) \right\} \\ \zeta^2 \frac{d}{d\zeta^2} g_{\mathsf{H}}(x) &= \frac{\alpha(\zeta^2)}{4\pi} \int_x^1 \frac{dy}{y} \left\{ P_{q \leftarrow q}\left(\frac{x}{y}\right) \Sigma_{\mathsf{H}}^q(y) + P_{g \leftarrow g}\left(\frac{x}{y}\right) g_{\mathsf{H}}(y) \right\} \end{split}$$

Modeling the Pauli-blocking contribution:

$$P_{q \leftarrow g}^{\zeta}(z) = \left[P_{q \leftarrow g}(z) + \delta_q \sqrt{3} (1 - 2z) \mathcal{D}\left(\frac{\zeta}{\zeta_H}\right) \right] \theta(\zeta - M_q)$$
$$\mathcal{D}(t) = \frac{1}{1 + (t - 1)^2}$$

PDFs DGLAP evolutions equations, expressed by the corresponding massless splitting functions, after converting to Mellin space

$$\begin{split} \zeta^2 \frac{d}{d\zeta^2} \langle x^n \rangle_{q_\pi}^{\zeta} &= -\frac{\alpha(\zeta^2)}{4\pi} \gamma_{qq}^n \langle x^n \rangle_{q_\pi}^{\zeta} \\ \zeta^2 \frac{d}{d\zeta^2} \langle x^n \rangle_{\Sigma_\pi^{\pi}}^{\zeta} &= -\frac{\alpha(\zeta^2)}{4\pi} \left\{ \gamma_{qq}^n \langle x^n \rangle_{\Sigma_\pi^{\pi}}^{\zeta} + 2\theta(\zeta - M_q) \left[\gamma_{qg}^n + \frac{\delta_q a_n \mathcal{D}\left(\frac{\zeta}{\zeta_H}\right)}{\left(\frac{\zeta}{\zeta_H}\right)} \right] \langle x^n \rangle_{g_\pi}^{\zeta} \right\} \\ \zeta^2 \frac{d}{d\zeta^2} \langle x^n \rangle_{g_\pi}^{\zeta} &= -\frac{\alpha(\zeta^2)}{4\pi} \left\{ \sum_q \gamma_{gq}^n \langle x^n \rangle_{\Sigma_\pi^{\pi}}^{\zeta} + \gamma_{gg}^n \langle x^n \rangle_{g_\pi}^{\zeta} \right\} ; \end{split}$$

Modeling the Pauli-blocking contribution:

Momentum conservation

$$\gamma_{qq} + \gamma_{gq} = 2\sum_{q} \gamma_{qg} + \gamma_{gg} = \sum_{q} \delta_q = 0$$

$$a_n = \frac{\sqrt{3}n}{2+3n+n^2}$$

 $\mathcal{D}(t) = \frac{1}{1+(t-1)^2}$

PDFs DGLAP evolutions equations, expressed by the corresponding massless splitting functions, after converting to Mellin space

$$\begin{split} \zeta^2 \frac{d}{d\zeta^2} \langle x^n \rangle_{q_\pi}^{\zeta} &= -\frac{\alpha(\zeta^2)}{4\pi} \gamma_{qq}^n \langle x^n \rangle_{q_\pi}^{\zeta} \\ \zeta^2 \frac{d}{d\zeta^2} \langle x^n \rangle_{\Sigma_\pi^{q}}^{\zeta} &= -\frac{\alpha(\zeta^2)}{4\pi} \left\{ \gamma_{qq}^n \langle x^n \rangle_{\Sigma_\pi^{q}}^{\zeta} + 2\theta(\zeta - M_q) \left[\gamma_{qg}^n + \frac{\delta_q a_n \mathcal{D}\left(\frac{\zeta}{\zeta_H}\right)}{\left(\frac{\zeta}{\zeta_H}\right)} \right] \langle x^n \rangle_{g_\pi}^{\zeta} \right\} \\ \zeta^2 \frac{d}{d\zeta^2} \langle x^n \rangle_{g_\pi}^{\zeta} &= -\frac{\alpha(\zeta^2)}{4\pi} \left\{ \sum_q \gamma_{gq}^n \langle x^n \rangle_{\Sigma_\pi^{q}}^{\zeta} + \gamma_{gg}^n \langle x^n \rangle_{g_\pi}^{\zeta} \right\} ; \end{split}$$

Modeling the Pauli-blocking contribution:

Momentum conservation

$$\gamma_{qq} + \gamma_{gq} = 2\sum_{q} \gamma_{qg} + \gamma_{gg} = \sum_{q} \delta_q = 0$$

 $a_n = \frac{\sqrt{3}n}{2+3n+n^2}$ $\mathcal{D}(t) = \frac{1}{1+(t-1)^2}$

Equations and solutions for $\sum \langle x \rangle_{S_{H}^{c}}^{\zeta}$ and $\langle x \rangle_{g_{H}}^{\zeta}$ remain the same, while:

$$\langle x^n \rangle_{\mathcal{S}_q}^{\zeta} = -\frac{1}{\pi} \int_{\zeta_H}^{\zeta} \frac{dz}{z} \alpha(z^2) \left[\gamma_{ug}^n + g_q a_n \mathcal{D}\left(\frac{\zeta}{\zeta_H}\right) \right] \langle x^n \rangle_{g_\pi}^z \left[S(z,\zeta) \right]^{\gamma_{uu}^n / \gamma_{uu}}$$

PDFs DGLAP evolutions equations, expressed by the corresponding massless splitting functions, after converting to Mellin space

$$\begin{split} \zeta^2 \frac{d}{d\zeta^2} \langle x^n \rangle_{q_\pi}^{\zeta} &= -\frac{\alpha(\zeta^2)}{4\pi} \gamma_{qq}^n \langle x^n \rangle_{q_\pi}^{\zeta} \\ \zeta^2 \frac{d}{d\zeta^2} \langle x^n \rangle_{\Sigma_\pi^{q}}^{\zeta} &= -\frac{\alpha(\zeta^2)}{4\pi} \left\{ \gamma_{qq}^n \langle x^n \rangle_{\Sigma_\pi^{q}}^{\zeta} + 2\theta(\zeta - M_q) \left[\gamma_{qg}^n + \frac{\delta_q a_n \mathcal{D}\left(\frac{\zeta}{\zeta_H}\right)}{\left(\frac{\zeta}{\zeta_H}\right)} \right] \langle x^n \rangle_{g_\pi}^{\zeta} \right\} \\ \zeta^2 \frac{d}{d\zeta^2} \langle x^n \rangle_{g_\pi}^{\zeta} &= -\frac{\alpha(\zeta^2)}{4\pi} \left\{ \sum_q \gamma_{gq}^n \langle x^n \rangle_{\Sigma_\pi^{q}}^{\zeta} + \gamma_{gg}^n \langle x^n \rangle_{g_\pi}^{\zeta} \right\} ; \end{split}$$

Modeling the Pauli-blocking contribution:

 $a_n = \overline{a_n}$

with:

Momentum conservation

$$\gamma_{qq} + \gamma_{gq} = 2\sum_{q} \gamma_{qg} + \gamma_{gg} = \sum_{q} \delta_q = 0$$

$$\mathcal{D}(t) = \frac{1}{1 + (t - 1)^2}$$

$$\mathcal{D}(t) = \frac{1}{1 + (t - 1)^2}$$

$$\begin{cases} \langle x \rangle_{\mathcal{S}^u_{\pi}^{u+d}}^{\zeta} = \frac{2}{3\pi} \int_{\zeta_H}^{\zeta} \frac{dz}{z} \alpha(z^2) \left[1 - \frac{\sqrt{3}}{2} \delta \mathcal{D}\left(\frac{\zeta}{\zeta_H}\right) \right] \langle x \rangle_{g_{\pi}}^{z} S(z,\zeta) ,$$
Particularly, for the pion momentum fractions, and with:

$$\delta_u = \delta_d = \delta = -\delta_s/2 ; \delta_c = 0 .$$

$$\langle x \rangle_{\mathcal{S}^e_{\pi}}^{\zeta} = \theta(\zeta - M_s) \frac{1}{3\pi} \int_{M_s}^{\zeta} \frac{dz}{z} \alpha(z^2) \left[1 + \sqrt{3} \delta \mathcal{D}\left(\frac{\zeta}{\zeta_H}\right) \right] \langle x \rangle_{g_{\pi}}^{z} S(z,\zeta) .$$
All-orders DGLAP: Polarized distributions

Polarized PDFs DGLAP evolutions equations, expressed by the corresponding massless splitting functions, after converting to Mellin space and specializing for 0-th order

$$\begin{aligned} \zeta^2 \frac{d}{d\zeta^2} \langle x^0 \rangle_{\widetilde{\Sigma}_H}^{\zeta} &= 0\\ \left(\zeta^2 \frac{d}{d\zeta^2} + \widetilde{\gamma}_{gg}^0(n_f) \frac{\alpha(\zeta^2)}{4\pi} \right) \langle x^0 \rangle_{\widetilde{g}_H}^{\zeta} &= 4 \frac{\alpha(\zeta^2)}{4\pi} \langle x^0 \rangle_{\widetilde{\Sigma}_H}^{\zeta} \end{aligned}$$

$$\begin{aligned} \zeta^2 \frac{d}{d\zeta^2} \langle x^0 \rangle_{\widetilde{\Sigma}_H}^{\zeta} &= 0\\ \left(\zeta^2 \frac{d}{d\zeta^2} + \widetilde{\gamma}_{gg}^0(n_f) \frac{\alpha(\zeta^2)}{4\pi} \right) \langle x^0 \rangle_{\widetilde{g}_H}^{\zeta} &= 4 \frac{\alpha(\zeta^2)}{4\pi} \langle x^0 \rangle_{\widetilde{\Sigma}_H}^{\zeta} \end{aligned}$$

In general, at any momentum scale $\ \zeta \geq M_c$:

$$\begin{aligned} a_{0H}^{\zeta} &= \langle x^0 \rangle_{\widetilde{\Sigma}_H}^{\zeta} = \langle x^0 \rangle_{\widetilde{\Sigma}_H}^{\zeta} ,\\ \Delta G_H^{\zeta} &= \langle x^0 \rangle_{\widetilde{g}_H^q}^{\zeta} = \langle x^0 \rangle_{\widetilde{\Sigma}_H}^{\zeta} \left\{ \frac{12}{29} \left(\left[S(\zeta_H, M_s) \right]^{-87/32} - 1 \right) \left[S(M_s, M_c) \right]^{-81/32} \left[S(M_c, \zeta) \right]^{-75/32} \right. \\ &+ \frac{4}{9} \left(\left[S(M_s, M_c) \right]^{-81/32} - 1 \right) \left[S(M_c, \zeta) \right]^{-75/32} + \frac{12}{25} \left(\left[S(M_c, \zeta) \right]^{-75/32} - 1 \right) \right] \end{aligned}$$

$$S(\zeta_H,\zeta) = \frac{\langle x \rangle_{q_H}^{\zeta}}{\langle x \rangle_{q_H}^{\zeta_H}} = \exp\left(-\frac{\gamma_{qq}}{2\pi} \int_{\zeta_H}^{\zeta} \frac{dz}{z} \alpha(z^2)\right)$$

$$\begin{aligned} \zeta^2 \frac{d}{d\zeta^2} \langle x^0 \rangle_{\widetilde{\Sigma}_H}^{\zeta} &= 0\\ \left(\zeta^2 \frac{d}{d\zeta^2} + \widetilde{\gamma}_{gg}^0(n_f) \frac{\alpha(\zeta^2)}{4\pi} \right) \langle x^0 \rangle_{\widetilde{g}_H}^{\zeta} &= 4 \frac{\alpha(\zeta^2)}{4\pi} \langle x^0 \rangle_{\widetilde{\Sigma}_H}^{\zeta} \end{aligned}$$

In general, at any momentum scale $M_s \leq \zeta \leq M_c$:

$$a_{0H}^{\zeta} = \langle x^{0} \rangle_{\widetilde{\Sigma}_{H}}^{\zeta} = \langle x^{0} \rangle_{\widetilde{\Sigma}_{H}}^{\zeta},$$

$$\Delta G_{H}^{\zeta} = \langle x^{0} \rangle_{\widetilde{g}_{H}}^{\zeta} = \langle x^{0} \rangle_{\widetilde{\Sigma}_{H}}^{\zeta} \left\{ \frac{12}{29} \left(\left[S(\zeta_{H}, M_{s}) \right]^{-87/32} - 1 \right) \left[S(M_{s}, \zeta) \right]^{-81/32} + \frac{4}{9} \left(\left[S(M_{s}, \zeta) \right]^{-81/32} - 1 \right) \right\}$$

$$S(\zeta_H,\zeta) = \frac{\langle x \rangle_{q_H}^{\zeta}}{\langle x \rangle_{q_H}^{\zeta_H}} = \exp\left(-\frac{\gamma_{qq}}{2\pi} \int_{\zeta_H}^{\zeta} \frac{dz}{z} \alpha(z^2)\right)$$

$$\begin{aligned} \zeta^2 \frac{d}{d\zeta^2} \langle x^0 \rangle_{\widetilde{\Sigma}_H}^{\zeta} &= 0\\ \left(\zeta^2 \frac{d}{d\zeta^2} + \widetilde{\gamma}_{gg}^0(n_f) \frac{\alpha(\zeta^2)}{4\pi} \right) \langle x^0 \rangle_{\widetilde{g}_H}^{\zeta} &= 4 \frac{\alpha(\zeta^2)}{4\pi} \langle x^0 \rangle_{\widetilde{\Sigma}_H}^{\zeta} \end{aligned}$$

In general, at any momentum scale $\zeta_H \leq \zeta \leq M_s$:

$$a_{0H}^{\zeta} = \langle x^0 \rangle_{\widetilde{\Sigma}_H}^{\zeta} = \langle x^0 \rangle_{\widetilde{\Sigma}_H}^{\zeta_H} ,$$

$$\Delta G_H^{\zeta} = \langle x^0 \rangle_{\widetilde{g}_H^q}^{\zeta} = \frac{12}{29} \langle x^0 \rangle_{\widetilde{\Sigma}_H}^{\zeta_H} \left(\left[S(\zeta_H, \zeta) \right]^{-87/32} - 1 \right)$$

$$S(\zeta_H, \zeta) = \frac{\langle x \rangle_{q_H}^{\zeta}}{\langle x \rangle_{q_H}^{\zeta_H}} = \exp\left(-\frac{\gamma_{qq}}{2\pi} \int_{\zeta_H}^{\zeta} \frac{dz}{z} \alpha(z^2)\right)$$

$$\begin{aligned} \zeta^2 \frac{d}{d\zeta^2} \langle x^0 \rangle_{\widetilde{\Sigma}_H}^{\zeta} &= 0\\ \left(\zeta^2 \frac{d}{d\zeta^2} + \widetilde{\gamma}_{gg}^0(n_f) \frac{\alpha(\zeta^2)}{4\pi} \right) \langle x^0 \rangle_{\widetilde{g}_H}^{\zeta} &= 4 \frac{\alpha(\zeta^2)}{4\pi} \langle x^0 \rangle_{\widetilde{\Sigma}_H}^{\zeta} \end{aligned}$$

In general, at any momentum scale $\zeta_H \leq \zeta$, and neglecting the mass thresholds:

$$a_{0H}^{\zeta} = \langle x^{0} \rangle_{\widetilde{\Sigma}_{H}}^{\zeta} = \langle x^{0} \rangle_{\widetilde{\Sigma}_{H}}^{\zeta}$$
$$\Delta G_{H}^{\zeta} = \langle x^{0} \rangle_{\widetilde{g}_{H}}^{\zeta} = \langle x^{0} \rangle_{\widetilde{\Sigma}_{H}}^{\zeta} \begin{cases} \frac{12}{25} \left([S(\zeta_{H}, \zeta)]^{-75/32} - 1 \right) & n_{f} = 4 \\ \frac{4}{9} \left([S(M_{s}, \zeta)]^{-81/32} - 1 \right) & n_{f} = 3 \end{cases}$$

$$S(\zeta_H,\zeta) = \frac{\langle x \rangle_{q_H}^{\zeta}}{\langle x \rangle_{q_H}^{\zeta_H}} = \exp\left(-\frac{\gamma_{qq}}{2\pi} \int_{\zeta_H}^{\zeta} \frac{dz}{z} \alpha(z^2)\right)$$

All-orders DGLAP: Polarized distributions

Polarized PDFs DGLAP evolutions equations, expressed by the corresponding massless splitting functions, after converting to Mellin space and specializing for 0-th order

$$\begin{aligned} \zeta^2 \frac{d}{d\zeta^2} \langle x^0 \rangle_{\widetilde{\Sigma}_H}^{\zeta} &= 0\\ \left(\zeta^2 \frac{d}{d\zeta^2} + \widetilde{\gamma}_{gg}^0(n_f) \frac{\alpha(\zeta^2)}{4\pi} \right) \langle x^0 \rangle_{\widetilde{g}_H}^{\zeta} &= 4 \frac{\alpha(\zeta^2)}{4\pi} \langle x^0 \rangle_{\widetilde{\Sigma}_H}^{\zeta} \end{aligned}$$

In general, at any momentum scale $\zeta_H \leq \zeta$, and neglecting the mass thresholds: A [CT18]+ no thresholds

$a_{0H}^{\zeta} = \langle x^0 \rangle_{\widetilde{\Sigma}}^{\zeta} = \langle x^0 \rangle_{\widetilde{\Sigma}}^{\zeta_H}$						B [Ya2022]+no
$\Delta G_H^{\zeta} =$	$= \langle x^0 \rangle_{\widetilde{q}_H}^{\zeta} = \langle$	$\langle x^0 \rangle_{\widetilde{\Sigma}_{H}}^{\zeta_H} \left\{ \begin{array}{c} \frac{12}{25} \left(\\ \frac{12}{25} \right) \right\}$	$[S(\zeta_H,\zeta)]^{-75/}$	$n_{32} - 1$ $n_f =$	= 4	C [Ya2022]+[Chen2022]
	5	$\frac{2H}{2} \left[\frac{4}{2} \right] \left[\frac{4}{2} \right]$	$S(M_s, \zeta)]^{-81/2}$	$n_{f} = 1$ $n_{f} =$	= 3	D [Ya2022]+ thresholds
C	0.74(11)	0 7 ((1 1)	0.05(00)	0.05(00)	Abelian anom	naly corrected:
a_{0p}	0.74(11)	0.74(11)	0.65(02)	0.65(02)	$\tilde{a}_{s}^{\zeta} = a_{s}^{\zeta}$	$-n \epsilon \frac{\hat{\alpha}(\zeta)}{\Delta G^{\zeta}}$
	Α	В	С	D	$a_{0p} - a_{0p}$	$\frac{n_f}{2\pi} \Delta \sigma_p$
ΔG_p^{ζ}	2.27(30)	1.50(25)	1.33(15)	1.41(16)	$\langle x \rangle_{q_H}^{\zeta} = 0$	$\gamma_{qq} \int^{\zeta} dz_{\alpha(z^2)}$
\tilde{a}_{0p}^{ζ}	0.20(11)	0.38(11)	0.33(04)	0.32(04)	$\overline{\langle x \rangle_{q_H}^{\zeta_H}} = \exp\left(\left(\frac{1}{2} \right) \right)$	$\left[\frac{-2\pi}{2\pi}\int_{\zeta_H}\frac{-\alpha(z^-)}{z}\right]$

All-orders DGLAP: Polarized distributions

Reverse engineering the PDF data

Pion PDF

Let us assume the data can be parameterized with a certain functional form, i.e.:

Х

Then, we proceed as follows:

1) Determine the **best values** α_i via least-squares fit to the data.

2) Generate new values α_i , distributed randomly around the best fit.

3) Using the latter set, evaluate:

$$\chi^2 = \sum_{l=1}^{N} \frac{(u^{\pi}(x_l; [\alpha_i]; \zeta_5) - u_j)^2}{\delta_l^2}$$
Data point with error

4) Accept a replica with probability:

$$\mathcal{P} = \frac{P(\chi^2; d)}{P(\chi^2_0; d)}, \ P(y; d) = \frac{(1/2)^{d/2}}{\Gamma(d/2)} y^{d/2 - 1} e^{-y/2}$$

0.8 1.0 ^{5) Evolve back to ζ_H Repeat (2-5). Data from [Aicher et al. Phys. Rev. Lett. 105, 252003 (2010)]}

Pion PDF: ASV analysis of E615 data

Applying this algorithm to the ASV data yields:

 $\{\{0.5, 2.75144 \times 10^{-17}\}, (0.299833, 0.00647045), \{0.199907, 0.00735448\}, (0.142895, 0.0068623), (0.107274, 0.00608759\}, (0.0835168, 0.00532834), (0.0668711, 0.0046596),$

(0.0547511, 0.00409028), (0.0456496, 0.00361041), (0.0386394, 0.00320609)}

- The produced moments are compatible with a symmetric PDF at the hadronic scale.
- It seems it favors a soft end-point behavior just like the CSM result.

(average)

Pion PDF: ASV analysis of E615 data

Applying this algorithm to the ASV data yields:

- The produced moments are compatible with a symmetric PDF at the hadronic scale.
- It seems it favors a soft end-point behavior... just like the CSM result.

Mean values (of moments) and errors

1

{{0.5, 2.75144×10⁻¹⁷}, (0.299833, 0.00647045), {0.199907, 0.00735448}, (0.142895, 0.0068623), {0.107274, 0.00608759}, {0.0835168, 0.00532834}, {0.0668711, 0.0046596}, {0.0547511, 0.00409028}, {0.0456496, 0.00361041}, {0.0386394, 0.00320609}}

Then, we can reconstruct the moments produced by each replica, using the single-parameter Ansatz:

$$\iota^{\pi}(x;\zeta_{\mathcal{H}}) = n_0 \ln(1 + x^2(1-x)^2/\rho^2)$$

Pion PDF: dM NLL analysis of E615 data

 \blacktriangleright Applying this algorithm to the original data yields:

The produced moments are compatible with a symmetric PDF at the hadronic scale.

***** But also exhibit agreement with the **SCI results.**

(average)

(SCI)

lean values (of moments) and errors, \leq_H $\{0.5, 2.52187 \times 10^{-17}\}$, $\{0.331527, 0.00803273\}$, $\{0.247615, 0.0110893\}$, $\{0.19784, 0.0121977\}$, $\{0.165066, 0.0124911\}$, $\{0.141928, 0.0124198\}$, $\{0.124755, 0.0121811\}$, $\{0.111521, 0.0118683\}$, $\{0.101021, 0.0115275\}$, $\{0.0924926, 0.0111824\}$, $\{0.085431, 0.010845\}$, $\{0.0794897, 0.0105214\}$, $\{0.0744232, 0.0102142\}$, $\{0.0700521, 0.00992435\}$, $\{0.0662432, 0.00965182\}$

ioments from SCI, SH

0.5, 0.332885, 0.249327, 0.199231, 0.165865, 0.142056, 0.124215, 0.11035, 0.0992657, 0.090203, 0.0826552, 0.0762721, 0.0708035, 0.0660661, 0.0619225)

Let us assume the data can be parameterized with a certain functional form, i.e.:

$$u^{\mathrm{K},\pi}(x; [\alpha_i]; \zeta) = n_u^{\zeta} x^{\alpha_1^{\zeta}} (1-x)^{\alpha_2^{\zeta}} (1+\alpha_3^{\zeta} x^2)$$
Pion's free parameters: $\{\alpha_i^{\zeta} | i = 1, 2, 3\}$
Kaon's : α_{3K}^{ζ}

Then, we proceed as follows:

Determine the best values α_i via least-squares fit to the ASV data for the pion.
 Use u^K/u^π data to fix the only free parameter for the kaon

3) Generate new values α_i, distributed randomly around the best fit parameters
4) With these values, evaluate for the pion:

$$\chi^{2} = \sum_{l=1}^{N} \frac{(u^{\pi}(x_{l}; [\alpha_{i}]; \zeta_{5}) - u_{j})^{2}}{\delta_{l}^{2}}$$
$$\mathcal{P}_{\pi} = \frac{P(\chi^{2}; d)}{P(\chi^{2}_{0}; d)}, \ P(y; d) = \frac{(1/2)^{d/2}}{\Gamma(d/2)} y^{d/2 - 1} e^{-y/2}$$

5) And for the kaon in terms of data for

$$R_{K/\pi}\left(x; \left[\alpha_{3K}^{\zeta_5}\right]; \zeta_5\right) = \frac{u^K\left(x; \left[\alpha_1^{\zeta_5}, \alpha_2^{\zeta_5}, \alpha_{3K}^{\zeta_5}\right];\right)}{u^\pi\left(x; \left[\alpha_i^{\zeta_5}\right]\right)}$$

6) Accept replicas with probabilities

$$\mathcal{P}_{u_{\pi}}$$
 , $\mathcal{P}_{u_{K}} = \mathcal{P}_{R_{K/\pi}} \mathcal{P}_{u_{\pi}}$

7) Evolve back to ζ_H and repeat (2-7)

Let us assume the data can be parameterized with a certain functional form, i.e.:

$$u^{\mathrm{K},\pi}(x; [\alpha_i]; \zeta) = n_u^{\zeta} x^{\alpha_1^{\zeta}} (1-x)^{\alpha_2^{\zeta}} (1+\alpha_3^{\zeta} x^2)$$
Pion's free parameters: $\{\alpha_i^{\zeta} | i = 1, 2, 3\}$
Kaon's : α_{3K}^{ζ}

Then, we proceed as follows:

1) Determine the best values α_i via leastsquares fit to the ASV data for the pion. 2) Use u^K/u^{π} data to fix the only free parameter for the kaon

3) Generate new values α_i, distributed randomly around the best fit parameters
4) With these values, evaluate for the pion:

$$\chi^{2} = \sum_{l=1}^{N} \frac{(u^{\pi}(x_{l}; [\alpha_{i}]; \zeta_{5}) - u_{j})^{2}}{\delta_{l}^{2}}$$
$$\mathcal{P}_{\pi} = \frac{P(\chi^{2}; d)}{P(\chi^{2}_{0}; d)}, \ P(y; d) = \frac{(1/2)^{d/2}}{\Gamma(d/2)} y^{d/2 - 1} e^{-y/2}$$

5) And for the kaon in terms of data for

$$R_{K/\pi}\left(x; \left[\alpha_{3K}^{\zeta_5}\right]; \zeta_5\right) = \frac{u^K\left(x; \left[\alpha_1^{\zeta_5}, \alpha_2^{\zeta_5}, \alpha_{3K}^{\zeta_5}\right];\right)}{u^\pi\left(x; \left[\alpha_i^{\zeta_5}\right]\right)}$$

6) Accept replicas with probabilities

$$\mathcal{P}_{u_{\pi}}$$
 , $\mathcal{P}_{u_{K}} = \mathcal{P}_{R_{K/\pi}} \mathcal{P}_{u_{\pi}}$

7) Evolve back to ζ_H and repeat (2-7)

Let us assume the data can be parameterized with a certain functional form, i.e.:

$$u^{\mathrm{K},\pi}(x; [\alpha_i]; \zeta) = n_u^{\zeta} x^{\alpha_1^{\zeta}} (1-x)^{\alpha_2^{\zeta}} (1+\alpha_3^{\zeta} x^2)$$
Pion's free parameters: $\{\alpha_i^{\zeta} | i = 1, 2, 3\}$
Kaon's : α_{3K}^{ζ}

Then, we proceed as follows:

1) Determine the best values α_i via leastsquares fit to the ASV data for the pion. 2) Use u^K/u^{π} data to fix the only free parameter for the kaon

3) Generate new values α_i, distributed randomly around the best fit parameters
4) With these values, evaluate for the pion:

$$\chi^{2} = \sum_{l=1}^{N} \frac{(u^{\pi}(x_{l}; [\alpha_{i}]; \zeta_{5}) - u_{j})^{2}}{\delta_{l}^{2}}$$
$$\mathcal{P}_{\pi} = \frac{P(\chi^{2}; d)}{P(\chi^{2}_{0}; d)}, \ P(y; d) = \frac{(1/2)^{d/2}}{\Gamma(d/2)} y^{d/2 - 1} e^{-y/2}$$

5) And for the kaon in terms of data for

$$R_{K/\pi}\left(x; \left[\alpha_{3K}^{\zeta_5}\right]; \zeta_5\right) = \frac{u^K\left(x; \left[\alpha_1^{\zeta_5}, \alpha_2^{\zeta_5}, \alpha_{3K}^{\zeta_5}\right];\right)}{u^\pi\left(x; \left[\alpha_i^{\zeta_5}\right]\right)}$$

6) Accept replicas with probabilities

$$\mathcal{P}_{u_{\pi}}$$
 , $\mathcal{P}_{u_{K}} = \mathcal{P}_{R_{K/\pi}}\mathcal{P}_{u_{\pi}}$

7) Evolve back to $\zeta_H\,$ and repeat (2-7)

Let us assume the data can be parameterized with a certain functional form, i.e.:

$$u^{\mathrm{K},\pi}(x; [\alpha_i]; \zeta) = n_u^{\zeta} x^{\alpha_1^{\zeta}} (1-x)^{\alpha_2^{\zeta}} (1+\alpha_3^{\zeta} x^2)$$
Pion's free parameters: $\{\alpha_i^{\zeta} | i = 1, 2, 3\}$
Kaon's : α_{3K}^{ζ}

Then, we proceed as follows:

1) Determine the best values α_i via leastsquares fit to the ASV data for the pion. 2) Use u^K/u^{π} data to fix the only free parameter for the kaon

3) Generate new values α_i, distributed randomly around the best fit parameters
4) With these values, evaluate for the pion:

$$\chi^{2} = \sum_{l=1}^{N} \frac{(u^{\pi}(x_{l}; [\alpha_{i}]; \zeta_{5}) - u_{j})^{2}}{\delta_{l}^{2}}$$
$$\mathcal{P}_{\pi} = \frac{P(\chi^{2}; d)}{P(\chi^{2}_{0}; d)}, \ P(y; d) = \frac{(1/2)^{d/2}}{\Gamma(d/2)} y^{d/2 - 1} e^{-y/2}$$

5) And for the kaon in terms of data for

$$R_{K/\pi}\left(x; \left[\alpha_{3K}^{\zeta_5}\right]; \zeta_5\right) = \frac{u^K\left(x; \left[\alpha_1^{\zeta_5}, \alpha_2^{\zeta_5}, \alpha_{3K}^{\zeta_5}\right];\right)}{u^\pi\left(x; \left[\alpha_i^{\zeta_5}\right]\right)}$$

6) Accept replicas with probabilities

$$\mathcal{P}_{u_{\pi}}$$
 , $\mathcal{P}_{u_{K}} = \mathcal{P}_{R_{K/\pi}}\mathcal{P}_{u_{\pi}}$

7) Evolve back to $\zeta_H\,$ and repeat (2-7)

Let us assume the data can be parameterized with a certain functional form, i.e.:

$$u^{\mathrm{K},\pi}(x; [\alpha_i]; \zeta) = n_u^{\zeta} x^{\alpha_1^{\zeta}} (1-x)^{\alpha_2^{\zeta}} (1+\alpha_3^{\zeta} x^2)$$
Pion's free parameters: $\{\alpha_i^{\zeta} | i = 1, 2, 3\}$
Kaon's : α_{3K}^{ζ}

Then, we proceed as follows:

1) Determine the best values α_i via leastsquares fit to the ASV data for the pion. 2) Use u^{κ}/u^{π} data to fix the only free parameter for the kaon

3) Generate new values α_i, distributed randomly around the best fit parameters
4) With these values, evaluate for the pion:

$$\chi^{2} = \sum_{l=1}^{N} \frac{(u^{\pi}(x_{l}; [\alpha_{i}]; \zeta_{5}) - u_{j})^{2}}{\delta_{l}^{2}}$$
$$\mathcal{P}_{\pi} = \frac{P(\chi^{2}; d)}{P(\chi^{2}_{0}; d)}, \ P(y; d) = \frac{(1/2)^{d/2}}{\Gamma(d/2)} y^{d/2 - 1} e^{-y/2}$$

5) And for the kaon in terms of data for

$$R_{K/\pi}\left(x; \left[\alpha_{3K}^{\zeta_5}\right]; \zeta_5\right) = \frac{u^K\left(x; \left[\alpha_1^{\zeta_5}, \alpha_2^{\zeta_5}, \alpha_{3K}^{\zeta_5}\right];\right)}{u^\pi\left(x; \left[\alpha_i^{\zeta_5}\right]\right)}$$

6) Accept replicas with probabilities

$$\mathcal{P}_{u_{\pi}}$$
 , $\mathcal{P}_{u_{K}} = \mathcal{P}_{R_{K/\pi}}\mathcal{P}_{u_{\pi}}$

7) Evolve back to $\zeta_H\,$ and repeat (2-7)

[M. Ding et al., Phys.Rev.D101(2020)054014] and PDF: [J. Xu et al., Work in progress]

$$q^{\mathsf{H}}(x;\zeta) = N_{c} \operatorname{tr} \int_{dk} \delta_{n}^{x}(k_{\eta}) \Gamma_{\mathsf{H}}^{P}(k_{\bar{\eta}\eta};\zeta) S(k_{\bar{\eta}};\zeta) \times \{n \cdot \frac{\partial}{\partial k_{\eta}} \left[\Gamma_{\mathsf{H}}^{-P}(k_{\eta\bar{\eta}};\zeta) S(k_{\eta};\zeta) \right] \}.$$

$$\varphi_{\pi}^{u}(x;\zeta_{H}) = n_{\varphi}^{\pi} \ln \left(1 + \frac{x(1-x)}{\rho_{\varphi}^{\pi}} \right),$$

$$u^{\pi}(x;\zeta_{H}) = n_{\varphi}^{\pi} \ln \left(1 + \frac{x^{2}(1-x)^{2}}{\rho_{\varphi}^{\pi}} \right)$$

Computation the ~ 8 Mellin moments and parametrization

$$\begin{split} \varphi^u_\pi(x;\zeta_H) &= n^\pi_\varphi \ln\left(1 + \frac{x(1-x)}{\rho^\pi_\varphi}\right),\\ u^\pi(x;\zeta_H) &= n^\pi_u \ln\left(1 + \frac{x^2(1-x)^2}{(\rho^\pi_u)^2}\right) \end{split}$$

Symmetry-preserving DSE computation of the valence-quark DA [L. Chang et al., Phys.Lett.B737(2014)23] and PDF: [J. Xu et al., Work in progress]

$$q^{\mathsf{H}}(x;\zeta) = N_{c} \operatorname{tr} \int_{dk} \delta_{n}^{x}(k_{\eta}) \Gamma_{\mathsf{H}}^{P}(k_{\bar{\eta}\eta};\zeta) S(k_{\bar{\eta}};\zeta) \times \left\{ n \cdot \frac{\partial}{\partial k_{\eta}} \left[\Gamma_{\mathsf{H}}^{-P}(k_{\eta\bar{\eta}};\zeta) S(k_{\eta};\zeta) \right] \right\}.$$

Computation the ~ 8 Mellin moments and parametrization

$$\begin{split} \varphi^u_{\pi}(x;\zeta_H) &= n_{\varphi} x(1-x) \exp\left(\frac{x(1-x)}{\rho^{\rm H}_{\varphi}}\right),\\ q^{\pi}(x;\zeta_H) &= n_q x^2(1-x)^2 \exp\left(\frac{x(1-x)}{\rho^{\rm H}_q}\right) \end{split}$$

$$q^{\mathsf{H}}(x;\zeta) = N_{c} \operatorname{tr} \int_{dk} \delta_{n}^{x}(k_{\eta}) \Gamma_{\mathsf{H}}^{P}(k_{\bar{\eta}\eta};\zeta) S(k_{\bar{\eta}};\zeta) \times \left\{ n \cdot \frac{\partial}{\partial k_{\eta}} \left[\Gamma_{\mathsf{H}}^{-P}(k_{\eta\bar{\eta}};\zeta) S(k_{\eta};\zeta) \right] \right\}.$$

Computation the ~ 8 Mellin moments and parametrization

Then, capitalizing on the LFWF overlap representation:

$$\psi_{\mathbf{P}}^{q}(x,k_{\perp}^{2};\zeta_{H}) = 4\sqrt{3}\pi M_{q} \frac{M_{q}^{2}\left[1-\alpha_{\mathbf{P}}x(1-x)\right]}{\left(k_{\perp}^{2}+M_{q}^{2}\left[1-\alpha_{\mathbf{P}}x(1-x)\right]\right)^{2}} \widetilde{\varphi}_{\mathbf{P}}^{q}(x;\zeta_{H})$$

$$\int \frac{d^{2}k_{\perp}}{16\pi^{3}} \psi_{\mathbf{P}}^{q}(x,k_{\perp}^{2};\zeta_{H}) = \frac{\sqrt{3}}{4\pi} M_{q} \widetilde{\varphi}_{\mathbf{P}}^{q}(x;\zeta_{H}) = f_{\mathbf{P}}r_{\mathbf{P}} \widetilde{\varphi}_{\mathbf{P}}^{q}(x;\zeta_{H}) \qquad q^{\mathbf{P}}(x;\zeta_{H}) = \int \frac{d^{2}k_{\perp}}{16\pi^{3}} |\psi_{\mathbf{P}}^{q}(x;k_{\perp}^{2};\zeta_{H})|^{2} = \frac{[\widetilde{\varphi}_{\mathbf{P}}^{q}(x;\zeta_{H})]^{2}}{1-\alpha_{\mathbf{P}}x(1-x)}$$

 $egin{aligned} & arphi_{\mathsf{H}}^{u}(x;\zeta_{H}) = n_{arphi} \, x(1-x) \exp\left(rac{x(1-x)}{
ho_{arphi}^{\mathsf{H}}}
ight), \ & \mathbf{q}^{\mathsf{H}}(x;\zeta_{H}) = n_{q} \, x^{2}(1-x)^{2} \exp\left(rac{x(1-x)}{
ho_{q}^{\mathsf{H}}}
ight). \end{aligned}$

Then, capitalizing on the LFWF overlap representation:

$$\psi_{\mathbf{P}}^{q}(x,k_{\perp}^{2};\zeta_{H}) = 4\sqrt{3}\pi M_{q} \frac{M_{q}^{2}\left[1-\alpha_{\mathbf{P}}x(1-x)\right]}{\left(k_{\perp}^{2}+M_{q}^{2}\left[1-\alpha_{\mathbf{P}}x(1-x)\right]\right)^{2}} \widetilde{\varphi}_{\mathbf{P}}^{q}(x;\zeta_{H})$$

$$\int \frac{d^{2}k_{\perp}}{16\pi^{3}} \psi_{\mathbf{P}}^{q}(x,k_{\perp}^{2};\zeta_{H}) = \frac{\sqrt{3}}{4\pi} M_{q} \widetilde{\varphi}_{\mathbf{P}}^{q}(x;\zeta_{H}) = f_{\mathbf{P}}r_{\mathbf{P}} \widetilde{\varphi}_{\mathbf{P}}^{q}(x;\zeta_{H}) \qquad q^{\mathbf{P}}(x;\zeta_{H}) = \int \frac{d^{2}k_{\perp}}{16\pi^{3}} |\psi_{\mathbf{P}}^{q}(x;k_{\perp}^{2};\zeta_{H})|^{2} = \frac{[\widetilde{\varphi}_{\mathbf{P}}^{q}(x;\zeta_{H})]^{2}}{1-\alpha_{\mathbf{P}}x(1-x)}$$

Then, capitalizing on the LFWF overlap representation:

$$\psi_{\mathbf{P}}^{q}(x,k_{\perp}^{2};\zeta_{H}) = 4\sqrt{3}\pi M_{q} \frac{M_{q}^{2}\left[1-\alpha_{\mathbf{P}}x(1-x)\right]}{\left(k_{\perp}^{2}+M_{q}^{2}\left[1-\alpha_{\mathbf{P}}x(1-x)\right]\right)^{2}} \widetilde{\varphi}_{\mathbf{P}}^{q}(x;\zeta_{H})$$

$$\int \frac{d^{2}k_{\perp}}{16\pi^{3}} \psi_{\mathbf{P}}^{q}(x,k_{\perp}^{2};\zeta_{H}) = \frac{\sqrt{3}}{4\pi} M_{q} \widetilde{\varphi}_{\mathbf{P}}^{q}(x;\zeta_{H}) = f_{\mathbf{P}}r_{\mathbf{P}} \widetilde{\varphi}_{\mathbf{P}}^{q}(x;\zeta_{H}) \qquad q^{\mathbf{P}}(x;\zeta_{H}) = \int \frac{d^{2}k_{\perp}}{16\pi^{3}} |\psi_{\mathbf{P}}^{q}(x;k_{\perp}^{2};\zeta_{H})|^{2} = \frac{[\widetilde{\varphi}_{\mathbf{P}}^{q}(x;\zeta_{H})]^{2}}{1-\alpha_{\mathbf{P}}x(1-x)}$$

Then, capitalizing on the LFWF overlap representation:

$$\psi_{\mathbf{P}}^{q}(x,k_{\perp}^{2};\zeta_{H}) = 4\sqrt{3}\pi M_{q} \frac{M_{q}^{2}\left[1-\alpha_{\mathbf{P}}x(1-x)\right]}{\left(k_{\perp}^{2}+M_{q}^{2}\left[1-\alpha_{\mathbf{P}}x(1-x)\right]\right)^{2}} \widetilde{\varphi}_{\mathbf{P}}^{q}(x;\zeta_{H})$$

$$\int \frac{d^{2}k_{\perp}}{16\pi^{3}} \psi_{\mathbf{P}}^{q}(x,k_{\perp}^{2};\zeta_{H}) = \frac{\sqrt{3}}{4\pi} M_{q} \widetilde{\varphi}_{\mathbf{P}}^{q}(x;\zeta_{H}) = f_{\mathbf{P}}r_{\mathbf{P}} \widetilde{\varphi}_{\mathbf{P}}^{q}(x;\zeta_{H}) \qquad q^{\mathbf{P}}(x;\zeta_{H}) = \int \frac{d^{2}k_{\perp}}{16\pi^{3}} |\psi_{\mathbf{P}}^{q}(x;k_{\perp}^{2};\zeta_{H})|^{2} = \frac{[\widetilde{\varphi}_{\mathbf{P}}^{q}(x;\zeta_{H})]^{2}}{1-\alpha_{\mathbf{P}}x(1-x)}$$

Summary

Summary

- The EHM is argued to be intimately connected to a PI effective charge which enters a conformal regime, below a given momentum scale, where gluons acquiring a dynamical mass decouple from interaction.
- Capitalizing on the latter, two main ideas emerge: (I) the identification of that decoupling with a hadronic scale at which the structure of hadrons can be expressed only in terms of valence dressed partons; and (ii) the reliability of an all-orders evolution scheme to describe the splitting of valence into more partons, generating thus the glue and sea, when the resolution scale decreases.
- Key implications stemming from both ideas have been derived and tested for the pion PDFs. Grounding on them, Lattice QCD and experimental data have been shown to confirm CSM results.
- The robustness of the approach based on all-orders evolution from hadronic to experimental scale has been proved with its application to the pion, kaon and proton cases. A model featuring massless evolution for quark flavors activated after a hard-wall threshold and accounting for Pauli blocking has been solved analytically, and seen to expose some of the main results implied by the approach.

To be continued...

Backslides

QCD effective charge

defines the screening mass and an associated wavelength, such that larger gluon modes decouple.

Then, we identify: $\zeta_H := m_G (1 \pm 0.1)$

Modern continuum & lattice QCD analysis in the gauge sector delivers an analogue "Gell-Mann-Low" running charge, from which one obtains a process-independent, parameter-free prediction for the low-momentum saturation

- No landau pole
- Below a given mass scale, the interaction become scaleindependent and QCD practically conformal again (as in the lagrangian).

QCD effective charge

QCD effective charge

Pion PDF: from CSM (DSEs) to the experiment

Symmetry-preserving DSE computation of the valence-quark PDF:

[L. Chang et al., Phys.Lett.B737(2014)23] [M. Ding et al., Phys.Rev.D101(2020)054014 $q^{\pi}(x;\zeta) = N_c \operatorname{tr} \int_{dk} \delta_n^x(k_\eta) \Gamma_{\pi}^P(k_{\bar{\eta}\eta};\zeta) S(k_{\bar{\eta}};\zeta)$ $\times \{n \cdot \frac{\partial}{\partial k_\eta} \left[\Gamma_{\pi}^{-P}(k_{\eta\bar{\eta}};\zeta)S(k_\eta;\zeta)\right]\}.$ $q_0^{\pi}(x;\zeta_H) = 213.32 x^2 (1-x)^2$ $\times [1-2.9342\sqrt{x(1-x)} + 2.2911 x(1-x)]$ $q(x;\zeta) \sim_{x \to 1} (1-x)^{\beta(\zeta)} (1 + \mathcal{O}(1-x))$ $\beta(\zeta_H) = 2$ Farrar, Jackson, Phys.Rev.Lett 35(1975)1416

Berger, Brodsky, Phys.Rev.Lett 42(1979)940

- The EHM-triggered broadening shortens the extent of the domain of convexity lying on the neighborhood of the endpoints, induced too by the QCD dynamics
- It cannot however spoil the asymptotic QCD behaviour at large-x (and, owing to isospin symmetry, at low-x)

Pion PDF: from CSM (DSEs) to the experiment

Symmetry-preserving DSE computation of the valence-quark PDF:

[L. Chang et al., Phys.Lett.B737(2014)23] [M. Ding et al., Phys.Rev.D101(2020)054014 $q^{\pi}(x;\zeta) = N_c \operatorname{tr} \int_{dk} \delta_n^x(k_\eta) \Gamma_{\pi}^P(k_{\bar{\eta}\eta};\zeta) S(k_{\bar{\eta}};\zeta)$ $\times \{n \cdot \frac{\partial}{\partial k_\eta} \left[\Gamma_{\pi}^{-P}(k_{\eta\bar{\eta}};\zeta)S(k_\eta;\zeta)\right]\}.$ $q_0^{\pi}(x;\zeta_H) = 213.32 x^2 (1-x)^2$ $\times [1-2.9342 \sqrt{x(1-x)} + 2.2911 x(1-x)]$ $q(x;\zeta) \underset{x \to 1}{\sim} (1-x)^{\beta(\zeta)} (1+\mathcal{O}(1-x))$ $\beta(\zeta_H) = 2$ Farrar, Jackson, Phys.Rev.Lett 35(1975)1416

Berger, Brodsky, Phys.Rev.Lett 42(1979)940

- The EHM-triggered broadening shortens the extent of the domain of convexity lying on the neighborhood of the endpoints, induced too by the QCD dynamics
- It cannot however spoil the asymptotic QCD behaviour at large-x (and, owing to isospin symmetry, at low-x)

13

Proton PDF: from CSM (DSEs) to the experiment

An analogous symmetry-preserving DSE computation of the valence-quark PDFs within a proton, based on diquark-quark approach: [L. Chang et al., Phys.Lett.B, arXiv:2201.07870]

13

Proton PDF: from CSM (DSEs) to the experiment

An analogous symmetry-preserving DSE computation of the valence-quark PDFs within a proton, based on diquark-quark approach: [L. Chang et al., Phys.Lett.B, arXiv:2201.07870]

Producing an isovector distribution in fair agreement with lattice results [H-W. Lin et al., arXiv:2011.14791]

13

Proton PDF: pion and proton in counterpoint

