SQCD VI conference, Nanjing 2024

Reaction Theory for

Resonance Electro- and Photoproduction

Michael Doering

With J. Hergenrather, M. Mai, T. Mart, U.-G. Meissner, D. Roenchen,

Y.-F. Wang, R. Workman

Department of Energy, DOE DE-AC05-06OR23177 & DE-SC0016582

HPC support by JSC grant *jikp07*

National Science Foundation Grant No. PHY 2012289

With slides/material from J. Hergenrather & M. Mai

Degrees of freedom: Quarks or hadrons

• Resonance review [Mai 2022]

QCD at low energies

Non-perturbative dynamics

How many states are there?

What are they?

 \rightarrow rich spectrum of excited states

 \rightarrow missing resonance problem (does it exist?)

 \rightarrow 2-quark/3-quark, hadron molecules, ...

Light baryons from diquark dynamics

Quark-diquark with reduced pseudoscalar + vector diquarks: [Eichmann (2016]

Lattice QCD for excited baryons

 $m_{\pi} = 396 \text{ MeV} [\text{Edwards et al., Phys.Rev. D84 (2011)}]$

- Pioneering spectroscopic calculations
- Information on existence, width & properties of resonances requires
 - Meson-baryon interpolating operators
 - Detailed finite-volume analysis

Phenomenology of the baryon spectrum

Review by [Thiel, Afzal, Wunderlich 2022]

Dynamical coupled-channel approaches

[MD, M. Mai, J. Haidenbauer, T. Sato, upcoming review]

- ANL-Osaka (former: EBAC) [Kamano et al.]
- Dubna-Mainz-Taipei model [Tiator]
- Jülich-Bonn(-Washington) [<u>Rönchen</u>]
- . . .
- Characteristics:
 - Direct fit to data (pion & photon-induced)
 - Simultaneous fit to data of different final states
 - Integral scattering equation as needed for proper treatment of three-body channels ($\pi\pi N$) & inclusion of lefthand cut

Note: Only a subclass of analysis efforts; see, e.g., Bonn-Gatchina group K-matrix approach

JBW DCC approach (Jülich-Bonn-Washington)

The scattering equation in partial-wave basis

$$\langle L'S'p'|T^{IJ}_{\mu\nu}|LSp\rangle = \langle L'S'p'|V^{IJ}_{\mu\nu}|LSp\rangle +$$

$$\sum_{\gamma,L''S''} \int_{0}^{\infty} dq \quad q^{2} \quad \langle L'S'p'|V^{IJ}_{\mu\gamma}|L''S''q\rangle \frac{1}{W-E_{\gamma}(q)+i\epsilon} \langle L''S''q|T^{IJ}_{\gamma\nu}|LSp\rangle$$

• channels ν , μ , γ :

JBW DCC approach (Jülich-Bonn-Washington)

The scattering equation in partial-wave basis

$$\langle L'S'p'|T^{IJ}_{\mu\nu}|LSp\rangle = \langle L'S'p'|V^{IJ}_{\mu\nu}|LSp\rangle + \\ \sum_{\gamma,L''S''} \int_{0}^{\infty} dq \quad q^{2} \quad \langle L'S'p'|V^{IJ}_{\mu\gamma}|L''S''q\rangle \frac{1}{W-E_{\gamma}(q)+i\epsilon} \langle L''S''q|T^{IJ}_{\gamma\nu}|LSp\rangle$$

- potentials V constructed from effective L
- s-channel diagrams: T^P
 genuine resonance states
- t- and u-channel: T^{NP}
 dynamical generation of poles
 partial waves strongly correlated
- contact terms

Transitions in s, t, and u-channels

- 21 s-channel exchanges (resonance)
- Contact terms

• t	t and u-channel exchanges: [<u>Yu-Fei Wang 20</u>												
μ	πN	ηN	$K\Lambda$	$K\Sigma$	ωN	$\pi\Delta$	σN	ho N					
πN	$(\pi\pi)_{\sigma},\ (\pi\pi)_{ ho},\ N,\Delta$	a_0, N	K^*, Σ, Σ^*	$egin{array}{l} K^{st},\Lambda,\ \Sigma,\Sigma^{st} \end{array}$	ho, N	$ ho, N, \Delta$	π, N	$egin{array}{l} \pi,\omega,\ a_1,N,\ \Delta,C \end{array}$					
ηN		N,f_0	K^*,Λ	K^*, Σ, Σ^*	ω, N								
$K\Lambda$			$egin{array}{lll} \omega,f_0,\phi,\ \Xi,\Xi^* \end{array}$	$egin{array}{ll} ho, a_0, \ \Xi, \Xi^* \end{array}$	$egin{array}{c} K, \ K^{*}, \ \Lambda \end{array}$								
$K\Sigma$				$egin{array}{lll} ho,\omega,\phi,\ f_0,a_0,\ \Xi,\Xi^* \end{array}$	$\begin{array}{c} K, \ K^{*}, \\ \Sigma, \ \Sigma^{*} \end{array}$								
ωN					σ, N								
$\pi\Delta$						$ ho,N,\Delta$	π	π, N					
σN							σ, N						
ho N								$ ho, N, \ \Delta, C$					

Three-body channels $\sigma N, \pi \Delta, \rho N$

- Resonant sub-channels
- Fit 2→2 amplitude to 2→2 scattering data
- Include as sub-channel in 3-body amplitude:
- <u>3-body unitarity:</u> Requires, e.g.

$2 \rightarrow 3$ and $3 \rightarrow 3$ body unitarity

• Unitarity requires certain transition amplitudes

Unitary amplitudes for meson analysis

[Y. Feng, F. Gil, R. Molina, M. Mai, V. Shastry, A. Szczepaniak, et al.]

- Coupled-channel, coupled-partial wave amplitudes
- Unitarity manifest
- In-flight transitions of isobars: $\pi\pi \leftrightarrow K\bar{K}$
- All isospins: I = 0, (1/2), 1, (3/2), 2

- All subsystems up to P-wave, including $f_0(500),\,\rho,\,f_0(980),K^*,\,(\kappa)$
- Example:

• 4-channel model: Production GW

Production amplitude 7-channel model

Only the (non-trivial) rescattering piece $3m_{\pi} < W < 2m_{K} + m_{\pi}$

JB: Data base

- $\pi N \rightarrow X$: > 7,000 data points ($\pi N \rightarrow \pi N$: GW-SAID WI08 (ED solution))
- $\gamma N \to X$:

New: $\pi N \rightarrow \omega N$ [<u>Yu-Fei Wang 2022</u>] Upcoming data from JParc

Reaction	Observables (# data points)	p./channel
$\gamma p \to \pi^0 p$	$d\sigma/d\Omega$ (18721), Σ (2927), P (768), T (1404), $\Delta\sigma_{31}$ (140),	
	G (393), H (225), E (467), F (397), C _{x1} (74), C _{z1} (26)	25,542
$\gamma p \to \pi^+ n$	$d\sigma/d\Omega$ (5961), Σ (1456), P (265), T (718), $\Delta\sigma_{31}$ (231),	
	G (86), H (128), E (903)	9,748
$\gamma p ightarrow \eta p$	$d\sigma/d\Omega$ (9112), Σ (403), P (7), T (144), F (144), E (129)	9,939
$\gamma p o K^+ \Lambda$	$d\sigma/d\Omega$ (2478), P (1612), Σ (459), T (383),	
	$C_{x'}$ (121), $C_{z'}$ (123), $O_{x'}$ (66), $O_{z'}$ (66), O_x (314), O_z (314),	5,936
$\gamma p ightarrow K^+ \Sigma^0$	$d\sigma/d\Omega$ (4271), P (422), Σ (280), T (127), $C_{x',z'}$ (188), $O_{x,z}$ (254)	5,542
$\gamma p ightarrow K^0 \Sigma^+$	$d\sigma/d\Omega$ (242), P (78)	320
	in total	57,027

New interface [https://jbw.phys.gwu.edu/]

Partial-Wave Analytic structure

- Branch points indicate thresholds
- Partial-wave amplitudes have more cuts than plane-wave amplitude
- Example: The structure of the P11 amplitude

Resonances in $K\Sigma$ photoproduction

Similarly: $K^0 \Sigma^+$

- [D. Roenchen et al. (EPJA 2022)]
- [Webpage all results]

dominant partial waves: I = 3/2

Exception: P_{13} partial wave (I = 1/2):

N(1720) 3/2 ⁺	Re E_0	$-2 \text{Im } E_0$	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Sigma}^{1/2}}{\Gamma_{\text{tot}}}$	$\theta_{\pi N \to K\Sigma}$
* * **	[MeV]	[MeV]	[%]	[deg]
2022	1726	185	5.9	82
2017	1689(4)	191 (3)	0.6(0.4)	26 (58)
PDG 2021	1675 ± 15	250^{+150}_{-100}	—	—

N(1900) 3/2 ⁺	Re E_0	-2 Im E_0	$\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Sigma}^{1/2}}{\Gamma_{\text{tot}}}$	$\theta_{\pi N \to K\Sigma}$
* * **	[MeV]	[MeV]	[%]	[deg]
2022	1905	93	1.3	-40
2017	1923 (2)	217 (23)	10(7)	-34(74)
PDG 2021	1920 ±20	150 ± 50	4±2	110 ± 30

drop in cross section ("cusp-like structure") due to N(1900)3/2⁺

N(1535) ½⁻	Re E_0	-2 Im E_0	
* * **	[MeV]	[MeV]	
2022	1504(0)	74(1)	
2017	1495(2)	112(1)	
PDG 2021	1510 ± 10	130 ± 20	

New, wide dynamically generated states in J^P=3/2⁻

Yu-Fei Wang

Coupled-Channel Electroproduction

First coupled-channel electroproduction analysis with different final states

[M. Mai, Yu-Fei Wang et al. (2020 -)]

Theory:

- Siegert's theorem manifestly fulfilled (consequence of gauge invariance)
- Watson theorem fulfilled
- Coupled-channel unitarity fulfilled
- General expansion of electroproduction kernel in Laurent series
- Resonances, background, channels have independent Q² dependence for flexible fit

Electroproduction reveals resonance structure

Lattice explorations of TFFs

• Proton-Roper


```
[<u>H.-W. Lin et al.</u> (2008)]
```

N(1535)1/2⁻

[F.-M. Stokes et al. (2024)]

Electroproduction Analysis efforts

- **MAID**: electroproduction of pions, eta mesons, and kaons in separate approaches [<u>Tiator 2007</u>]
- JM (JLab) approach: single-pion analysis, double pion analysis [Mokeev, PRC 2023]
- **ANL-Osaka:** Single-pion electroproduction, using multi-channel model. [Kamano, Lee, Nakamura, Sato, 2016]
- JBW: simultaneous analysis of multiple electroproduction final states, using multi-channel model
- Bonn-Gatchina: Upcoming calculations

JBW Electroproduction data base

Туре	$N_{ m data}^{\pi^0 p}$	$N_{\rm data}^{\pi^+ n}$	$N_{ m data}^{\eta p}$	$N_{\rm data}^{K\Lambda}$
• ρ_{LT}	45	_	_	_
\mid $\rho_{LT'}$	2768	5068	_	_
$\bullet \sigma_L$	_	2	_	_
\land $d\sigma/d\Omega$	48135	44266	3665	2055
$\mathbf{\nabla} \sigma_T + \epsilon \sigma_L$	384	182	_	204
$\circ \sigma_T$	30	2	_	_
$\Box \sigma_{LT}$	373	138	_	204
$\diamond \sigma_{LT'}$	214	208	_	156
$ ightarrow \sigma_{TT}$	327	123	_	204
∇K_{D1}	1527	_	_	_
• P_Y	_	2	_	—
Total	53804	49989	3665	2823

- Data base grown over decades with recent input mostly by CLAS, MAMI.
- Far from complete: Kinematic gaps & consistency issues. Need to combine information from different (W, Q²) regions
- Need to combine information from simultaneous analysis of different final states $(\pi N/\eta N/KY/\pi \pi N,...)$ to extract resonance helicity couplings

Fit details: Weighted vs. unweighted χ^2

- Meson production data bases are heterogeneous:
 - A few polarization measurements with large error bars (small weight in χ^2)
 - Many cross section data with smaller error bars (large weight in χ^2)
 - ... but those **few** polarization possess **great** power to discriminate solutions
- Introduce **weighted** vs.

unweighted χ^2 :

$$\chi_{\mathrm{wt}}^{2} = \sum_{j \in \{\pi^{0}p, \pi^{+}n, \eta p\}} \frac{N_{\mathrm{all}}}{3N_{j}} \sum_{i=1}^{N_{j}} \left(\frac{\mathcal{O}_{ji}^{\mathrm{exp}} - \mathcal{O}_{ji}}{\Delta_{ji}^{\mathrm{stat}} + \Delta_{ji}^{\mathrm{syst}}} \right)^{2}.$$

$$\chi_{\rm reg}^2 = \sum_{i=1}^{N_{\rm all}} \left(\frac{\mathcal{O}_i^{\rm exp} - \mathcal{O}_i}{\Delta_i^{\rm stat} + \Delta_i^{\rm syst}} \right)^2$$

• Quote results for both cases

GW

Fit Strategies (πN)

[<u>M. Mai et al, 2021]</u>

- Different fit strategies for $N \approx 85,000$ data in $\gamma^* N \rightarrow \pi N, \eta N$:
 - Sequential $S \rightarrow S+P \rightarrow S+P+D$ waves;
 - Subsets of data until full data set reached
 - Simultaneous fit all parameters (209) set to zero without any (!) guidance
 - Extend data range from $0 < Q^2 < 4~{\rm Gev^2}$ to $0 < Q^2 < 6~{\rm Gev^2}$ to check for stability

Fit	C	r_L	$d\sigma$	$/d\Omega$	$\sigma_T + \epsilon \sigma_L$		σ_T		σ_{LT}		$\sigma_{LT'}$		σ_{TT}		K_{D1}		P_Y		$ ho_{LT}$		$ ho_{LT'}$		χ^2
1,10	$\pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\int \pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\int \pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\int \pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\pi^0 p$	$\pi^+ n$	$\chi_{ m dof}$
\mathfrak{F}_1	_	9	65355	53229	870	418	87	88	1212	133	862	762	4400	251	4493	_	234	_	525	_	3300	10294	1.77
\mathfrak{F}_2	_	4	69472	55889	1081	619	65	78	1780	150	1225	822	4274	237	4518	_	325	_	590	_	3545	10629	1.69
\mathfrak{F}_3	_	8	66981	54979	568	388	84	95	1863	181	1201	437	3934	339	4296	—	686	—	687	—	3556	9377	1.81
\mathfrak{F}_4	_	22	63113	52616	562	378	153	107	1270	146	1198	1015	4385	218	5929	—	699	—	604	—	3548	11028	1.78
\mathfrak{F}_5	_	20	65724	53340	536	528	125	81	1507	219	1075	756	4134	230	5236	—	692	—	554	—	3580	11254	1.81
\mathfrak{F}_6	_	18	71982	58434	1075	501	29	68	1353	135	1600	1810	3935	291	5364	_	421	_	587	_	3932	11475	1.78

Structure functions $\pi^0 p$ (not fitted)

[hep-ex]

Description of Polarization Observables (πN)

 $\pi^{0}p$, Q²=1 GeV², W=1.23 GeV, ϕ =15⁰

J. J. Kelly, Phys. Rev. Lett. 95 (2005).

GW

Large Multipoles

Fit strategies 1-6 together with MAID (open dots) for the magnetic multipole of the $\Delta(1232)$ Drechsel et al., EPJA (2007) <u>0710.0306</u> [nucl-th]

Prominent multipoles are well determined

(W=1.38 GeV fixed)

5

- Zero-transition (agrees with MAID)
- Extensive exploration of parameter space reveals ambiguities in PWA and reflects systematic uncertainties

η Electroproduction

[M. Mai et al., PRC (2022)]

•
$$\mathcal{N}_{data}^{\eta p}=1,874$$
 (only $d\sigma/d\Omega$) (84,842 in total)

- kinematic range: $0 < Q^2 < 4 \text{ GeV}^2$, 1.13 < W < 1.6 GeV
- 8 different fit strategies: 4 with standard χ^2 , 4 with weighted χ^2 to account for the smaller $N_{data}^{\eta p}$ → better data description with weighted fit strategies:

Selected fit results: $\gamma^* p \rightarrow \eta p$ at W = 1.5 GeV, $Q^2 = 1.2$ GeV². Data: Denizli et al. (CLAS) PRC 76 (2007)

Selected multipoles at W = 1535 MeV

η Multipoles: Resonances disappear at high Q^2

N(1520)

[M. Mai et al., PRC (2022)] N(1535) Re $M_{2-}^{\eta p}$ [mfm] $Re E_{0+}^{\eta p}$ [mfm] 0.200.15 0.100.050.001.0 0.8 0.6 0.4 $\begin{array}{c} 1.0\\ 0.8\end{array}$ 1.52 1.52 0.6 1.56 0.4 1.56 0.2 1.6 1.6 0.0 0.0 $Im E_{0+}^{\eta p}$ [mfm] Im $M_{2-}^{\eta p}$ [mfm] 0.00 -0.056 -8 -10 -0.10 -0.15 0.20 1.0 1.0 0.8 1.52 1.52 0.6 6.6 Q^2 [GeV²] W [GeV] 1.56 0.4 W [GeV] 1.56 Q^2 [GeV²] 0.2 0.2 1.6 1.6 0.0 0.0

Kaon electroproduction

[M. Mai et al., EPJA 2023]

K \land **Challenges: Polarization measurements**

- During analysis, first polarization data became available by CLAS:
- Predicted, not fitted

Beam-recoil polarization transfer [Carman et al. 2022]

Helicity Couplings

[Yu-Fei Wang et al., 2024]

• (Selected results)

Compares qualitatively with [Mokeev et al., 2022]

Results for the Roper resonance

Charge density structure

[approx./ following Tiator et al., (2009)]

Summary

- Juelich-Bonn-Washington/JBW model: Phenomenology of excited baryons through coupledchannels, two- and three-body dynamics.
- Renewed effort to explore additional reaction channels in the last years:
 - $\gamma p \to K\Sigma$
 - $\pi N \to \omega N$
 - $\gamma^* p \rightarrow \pi N, \eta N, K\Lambda$ (Electroproduction)
- First global electroproduction analysis of different final states
- Extensive exploration of parameter space with good χ^2 (better than MAID) leads to *significant* variance of some multipoles.
- Many Transition Form factors at the pole exctracted for the first time.
- Many hyperon polarization data changed (α_{-} decay parameter of \wedge changed)

[D.G. Ireland et al., PRL, <u>1904.07616</u>]

• How to find a <u>minimal</u> resonance spectrum? Model selection.

[J. Landay et al., PRD, <u>1810.00075</u>]

• Data aspects: How to get solid statistical statements out of a heterogeneous data base dominated by systematic errors? [New experiments: Klong, Epecur,..]

(spare slides)

2022 Update in other reactions

• Beam asymmetry in η photoproduction (different W)

• N(1710)1/2+ returns with large η N and KA branching ratios

Parametrization - Details

- Dependence on virtuality: Channel and resonance-wise:
 - $\tilde{F}_{\mu}(Q^2) = \tilde{F}_D(Q^2) e^{-\beta_{\mu}^0 Q^2/m^2} P^N(Q^2/m^2, \vec{\beta}_{\mu})$ $\tilde{F}_i(Q^2) = \tilde{F}_D(Q^2) e^{-\delta_i^0 Q^2/m^2} P^N(Q^2/m^2, \vec{\delta}_i)$
- Factorization:

$$\alpha^{NP}_{\mu\gamma^*}(p, W, Q^2) = \tilde{F}_{\mu}(Q^2)\alpha^{NP}_{\mu\gamma}(p, W)$$
$$\gamma^c_{\gamma^*;i}(W, Q^2) = \tilde{F}_i(Q^2)\gamma^c_{\gamma;i}(W)$$