Baryon structures through dynamical coupled-channel approaches

Strong QCD 2024 Conference @ Nanjing University **Yu-Fei Wang**

School of Nuclear Science and Technology, UCAS

15/05/2024

Table of Contents Part I: Introduction

► Part I: Introduction

Part II: Compositeness Criteria

Part III: Baryon Transition Form Factors

▶ Part IV: Conclusion & Outlook

Hadron structures

Part I: Introduction

- Structures of matters \rightarrow fundamental task of physics
- Structures of hadrons \rightarrow extremely difficult
 - Not direct observables
 - Non-perturbative nature of QCD at low & middle energies
 - Uncertainties of the hadron spectroscopy
- A bridge between the data and the structures? World data \rightarrow ??? \rightarrow Spectra \rightarrow Indications of the structures
- The bridge here: Comprehensive models
 - \rightarrow the Jülich-Bonn/Jülich-Bonn-Washington Model for N^* and Δ
- Two studies:
 - Compositeness criteria

[Y.F. Wang et. al., Phys. Rev. C 109, 015202 (2024)]

Baryon transition form factors from the proton

[Y.F. Wang et. al. (Jülich-Bonn-Washington Collaboration), arXiv:2404.17444 [nucl-th]]

Partial Wave Analyses

Part I: Introduction

- Medium energy \rightarrow involved dynamics & line-shapes
- Extraction of resonances

 → partial wave analyses (PWA)
- PW decomposition $T \sim T^{JLS} \rightarrow$ fit to the data \rightarrow meaningful outputs
- Various methods
 - Unitary isobar models
 → unitary amplitudes + BW
 [MAID, Yerevan/JLab, KSU]
 - K-matrix Unitarization $\rightarrow on-shell intermediate states$

[GWU/SAID, BnGa, Gießen]

 — Dynamical coupled-channel (DCC) approaches
 → interaction potentials + scattering equations (off-shell intermediate states)
 [ANL-Osaka (EBAC), Dubna-Mainz-Taipeh]
 & Jülich-Bonn Model

[spectra: PDG 2000. quark model calculations: Löring et. al., EPJA 10, 395 (2001)]

The Jülich-Bonn Model

Part I: Introduction

A comprehensive coupled-channel model, fitting to a worldwide collection of data

Hadronic part ($\pi N ightarrow \cdots$)

- Early origins \rightarrow studies of K^-N and $\pi\pi$ [Müller-Groeling et. al., NPA 513, 557 (1990)] [Lohse et. al., NPA 516, 513 (1990)][Pearce et. al., NPA 541, 663 (1992)]
- The πN elastic scatterings [Schütz et. al., PRC 51, 1374 (1995)] [Schütz et. al., PRC 49, 2671 (1994)]
- Extended to $\pi\pi N$ and ηN [Schütz et. al., PRC 57, 1464 (1998)] [Krehl et. al., PRC 62, 025207 (2000)] [Gasparyan et. al., PRC 68, 045207 (2003)]
- Extended to $K\Lambda$ and $K\Sigma$ [Döring et. al., NPA 851, 58 (2011)] [Rönchen et. al., EPJA 49, 44 (2013)]
- Extended to ωN [Wang et. al., PRD 106, 094031 (2022)]
- Analytical continuation for searching poles [Döring et. al., NPA 829, 170 (2009)]

Photo- & Electroproduction

- Photoproduction
 [Rönchen et. al., EPJA 50, 101 (2014)] [Rönchen et. al., EPJA 51, 70 (2015)] [Rönchen et. al., EPJA 54, 110 (2018)] [Rönchen et. al., EPJA 558, 229 (2022)]
- Electroproduction (Jülich-Bonn-Washington Model), M. Döring's talk on Friday

[Mai et. al., PRC 103, 065204 (2021)] [Mai et. al., PRC 106, 015201 (2022)] [Mai et. al., EPJA 59, 286 (2023)]

Theoretical framework

Part I: Introduction

Hadron dynamics

Lippmann-Schwinger-like equation

$$\begin{split} T_{\mu\nu}(p^{\prime\prime},p^\prime,z) &= V_{\mu\nu}(p^{\prime\prime},p^\prime,z) + \\ \sum_{\kappa} \int_0^\infty p^2 dp V_{\mu\kappa}(p^{\prime\prime},p,z) \mathcal{G}_{\kappa}(p,z) T_{\kappa\nu}(p,p^\prime,z) \end{split}$$

- One-dimensional: time-ordered perturbation theory + JLS basis [Jacob & Wick, Annals Phys. 7, 404 (1959)]
- $T = T^P + T^{NP} \rightarrow s$ -channel vertices + t/u-channel exchanges etc.
- Effective Lagrangians \rightarrow SU(3), chiral, CP...
- Effective three-body channels: $ho N, \sigma N, \pi \Delta$

Photo- & electroproduction

Construction from Watson's final state theorem

 $M_{\mu\gamma^*}(Q^2) = V_{\mu\gamma^*}(Q^2) + \sum_{\kappa} \int p^2 dp T_{\mu\kappa} G_{\kappa} V_{\kappa\gamma^*}(Q^2)$

- γ^* : the γ^*N channel for electroproduction
- Q^2 : photon virtuality
- $V_{\kappa\gamma^*}
 ightarrow$ phenomenologically parameterized
- Further constraints: Siegert's theorem, kinematics, etc.
- Photoproduction $\rightarrow Q^2 = 0$

Pole searching Part I: Introduction

- Resonances \rightarrow poles on the second Riemann sheet
- Analytical continuation \rightarrow contour deformation
- Pole position $z_r = M_r i\Gamma_r/2$. Coupling strengths ightarrow normalized residues [PDG, RPP]

$$au^{II}_{\mu
u}\sim rac{R_{\mu}R_{
u}}{z_r-z}+\cdots, NR_{\mu}\equiv rac{2R_{\pi N}}{\Gamma_r} imes R_{\mu}$$

Table of ContentsPart II: Compositeness Criteria

Part I: Introduction

► Part II: Compositeness Criteria

Part III: Baryon Transition Form Factors

▶ Part IV: Conclusion & Outlook

Weinberg's Criterion and Beyond

Part II: Compositeness Criteria

Weinberg's criterion

- Hadrons → quarks & gluons v.s. hadron exchanges?
- Weinberg's criterion (deuteron) [Weinberg, PR 137, B672 (1965)]

$$a = -\frac{2(1-Z)}{2-Z}R + \mathcal{O}(L)$$
$$r = -\frac{Z}{1-Z}R + \mathcal{O}(L)$$

- Z: "elementariness". $R \sim 4.3$ fm: deuteron radius. $L \sim m_{\pi}^{-1}$ interaction range. a: scattering length. r: effective range.
- Experimental results $ightarrow Z \simeq 0$
- Conditions: S-wave, near-threshold, stable
- Model-independent [van Kolck, Symmetry 14, 1884 (2022)]

Modern generalization

- Modern hadron spectroscopy & exotic states \rightarrow unstable resonances, coupled-channel
- Interpretations → genuine states v.s. hadronic molecules [Guo et al., RMP 90, 015004 (2018)], etc.
- $\bullet \quad {\sf Criteria} \to {\sf qualitative} \ {\sf or} \ {\sf model-dependent}$
 - spectral density functions (SDFs) [Baru et al., PLB 586, 53 (2004)]
 - complex compositeness (CC)

 [Hyodo, PRL 111, 132002 (2013)]
 [Guo and Oller, PRD 93, 096001 (2016)]
 [Sekihara, PRC 95, 025206 (2017)]

- ...

• Jülich-Bonn model \rightarrow data-driven SDFs & CCs!

Criteria Part II: Compositeness Criteria

Spectral Density Functions

- Weinberg's Z for bound states: $Z = |\langle \psi_0 | \Psi_B \rangle|^2$
- Lower decay channels: $Z \rightarrow w(E) = -\text{Im}D(E)/\pi$ \rightarrow distribution on energy E
- Källén-Lehmann spectral of the propagator D
- Ideal quasi-bound state $E = E_R i\Gamma_R/2$: $w(E \simeq E_R) = \frac{Z_B}{\pi} \frac{\Gamma_R/2}{(E - E_R)^2 + (\Gamma_R/2)^2}$
- $\lim_{\Gamma_R \to 0} w(E) = Z_B \delta(E E_R)$: compatible with Weinberg's criterion
- Finite width estimation:

$$Z \simeq \frac{\int_{E_R - \Gamma_R}^{E_R + \Gamma_R} w(E) dE}{\int_{E_R - \Gamma_R}^{E_R + \Gamma_R} BW(E) dE} , BW(E) \equiv \frac{1}{\pi} \frac{\Gamma_R / 2}{(E - E_R)^2 + (\Gamma_R / 2)^2}$$

Complex Compositeness

- Resonances
 - Unphysical Gamow states
 [Gamow, Zeitschrift für Physik 51, 204 (1928)]
 [Civitarese and Gadella, Physics Reports 396, 41(2004)]
 - Complex eigenstates of the Hamiltonian $\hat{H}|\Psi_R) = E_R|\Psi_R)$
 - Non-normalizable
- Complex elementariness: $Z_R = (\Psi_R^* | \psi_0 \rangle \langle \psi_0 | \Psi_R)$, complex-valued

• Complex compositeness \rightarrow off-shell residues r(k) $T(E, p_i, p_f) \sim \frac{r(p_i)r(p_f)}{E - E_R}$ $1 - Z_R = \int_C \frac{d^3\mathbf{k}}{(2\pi)^3} \frac{r^2(k)}{[\mathcal{E}_R - k^2/(2\mu)]^2}$ [Sekihara, PRC 95, 025206 (2017)]

Applications on the Jülich-Bonn Model

Part II: Compositeness Criteria

Study of the structures

- Jülich-Bonn model
 - coupled-channel
 - more s-channel bare states
 - hadron-exchange potentials
- Spectral density functions \rightarrow readily extracted from propagators $w_i(z) = -\frac{1}{\pi} \text{Im} D_i(z)$
- "Total elementariness" $ightarrow Z = 1 \prod_i (1 Z_i)$
- Partial compositeness (Gamow states) \rightarrow off-shell residues $X_{\kappa} = \int_{\mathcal{C}} p^2 dp \, r_{\kappa}^2(p) \mathcal{G}_{\kappa}^2(p, z_{\mathsf{pole}})$
- Model solution: JüBo2022 (K∑ photoproduction, 72,000 data points)

[Rönchen et. al., EPJA 58, 229 (2022)]

Study of the structures

- Selection of the resonances
 - For $N^* J \leq 5/2$, for $\Delta J \leq 3/2$
 - Width $\Gamma_R < 300 \text{ MeV}$
- Uncertainties \rightarrow comparison of three results
 - SDFs directly from the model
 - CCs of the Gamow state \rightarrow naive measure: $\tilde{X}_{\kappa} \equiv \frac{|X_{\kappa}|}{\sum_{\alpha} |X_{\alpha}| + |Z|}, \tilde{Z} \equiv \frac{|Z|}{\sum_{\alpha} |X_{\alpha}| + |Z|}$
 - Locally constructed SDFs only from pole parameters (L_{κ} : loop functions)

$$w^{
m lc}(z) = -rac{1}{\pi} {
m Im} \left[z - M_0 - \sum_\kappa g_\kappa^2 L_\kappa(z)
ight]^{-1}$$

- Failure of the local construction
 - ightarrow big uncertainty

Results Part II: Compositeness Criteria

- Blue solid line: the Breit-Wigner denominator.
- Orange dashed (green dash-dotted) line: the 1st (2nd) spectral density function (model).
- Red dotted line: the locally constructed function.
- Vertical lines: the integral region.

Results Part II: Compositeness Criteria

State	Pole position (MeV)	\mathcal{Z}_{tot}	\mathcal{Z}^{lc}	\widetilde{Z}
$N(1535) \frac{1}{2}^{-}$	1504 - 37i	29.0%	$\mathbf{50.8\%}$	39.4 %
$N(1650) \frac{1}{2}^{-}$	1678-64i	$\boldsymbol{92.8\%}$	70.5%	$\mathbf{8.5\%}$
$N(1440) \ {ar 1 \over 2}^+$	1353-102i	49.5 %	31.5%	36.9 %
$N(1710) \frac{1}{2}^+$	1605 - 58i	20.6 %	10.2%	40.3%
$N(1720) \frac{\bar{3}}{2}^+$	1726 - 93i	79.3 %	62.5 %	41.4%
$N(1900) \frac{\bar{3}}{2}^+$	1905-47i	100%	99.9 %	38.5 %
$N(1520) \frac{3}{2}^{-}$	1482-63i	29.4 %	7.2%	40.4%
$N(1675) \frac{5}{2}^{-}$	1652-60i	16.6%	(F)	61.8%
$N(1680) \frac{5}{2}^+$	1657 - 60i	67.9%	69.9 %	55.0%
$\Delta(1620) \frac{1}{2}^{-}$	1607-42i	$\mathbf{18.9\%}$	$\mathbf{50.0\%}$	69.4%
$\Delta(1232) \frac{3}{2}^+$	1215-46i	53.8 %	(F)	$\mathbf{30.5\%}$
$\Delta(1600) \frac{3}{2}^+$	1590 - 68i	$\mathbf{47.8\%}$	77.5%	69.7%
$\Delta(1700) \frac{3}{2}^{-}$	1637-148i	59.7 %	44.9%	$\mathbf{47.8\%}$

Discussions Part II: Compositeness Criteria

Results

- At least two results suggest high compositeness: $N(1535)\frac{1}{2}^-$, $N(1440)\frac{1}{2}^+$, $N(1710)\frac{1}{2}^+$, $N(1520)\frac{3}{2}^-$
- At least two results suggest high elementariness: $N(1650)\frac{1}{2}^-, N(1900)\frac{3}{2}^+, N(1680)\frac{5}{2}^+,$ $\Delta(1600)\frac{3}{2}^+$
- Hints of compositions (Gamow states)
 - $N^*(1535)$: $\tilde{X}_{\eta N} = 35.8\%$
 - $N^*(1440): \tilde{X}_{\pi N} = 59.0\%$
 - $N^*(1710)$: $\tilde{X}_{\eta N} = 44.9\%$
 - $N^*(1520): \tilde{X}_{\pi\pi N} = 43.7\%$
- The compositions may be model-dependent:

in this model σN bare couplings are switched off

On the states

- N(1535)
 - overlap with $N^*(1650)$
 - might be dynamically generated
 [Kaiser et. al., PLB 362, 23 (1995)]
 - $-\omega N$ might be important

[Wang et. al., PRD 106, 094031 (2022)]

- N(1440)
 - always dynamically generated here [Krehl et. al., PRC 62, 025207 (2000)]
 - pure "radial excitation core" not favoured [Meißner and Durso, NPA 430, 670 (1984)]
 - $-\sigma N \text{ component}$ [Sekihara, PRC 104, 035202 (2021)]
- Three $\Delta(1232)$'s (s-channel, initial/final, u-channel) \rightarrow technical difficulties in this study

Table of ContentsPart III: Baryon Transition Form Factors

Part I: Introduction

▶ Part II: Compositeness Criteria

▶ Part III: Baryon Transition Form Factors

► Part IV: Conclusion & Outlook

Baryon Transition Form Factors

Part III: Baryon Transition Form Factors

Electromagnetic Probes

- EM interactions
 - \rightarrow clean probes of structures
- Photon-induced reactions

[Ireland, Pasyuk, Strakovsky, Prog. Part. Nucl. Phys. 111, 103752 (2020)] \rightarrow states coupling weakly to πN

- Electroproduction \rightarrow additional energy scale O^2 (photon virtuality)
- Transition form factors (TFFs) \rightarrow "pictures of hadrons"

[Ramalho, Peña, Prog. Part. Nucl. Phys. 136, 104097 (2024)]

- Lower Q²: peripheral components (meson clouds etc.)
- Higher Q^2 : the quark core
- Related to quark transverse charge densities

[Tiator & Vanderhaeghen, PLB 672, 344 (2009)]

Towards the TFFs

- Predictions at quark level
 - Quark models & Schwinger-Dyson equations
 [Segovia et. al., Few Body Syst. 55, 1185 (2014)]
 [Burkert, Roberts RMP 91, 011003 (2019)]
 [Eichmann et. al., Prog. Part. Nucl. Phys. 91, 1 (2016)]
 - Lattice QCD [Agadjanov et. al., NPB 886, 1199 (2014)]
- Extraction from data
 - Experimental facilities @ JLAB
 - Data accumulation
 [Mokeev et. al., PRC 93, 025206 (2016)]
 - Unitary isobar models → real valued, depending on BW parameters
 [Drechsel, Kamalov, Tiator, EPJA 34, 69 (2007)]
 [Tiator et. al., EPJST 198, 141 (2011)]
 - $\,$ DCC \rightarrow complex TFFs at the poles

[Kamano, Few Body Syst. 59, 24 (2018)]

TFFs in Jülich-Bonn-Washington Model

Part III: Baryon Transition Form Factors

The latest JBW results

- $\gamma^* p$ initial state
- Coupled-channel study of πN , ηN , and $K\Lambda$ [Mai et. al., EPJA 59, 286 (2023)]
- Based on the JüBo2017 solution [Rönchen et. al., EPJA 54, 110 (2018)]
- C.M. energy range $z \in [1.13, 1.8]$ GeV
- Virtuality $Q^2 \in [0, 8]$ GeV²
- Orbital angular momentum $L\leq 3$
- Database
 - 10⁵ data points for the electroproduction
 - $-~5\times10^4$ data points from the photoproduction/hadronic part
- Four fit solutions \rightarrow estimation of uncertainties

Highlights of this study

- First simultaneous multi-channel study of TFFs \rightarrow channel-independent results
- Outputs \rightarrow TFFs of twelve states at the poles
- $\Delta(1232), N^*(1440)$ \rightarrow compatible with previous results
- Results for some higher states are given for the first time
- Exploring the parameter space
 - ightarrow realistic uncertainties

A comprehensive data-driven investigation!

Formulae & Extraction

Part III: Baryon Transition Form Factors

Origianl definition

[Ramalho, Peña, Prog. Part. Nucl. Phys. 136, 104097 (2024)]

$$egin{aligned} &A_h = \sqrt{rac{2\pilpha}{K}} \Big\langle R,h \Big| \epsilon_+ \cdot J \Big| N,h-1 \Big
angle \ &S_{rac{1}{2}} = rac{|\mathbf{q}|}{Q} \sqrt{rac{2\pilpha}{K}} \Big\langle R,rac{1}{2} \Big| \epsilon_0 \cdot J \Big| N,rac{1}{2} \Big
angle \end{aligned}$$

- A, S: helicity transition amplitudes
- h = 1/2, 3/2: the helicity
- α : fine structure constant
- $\epsilon(J)$: virtual photon polarization vector (current)
- \mathbf{q} : 3-momentum of the virtual photon
- $M_R(m_N)$: mass of the excitation state R (nucleon)
- $K = (M_R^2 m_N^2)/(2M_R)$

At the pole

[Workman, Tiator, Sarantsev, PRC 87, 068201 (2013)]

$$H_h = C_I \sqrt{rac{p_{\pi N}}{\omega_0}} rac{2\pi (2J+1)z_p}{m_N \widetilde{R}} \widetilde{\mathcal{H}}_h$$

- *H* is either *A* or *S*
- \mathcal{C}_I : isospin factor, $\mathcal{C}_{1/2}=-\sqrt{3}$ and $\mathcal{C}_{3/2}=\sqrt{2/3}$
- $p_{\pi N}$: πN c.m. momentum
- ω_0 : photon energy at $Q^2 = 0$
- $z_p = M_R i \Gamma_R/2$ the pole position
- $\widetilde{R}, \widetilde{\mathcal{H}}$: the residues of $\pi N, \gamma^* N$ channels
- Understanding: the |R
 angle
 ightarrow |R
 angle defined from the Gamow state
- Complex-valued

Yu-Fei Wang (UCAS), Strong QCD 2024 Conference

17/22

Results of $\Delta(1232)$ Part III: Baryon Transition Form Factors

- Solid, dashed, dotted, dash-dotted curves: four fit solutions
- Dash-double-dotted curves: "L+P" extraction from MAID analyses [Workman, Tiator, Sarantsev, PRC 87, 068201 (2013)]
- Triangles: ANL-Osaka[Kamano, Few Body Syst. 59, 24 (2018)]

Results of $N^*(1440)$ Part III: Baryon Transition Form Factors

- $\operatorname{Re}A_{1/2}\operatorname{TFF} o$ a zero crossing at small Q^2
- ρ_0 , ρ_T : unpolarized, polarized transverse charge densities (estimated by taking the real part) [Tiator & Vanderhaeghen, PLB 672, 344 (2009)]
- Red solid line: result of MAID2007[Drechsel, Kamalov, Tiator, EPJA 34, 69 (2007)]

Summary of the results

Part III: Baryon Transition Form Factors

Data files on https://jbw.phys.gwu.edu

Table of Contents Part IV: Conclusion & Outlook

Part I: Introduction

▶ Part II: Compositeness Criteria

Part III: Baryon Transition Form Factors

► Part IV: Conclusion & Outlook

Conclusion & Outlook

Part IV: Conclusion & Outlook

Conclusions

- The Jülich-Bonn Model
 - Comprehensive dynamical coupled-channel approaches
 - Data driven PWA \rightarrow resonance spectra
 - Connecting experimental observations to hadron structures!
- Study 1: compositeness criterion
 - Generalization of Weinberg's criterion
 - Four states \rightarrow larger hadronic components
 - Four states \rightarrow larger quark/gluon components
- Study 2: transition form factors
 - Determined by multi-channel data
 - Defined at the poles
 - Realistic uncertainties
 - Outputs for twelve states

Outlook

- Compositeness study \rightarrow on P_c states [Shen *et. al.*, arXiv:2405.02626[hep-ph]]
- The hyperon spectroscopy in the near future
- JBW model \rightarrow a extension of the energy range up to 1.95 GeV
- More TFFs & transverse charge densities
- ωN photoproduction underway \rightarrow more modern data!

Backups

Details of the scattering equation

The Lippmann-Schwinger-like equation

 $T_{\mu
u}(p'',p',z) = V_{\mu
u}(p'',p',z) + \sum_{\kappa} \int_{0}^{\infty} p^{2} dp V_{\mu\kappa}(p'',p,z) G_{\kappa}(p,z) T_{\kappa
u}(p,p',z)$

- Reaction channels $u o \mu$ (after PW and isospin projection, *JLS* basis [Jacob & Wick, Annals Phys. 7, 404 (1959)], $J \leq 9/2$)
- Intermediate channel: κ
- CM initial (final) momentum: p'(p''). CM energy: z
- Potential (kernel): V. Amplitude: $T (\rightarrow \text{observables})$
- Propagator: G (ππN channel: effective channels ρN, σN, πΔ. E/ω energy of the baryon/meson.)

$$G_{\kappa}(z,p) = \begin{cases} (z - E_{\kappa} - \omega_{\kappa} + i0^{+})^{-1} & \text{(if } \kappa \text{ is a two-body channel)} ,\\ \left[z - E_{\kappa} - \omega_{\kappa} - \Sigma_{\kappa}(z,p) + i0^{+} \right]^{-1} & \text{(if } \kappa \text{ is an effective channel)} . \end{cases}$$

Details of the scattering equation Backups

- Separating the amplitude \rightarrow with/without *s*-channel poles $T = T^P + T^{NP}$
- Reconstruction of the amplitude $\rightarrow T^{NP} = V^{NP} + \sum \int p^2 dp V^{NP} GT^{NP}$, $T^P_{\mu\nu}(p'',p',z) = \sum_{i,j} \Gamma^a_{\mu,i}(p'') D_{ij}(z) \Gamma^c_{\nu,j}(p')$, $(D^{-1})_{ij} = \delta_{ij}(z-m^b_i) - \Sigma_{ij}(z)$
 - $\Gamma(\gamma)$: the dressed (bare) vertices (*a* annihilation, *c* creation)
 - Σ : coupled-channel self-energy functions of the *s*-channel states

(b) The self energy.

Details of the scattering equation

Backups

 $\mathsf{Potentials} \to \mathsf{field}\text{-}\mathsf{theoretical\ construction}$

 $\mathsf{Parameters} \to \mathsf{determined} \ \mathsf{by} \ \mathsf{fits}$

The NP part

• Tree-level potentials

- t-channel + u-channel + contact
- Stemming from effective Lagrangians ightarrow SU(3) flavour symmetry, CP conservation, chiral symmetry
- Established by time-ordered perturbation theory (TOPT)

 stationary perturbation in Schrödinger picture
- TOPT+partial wave ightarrow one-dimensional integral $\int p^2 dp$
- Regulators for every vertex \rightarrow to make the integral converge: $F(q) \sim \left(\frac{\Lambda^2 m^2}{\Lambda^2 + q^2}\right)^n$ *m*: the mass of the exchanged particle. Λ : cut-off (fit parameter)
- Beyond tree-level \rightarrow correlated two-pion exchanges [Schütz et. al., PRC 49, 2671 (1994)] [Schütz et. al., PRC 51, 1374 (1995)]

The P part

- Stemming from effective Lagrangians with CP conservation (tree-level bare vertices)
- Phenomenological contact terms $ightarrow D \sim (1-\Sigma)^{-1}$ [Rönchen et. al., EPJA 51, 70 (2015)]
- Renormalization of the nucleon mass

Local construction of SDFs Backups

• Local simulation of the amplitude:

$$T^{\mathsf{lc}}_{lphaeta}(z) = rac{cg_{lpha}g_{eta}f^{a}_{lpha}(q_{lpha z})f^{c}_{eta}(q_{eta z})}{z-M_{0}-\sum_{\kappa}g^{2}_{\kappa}L_{\kappa}(z)} + \cdots$$

- Loop functions (f: vertex function in this model): $L_{\kappa}(z) \equiv \int_{0}^{\infty} p^{2} dp \ G_{\kappa}(p,z) f_{\alpha}^{a}(q_{\kappa z}) f_{\alpha}^{c}(q_{\kappa z})$
- Parameters

$$\begin{split} h_{\kappa} &\equiv \frac{g_{\kappa}^2}{g_1^2} = \left| \frac{r_{\kappa} f_1^{\alpha}}{r_1 f_{\kappa}^{\alpha}} \right|^2, g_1^2 = -\frac{\Gamma_R}{2\sum_{\kappa} h_{\kappa} \mathrm{Im}(L_{\kappa}^{II})} \\ M_0 &= M_R - g_1^2 \sum_{\kappa} h_{\kappa} \mathrm{Re}(L_{\kappa}^{II}), c = \frac{r_1^2}{g_1^2 f_1^{\alpha} f_1^{\alpha}} \left(1 - g_1^2 \sum_{\kappa} h_{\kappa} \frac{d}{dz} L_{\kappa}^{II} \right|_{z=M_R - \mathrm{i} \Gamma_R / 2} \right) \end{split}$$

- Estimation: $w^{\text{lc}}(z) = -\frac{1}{\pi} \text{Im} \left[z - M_0 - \sum_{\kappa} g_{\kappa}^2 L_{\kappa}(z) \right]^{-1}$
- The failure of the local construction $ightarrow g_1^2 < 0$
- Plan B: taking g_{κ} 's as the absolute values of normalized residues
 - ightarrow constant width in M_0

Transverse charge distributions: definition Backups

[Tiator & Vanderhaeghen, PLB 672, 344 (2009)]

- The light front frame:
 - Large momentum along $P=(p_{N^*}+p_N)/2$ (as z-axis) Light front component $v^{\pm}\equiv v^0\pm v^3$

 - Symmetric frame $q_{\gamma^*}^+ = 0$, the transverse component on *xOy* plane $\mathbf{q}_{\gamma^*}^2 = Q^2$
- The transverse charge density for the transition:

$$\rho(\mathbf{b}) \equiv \int \frac{d^2 \mathbf{b}}{(2\pi)^2} \frac{1}{2P^+} e^{-i\mathbf{q}_\perp \cdot \mathbf{b}} \left\langle P^+, \frac{\mathbf{q}_\perp}{2}, \lambda_{N^*} \left| J^+(0) \right| P^+, -\frac{\mathbf{q}_\perp}{2}, \lambda_N \right\rangle$$

- $-\lambda$: helicity
- I^+ : guark charge current, "+" component
- **b**: 2D position on *xOy* plane
- The quark charge distribution that is responsible for the $N \rightarrow N^*$ transition
- Two independent densities
 - ρ_0 : unpolarized \rightarrow only depends on $|\mathbf{b}|$

-
$$\rho_T$$
: polarized along x-axis, $|\lambda\rangle = \frac{1}{\sqrt{2}} \left(|+\frac{1}{2}\rangle + |-\frac{1}{2}\rangle \right)$

Transverse charge distributions: calculation Backups

[Tiator & Vanderhaeghen, PLB 672, 344 (2009)]

• Helicity TFFs in terms of Pauli-Dirac TFFs

$$\begin{split} A_{1/2} &= \frac{eQ_{-}}{\sqrt{4Km_NM_R}}(F_1 + F_2) \\ S_{1/2} &= \frac{eQ_{-}}{\sqrt{8Km_NM_R}} \frac{Q_{+}Q_{-}}{2M_R} \frac{M_R + m_N}{Q^2} \left[F_1 - \frac{Q^2}{(m_N + M_R)^2} F_2 \right] \end{split}$$

with $Q_{\pm}=\sqrt{(M_R\pm m_N)^2+Q^2}$

• Unpolarized (*J_n*: cylindrical Bessel function)

$$\rho_0(\mathbf{b}) = \int_0^{+\infty} \frac{dQ}{2\pi} Q J_0(|\mathbf{b}|Q) F_1(Q^2)$$

• Polarized (sin $\phi = b_{\gamma}/|\mathbf{b}|$)

$$\rho_T(\mathbf{b}) = \rho_0(\mathbf{b}) + \sin\phi \int_0^{+\infty} \frac{dQ}{2\pi} \frac{Q^2}{m_N + M_R} J_1(|\mathbf{b}|Q) F_2(Q^2)$$