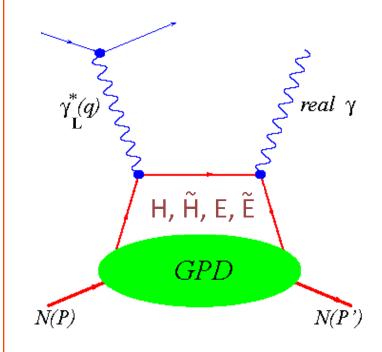
GPDs for Nucleon to Resonance Transitions

Kyungseon Joo

University of Connecticut For the CLAS Collaboration

May 16, 2024

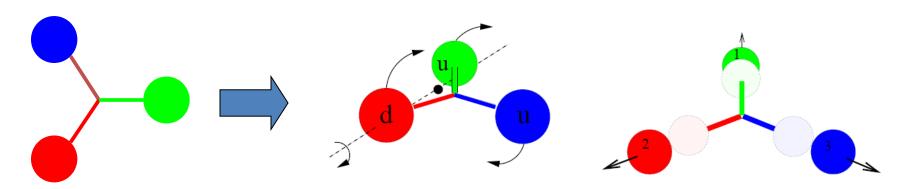


Motivations

- Generalized Parton Distributions (GPDs) are a wellestablished tool for exploring the 3D structure of the nucleon
- 2. While extensive studies have been performed for the ground-state nucleon, little is known about the 3D structure of baryon resonances.
- 3. The nucleon-to-resonance (N->N*) transition GPDs may provide a unique tool for exploring the 3D structure and mechanical properties of baryon resonances.

Study GPDs: Deeply Exclusive Processes

Deeply Virtual Compton Scattering (DVCS)


- + Clean process
- 4 twist2 chiral even GPDs: 2 unpolarized and 2 polarized.

Deeply Virtual Meson Production (DVMP)

Transv. dist. $\ll R_{\text{had}}$ Q^2 L, Thard DA N CPD N'

- + Access to transversity degrees of freedom described by chiral-odd GPDs
- Distribution Amplitude (DA) is involved as additional soft non pert. quantity

From the ground state nucleon to resonances

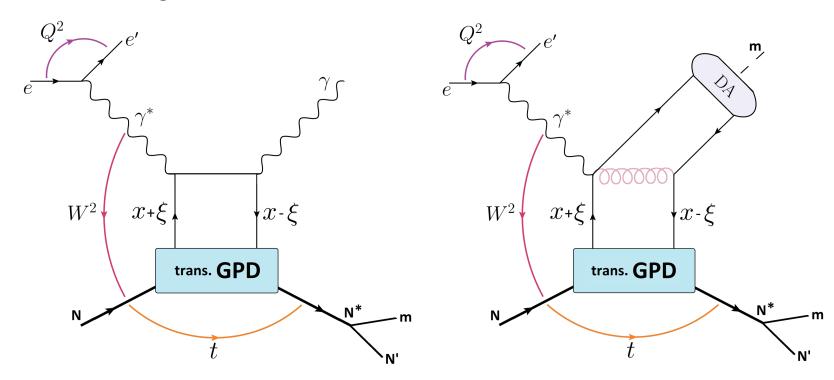
How does the exitation affect the 3D structure of the Nucleon?

→ Pressure distributions, tensor charge, ... of resonances?

Traditional way: Study of transition form factors (**2D picture** of transv. position)

3D picture of the exitation process: Encoded in transition GPDs

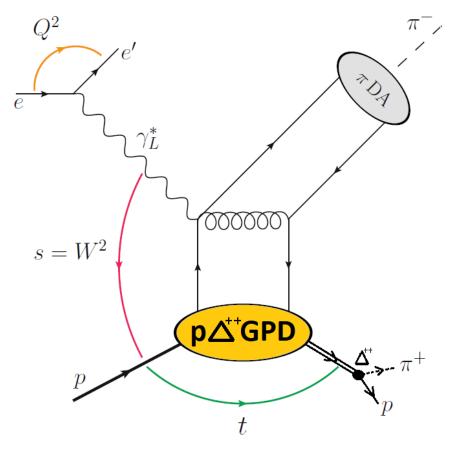
Simplest case: $N \rightarrow \Delta$ transition → 16 transition GPDs


P. Kroll and K. Passek-Kumericki, Phys. Rev. D 107, 054009 (2023).
K. Semenov, M. Vanderhaeghen, arXiv:2303.00119 (2023).

- 8 helicity non-flip transition GPDs (twist 2)
 - Related to the Jones-Scardon and Adler EM FF for the N \rightarrow Δ transition
- 8 helicity flip transition GPDs (transversity)

Non-diagonal DVCS / DVMP

non-diagonal DVCS


non-diagonal DVMP

factorization expected for: $-t/Q^2$ small, $Q^2 > M_{N^*}^2$ x_B fixed

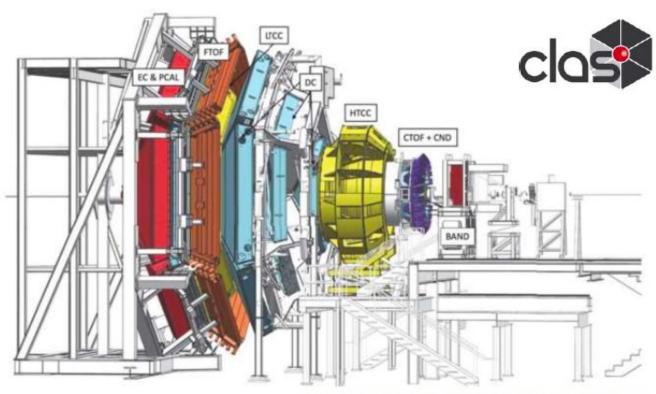
N-> $\Delta(1232)$ transition GPDs: 8 twist-2 GPDs: 4 unpolarized, 4 polarized. K. Semenov, M. Vanderhaeghen, arXiv:2303.00119 (2023)

$ep \rightarrow e\Delta^{++}\pi^{-} \rightarrow ep\pi^{+}\pi^{-}$

Factorization expected for:

-t / $Q^2 \ll 1$, x_B fixed, and $Q^2 > M_{\Delta}^2$

 \rightarrow Provides access to p- Δ transition GPDs


 \rightarrow 3D structure of the Δ resonance and of the excitation process

First Measurement of Hard Exclusive $\pi^-\Delta^{++}$ Electroproduction Beam-Spin Asymmetries off the Proton

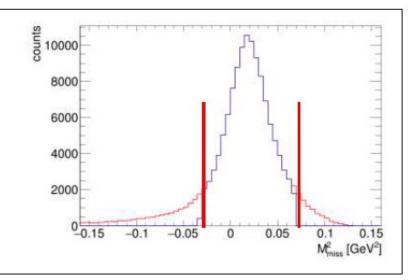
S. Diehlo, 34,6 N. Trotta, K. Joo, P. Achenbach, Z. Akbar, 46,12 W. R. Armstrong, H. Atac, H. Avakian, L. Baashen, 11 N. A. Baltzell, ³⁹ L. Barion, ¹⁵ M. Bashkanov, ⁴⁵ M. Battaglieri, ¹⁷ I. Bedlinskiy, ²⁸ F. Benmokhtar, ⁸ A. Bianconi, ^{42,20} A. S. Biselli, F. Bossù, K.-T. Brinkmann, W. J. Briscoe, D. Bulumulla, V. Burkert, R. Capobianco, Capobianco, D. S. Carman,³⁹ J. C. Carvajal,¹¹ A. Celentano,¹⁷ G. Charles,^{21,33} P. Chatagnon,^{39,21} V. Chesnokov,³⁶ G. Ciullo,^{15,10} P. L. Cole, 25 M. Contalbrigo, 15 G. Costantini, 42,20 V. Crede, 12 A. D'Angelo, 18,35 N. Dashyan, 48 R. De Vita, 17 A. Deur, 39 C. Djalali, ^{32,37} R. Dupre, ²¹ M. Ehrhart, ^{21,*} A. El Alaoui, ⁴⁰ L. El Fassi, ²⁷ L. Elouadrhiri, ³⁹ S. Fegan, ⁴⁵ A. Filippi, ¹⁹ G. Gavalian, ³⁹ D. I. Glazier, ⁴⁴ A. A. Golubenko, ³⁶ G. Gosta, ^{42,20} R. W. Gothe, ³⁷ Y. Gotra, ³⁹ K. Griffioen, ⁴⁷ K. Hafidi, ¹ H. Hakobyan, 40 M. Hattawy, 33,1 T. B. Hayward, D. Heddle, 5,39 A. Hobart, M. Holtrop, 29 I. Illari, 13 D. G. Ireland, 44 E. L. Isupov, ³⁶ H. S. Jo, ²⁴ R. Johnston, ²⁶ D. Keller, ⁴⁶ M. Khachatryan, ³³ A. Khanal, ¹¹ A. Kim, ⁶ W. Kim, ²⁴ V. Klimenko, ⁶ A. Kripko, ³⁴ V. Kubarovsky, ³⁹ S. E. Kuhn, ³³ V. Lagerquist, ³³ L. Lanza, ^{18,35} M. Leali, ^{42,20} S. Lee, ¹ P. Lenisa, ^{15,10} X. Li, ²⁶ I. J. D. MacGregor, 4 D. Marchand, 2 V. Mascagna, 42,41,20 G. Matousek, B. McKinnon, 4 C. McLauchlin, 37 Z. E. Meziani, 1,38 S. Migliorati, 42,20 R. G. Milner, 26 T. Mineeva, 40 M. Mirazita, 16 V. Mokeev, 39 P. Moran, 26 C. Munoz Camacho, ²¹ P. Naidoo, ⁴⁴ K. Neupane, ³⁷ S. Niccolai, ²¹ G. Niculescu, ²³ M. Osipenko, ¹⁷ P. Pandey, ³³ M. Paolone, ^{30,38} L. L. Pappalardo, ^{15,10} R. Paremuzyan, ^{39,29} S. J. Paul, ⁴³ W. Phelps, ^{5,13} N. Pilleux, ²¹ M. Pokhrel, ³³ J. Poudel, ^{33,†} J. W. Price, ² Y. Prok, 33 A. Radic, 40 B. A. Raue, 11 T. Reed, 11 J. Richards, 6 M. Ripani, 17 J. Ritman, 14,22 P. Rossi, 39,16 F. Sabatié, 4 C. Salgado, ³¹ S. Schadmand, ¹⁴ A. Schmidt, ^{13,26} Y. G. Sharabian, ³⁹ U. Shrestha, ^{6,32} D. Sokhan, ^{4,44} N. Sparveris, ³⁸ M. Spreafico, ¹⁷ S. Stepanyan, ³⁹ I. Strakovsky, ¹³ S. Strauch, ³⁷ M. Turisini, ¹⁶ R. Tyson, ⁴⁴ M. Ungaro, ³⁹ S. Vallarino, ¹⁵ L. Venturelli, 42,20 H. Voskanyan, 48 E. Voutier, 21 D. P. Watts, 45 X. Wei, 39 R. Williams, 45 R. Wishart, 44 M. H. Wood, 3 M. Yurov, 27 N. Zachariou, 45 Z. W. Zhao, 7,33 and M. Zurek1

(CLAS Collaboration)

CLAS12 at JLAB

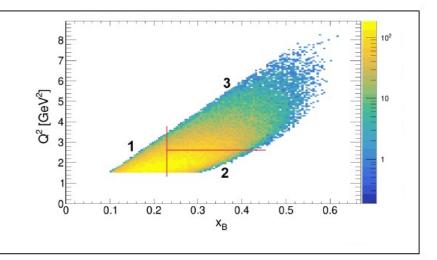
V. Burkert et al., Nucl. Instr. Meth. A 959, 163419 (2020)

8

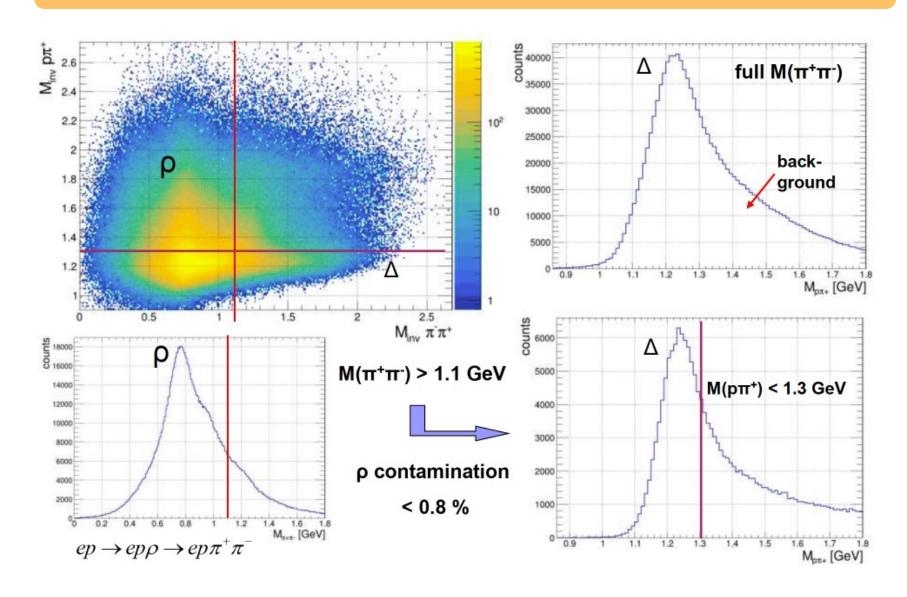

- → Data recorded with CLAS12 during fall 2018 and spring 2019 (RG-A)
 - → 10.6 GeV / 10.2 GeV electron beam ~ 86 % average polarization
 - → liquid H₂ target

Event Selection and Kinematic Cuts

Event selection: $ep \rightarrow ep\pi^-X$


$$X = \pi^+$$

2 sigma cut around the missing π⁺

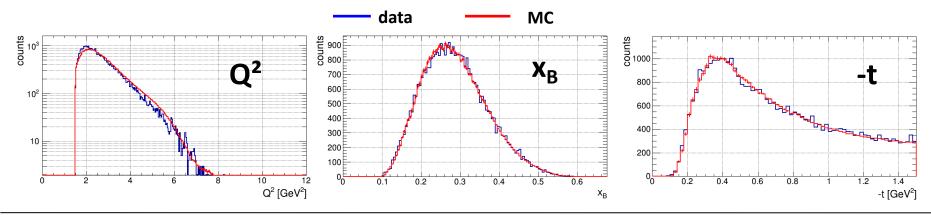


Kinematic cuts:

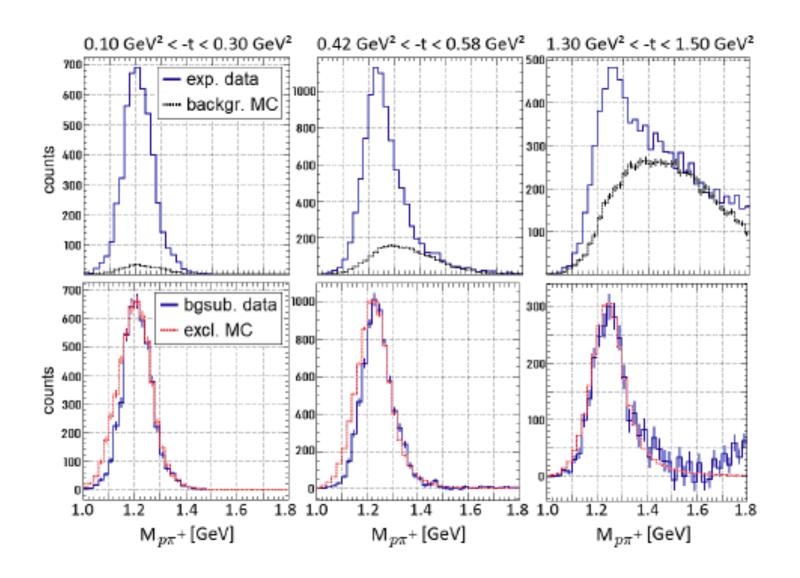
$$Q^2 > 1.5 \text{ GeV}^2$$
 W > 2 GeV

Event Selection and Background Rejection

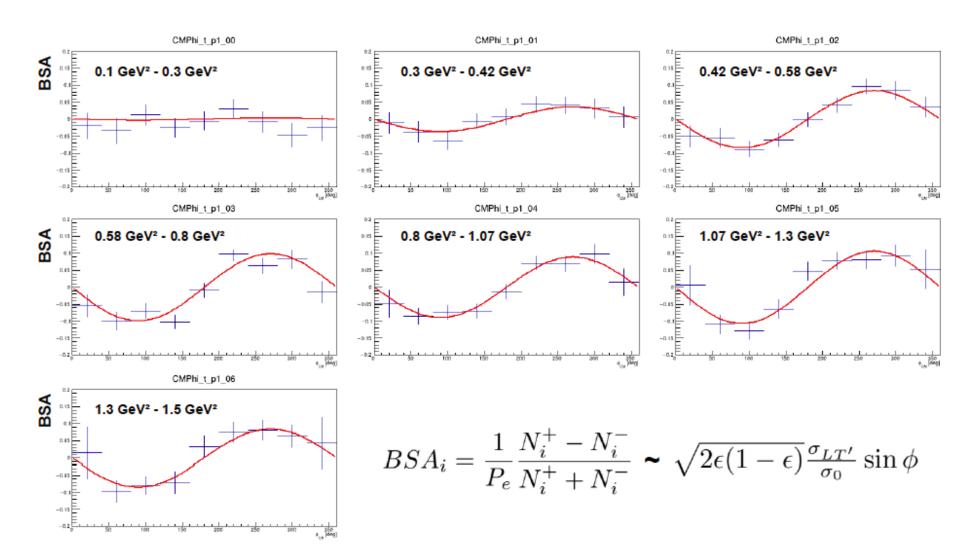
Monte Carlo Simulations

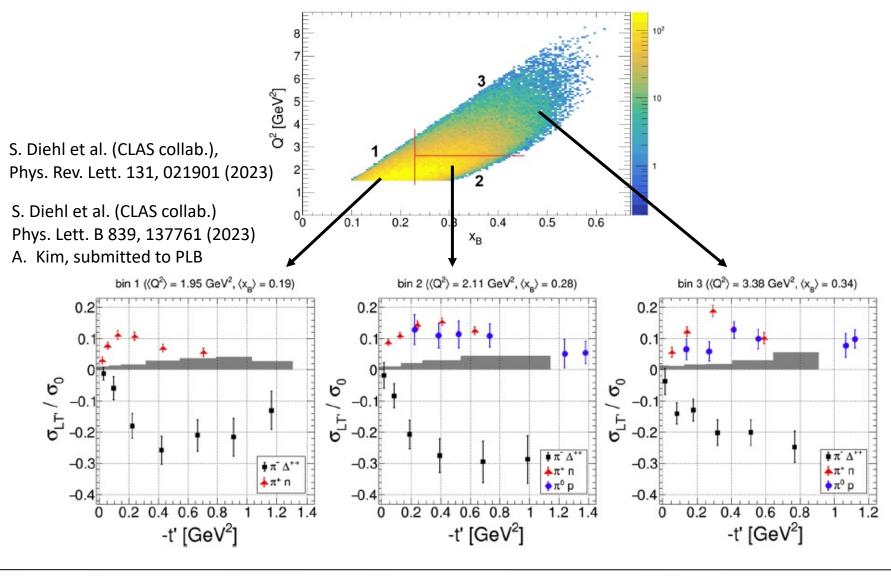

2 MC samples have been used:

a) Background: Semi-inclusive DIS MC


- Does not contain the $\pi^-\Delta^{++}$ production in "forward" kinematics
- Contains nonresonant 2-pion background as well as ρ production and other potential background channels
- Used to estimate background shape and contaminations

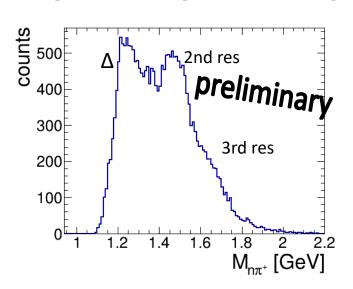
b) Signal: Exclusive $\pi^-\Delta^{++}$ MC


- Phase space simulation with a weight added to match experimental data
- Δ peak with PDG mass and FWHM
- → Both MCs are processed through the full simulation and reconstruction chain


Signal and Background Separation

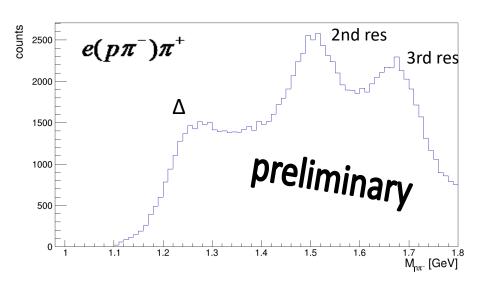
Resulting Beam Spin Asymmetries (Q²-x_B integrated)

Results


Outlook and Next Steps

$$ep \rightarrow e\Delta^{++}\pi^{-} \rightarrow ep\pi^{+}\pi^{-}$$
 $I_z = +3/2$

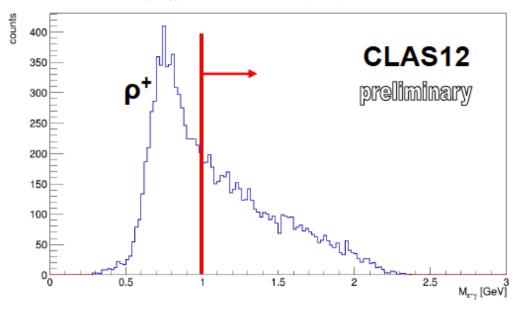
- \rightarrow The p π^+ final state can **only** be populated by Δ -resonances
 - Large gap between $\Delta(1232)$ and higher resonances


non-diagonal DVCS

$$e p \rightarrow e' \Delta^+ \gamma \rightarrow e' n \pi^+ \gamma$$

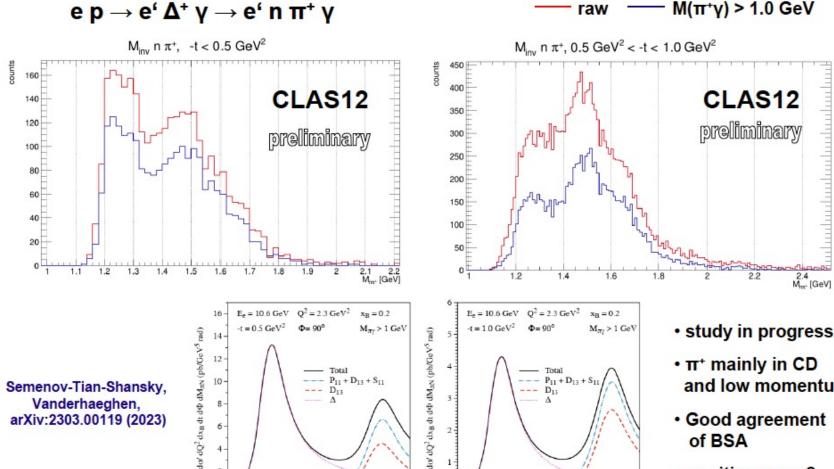
Other non-diagonal DVMP channels

$$ep \rightarrow e\Delta^0\pi^+ \rightarrow e(p\pi^-)\pi^+$$

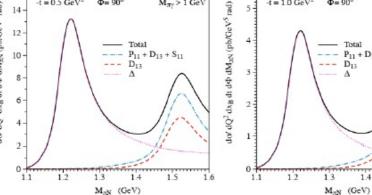

Non-Diagonal DVCS

$$e~p \rightarrow e`~\Delta^+~\gamma \rightarrow e`~n~\pi^+~\gamma$$

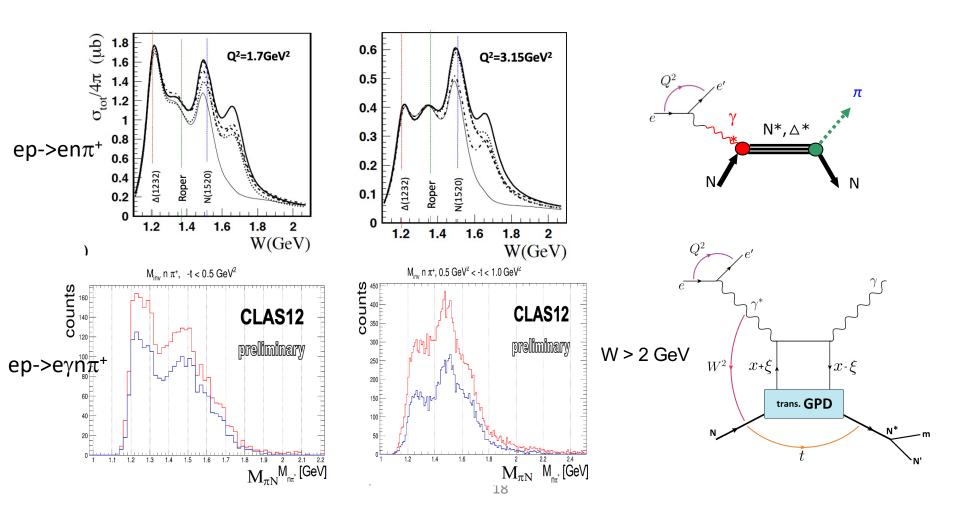
Kinematic cuts: W > 2 GeV $Q^2 > 1 \text{ GeV}^2$ y < 0.8 $-t < 2 \text{ GeV}^2$ $E_{DVCS} > 2 \text{ GeV}$


Background:

 $M(\pi^+ \gamma)$ for 1.13 GeV < $M(\pi^+ n)$ < 1.33 GeV



• Dominant background from $\rho^{\scriptscriptstyle +} \to \pi^{\scriptscriptstyle +} \, \gamma$


$e p \rightarrow e' \Delta^+ \gamma \rightarrow e' n \pi^+ \gamma$

Semenov-Tian-Shansky, Vanderhaeghen, arXiv:2303.00119 (2023)

- study in progress
- π⁺ mainly in CD and low momentum
- Good agreement of BSA
- awaiting pass 2

Electron Scattering Binning Scheme

Resonance Region D

DIS Region

Inclusive Scattering

 Q^2 , W

 Q^2 , X_B

Exclusive Process (γ , π , ρ , ϕ , ...)

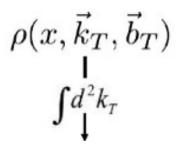
 Q^2 , W, $\cos\theta^*$, ϕ

 Q^2 , x_B , -t, ϕ

Off-diagonal DVCS or DVMP

$$Q^2$$
, x_B , -t, ϕ , $M_{\pi N}$, $\cos \theta^*$, ϕ^*

Conclusion and Outlook


- 1. Hard exclusive $\pi^-\Delta^{++}$ production has been measured with CLAS12 and provides a first observable sensitive to N-> Δ transition GPDs. (Phys. Rev. Lett. 131, 021901 (2023))
- 2. The obtained BSA is clearly negative and \sim 2 times larger than for π^+
- 3. Transition GPDs based description of the reaction exists by P. Kroll and K. Passek-Kumericki (Phys. Rev. D 107, 054009 (2023)), but a reliable prediction of BSAs is not available due to missing experimental constraints to the transversity transition GPDs.

Outlook

- 1. The N->N* DVCS and N->N* DVMP processes are under investigation by scanning a wide range of invariant mass of $N\pi$.
- 2. First data on these reactions are becoming available from experiments at JLab12, but detailed strategies for their analysis and theoretical interpretation need to be developed.
- 3. A new proposal would be submitted to JLAB PAC in the near future for high statistics run in 7D: Q^2 , x_B , t, ϕ , $M_{N\pi}$, θ^* , ϕ^*

BACKUP

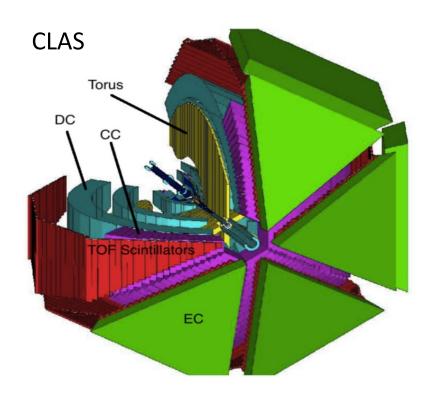
Generalized Parton Distributions (GPDs)

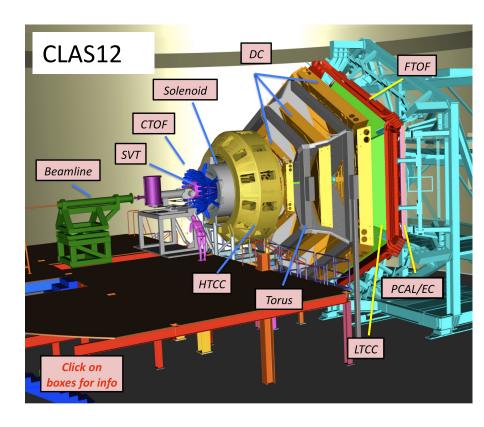
Integrate over transverse momentum space

Generalized Parton Distributions (GPDs)

3-D nucleon images in the transverse coordinate and longitudinal momentum space

S. Liuti et al., Phys. Rev. D 84, 034007 (2011) (GGL)


P. Kroll et al., Eur. Phys. J. A 47, 112 (2011) (GK)


quark pol.

nucleon pol.

N/q	U	L	T
U	H		$ar{E}_T$
L		\widetilde{H}	\widetilde{E}_T
T	E	\widetilde{E}	H_T, \widetilde{H}_T

$$\bar{E}_T = 2\tilde{H}_T + E_T$$

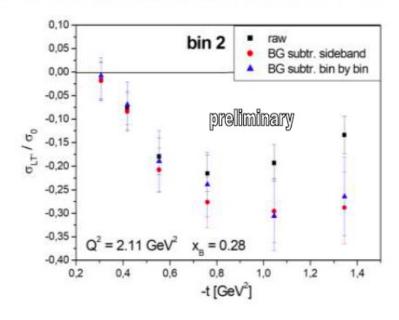
Transition Form Factors
(N* Physics) at 6 GeV JLab Era

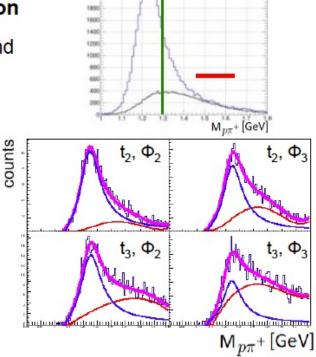
Transition GPDs (3D N* Physics) at 12-22 GeV JLab Era

Sources of Systematic Uncertainty

- 1. Uncertainty of the background subtraction
 - → 2 sources of uncertainty: S/B ratio and sideband asymmetry
 - → Both sources were varied within their uncertainty range
 - → Typically in the order of 1.5 % (low -t) 12.5 % (high -t) (stat. ~ 12 25 %)
 - → Dominant sys. uncertainty for the high -t bins
- 2. Uncertainty of the beam polarization ~ 3.1 %
- 3. Effect of the extraction method and the denominator terms ~ 2.8 %
- 4. Acceptance and bin-migration effects ~ 2.9 %
 - → Comparison of injected and reconstructed BSA in the MC
- 5. Radiative effects ~ 3.0 %
- 6. Other sources (particle ID, fiducial cuts, ...) < 2.0 %

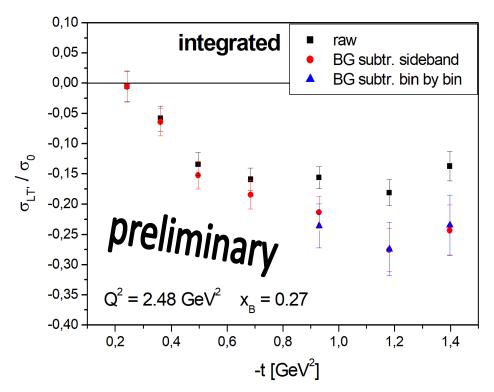
Total: 7.1 - 14.3 %


Background Asymmetry Subtraction

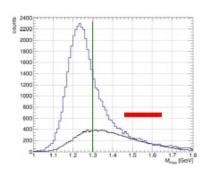

Method 1: A sideband based background subtraction

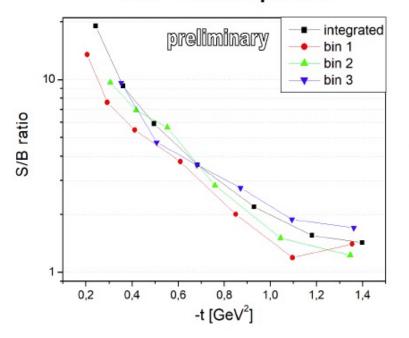
 S/B ratio from a fit of the signal shape and background asymmtry from the sideband

Method 2: A bin-by-bin background subtraction

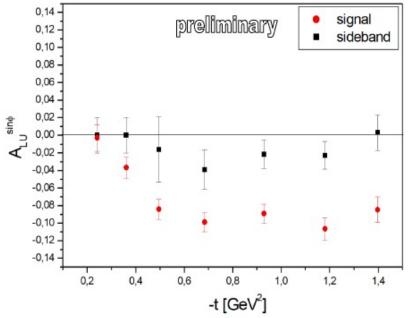

 Fit of the pπ⁺ inv. mass with a "Sill" function and a 5th order polynomial in each Q², x_B, -t, Φ bin.

Background Subtraction

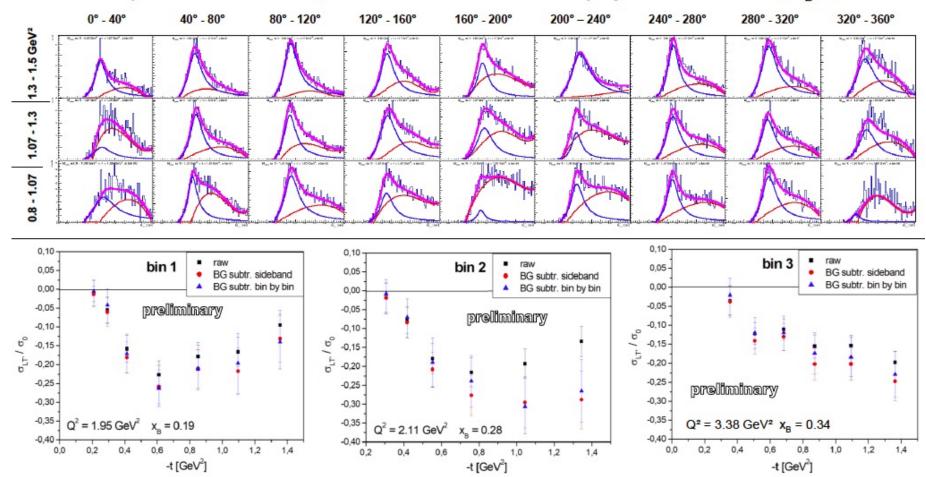

- Based on the obtained S/B ratio and based on the asymmetry of the sideband, the contribution of the non-resonant background has been subtracted.
- As a crosscheck, a bin-by-bin background subtraction has been performed with a fit of the signal and background function in each phi bin and for each helicity state.
- A good agreement of the two methods has been found.



Background Subtraction


Method 1: A sideband based background subtraction

S/B ratio based on data - MC comparison


asymmetry of the sidebands

Background Subtraction

Method 2: A bin-by-bin background subtraction

Fit of the pπ⁺ inv. mass with a "Sill" function and a 5th order polynomial in each Q², x_B, -t, Φ bin.

