Lightfront Wave Functions of the nucleon

Cédric Mezrag

Irfu, CEA, Université Paris-Saclay

$$
\text { May } 16^{t h}, 2024
$$

In collaboration with:
M. Riberdy, J. Segovia and C.D. Roberts

Definitions and Classification of LFWFs

Hadrons seen as Fock States

- Lightfront quantization allows to expand hadrons on a Fock basis:

$$
\begin{gathered}
|P, \pi\rangle \propto \sum_{\beta} \Psi_{\beta}^{q \bar{q}}|q \bar{q}\rangle+\sum_{\beta} \Psi_{\beta}^{q \bar{q}, q \bar{q}}|q \bar{q}, q \bar{q}\rangle+\ldots \\
|P, N\rangle \propto \sum_{\beta} \Psi_{\beta}^{q q q}|q q q\rangle+\sum_{\beta} \Psi_{\beta}^{q q q, q \bar{q}}|q q q, q \bar{q}\rangle+\ldots
\end{gathered}
$$

Hadrons seen as Fock States

- Lightfront quantization allows to expand hadrons on a Fock basis:

$$
\begin{gathered}
|P, \pi\rangle \propto \sum_{\beta} \Psi_{\beta}^{q \bar{q}}|q \bar{q}\rangle+\sum_{\beta} \Psi_{\beta}^{q \bar{q}, q \bar{q}}|q \bar{q}, q \bar{q}\rangle+\ldots \\
|P, N\rangle \propto \sum_{\beta} \Psi_{\beta}^{q q q}|q q q\rangle+\sum_{\beta} \Psi_{\beta}^{q q q, q \bar{q}}|q q q, q \bar{q}\rangle+\ldots
\end{gathered}
$$

- Non-perturbative physics is contained in the N-particles Lightfront-Wave Functions (LFWF) Ψ^{N}

Hadrons seen as Fock States

- Lightfront quantization allows to expand hadrons on a Fock basis:

$$
\begin{gathered}
|P, \pi\rangle \propto \sum_{\beta} \Psi_{\beta}^{q \bar{q}}|q \bar{q}\rangle+\sum_{\beta} \Psi_{\beta}^{q q \bar{q}, q \bar{q}}|q \bar{q}, q \bar{q}\rangle+\ldots \\
|P, N\rangle \propto \sum_{\beta} \Psi_{\beta}^{q q q}|q q q\rangle+\sum_{\beta} \Psi_{\beta}^{q q q, q \bar{q}}|q q q, q \bar{q}\rangle+\ldots
\end{gathered}
$$

- Non-perturbative physics is contained in the N-particles Lightfront-Wave Functions (LFWF) Ψ^{N}
- Schematically a distribution amplitude φ is related to the LFWF through:

$$
\varphi(x) \propto \int \frac{\mathrm{d}^{2} k_{\perp}}{(2 \pi)^{2}} \Psi\left(x, k_{\perp}\right)
$$

LFWFs and Hadron structure

- Since they describe hadron states, LFWFs can be used to compute matrix element of the type:

$$
\left\langle p^{\prime}\right| O\left(z_{1}, \ldots z_{n}\right)|p\rangle \rightarrow \sum_{N} \sum_{N^{\prime}} \psi_{N^{\prime}}^{*} \psi_{N}\left\langle q_{1} \ldots q_{N^{\prime}}\right| O\left(z_{1}, \ldots, z_{n}\right)\left|q_{1} \ldots q_{N}\right\rangle
$$

LFWFs and Hadron structure

- Since they describe hadron states, LFWFs can be used to compute matrix element of the type :

$$
\left\langle p^{\prime}\right| O\left(z_{1}, \ldots z_{n}\right)|p\rangle \rightarrow \sum_{N} \sum_{N^{\prime}} \psi_{N^{\prime}}^{*} \psi_{N}\left\langle q_{1} \ldots q_{N^{\prime}}\right| O\left(z_{1}, \ldots, z_{n}\right)\left|q_{1} \ldots q_{N}\right\rangle
$$

- These matrix elements typically encode hadron structure properties (EFF, PDFs, GPDs, etc)

LFWFs and Hadron structure

- Since they describe hadron states, LFWFs can be used to compute matrix element of the type :

$$
\left\langle p^{\prime}\right| O\left(z_{1}, \ldots z_{n}\right)|p\rangle \rightarrow \sum_{N} \sum_{N^{\prime}} \psi_{N^{\prime}}^{*} \psi_{N}\left\langle q_{1} \ldots q_{N^{\prime}}\right| O\left(z_{1}, \ldots, z_{n}\right)\left|q_{1} \ldots q_{N}\right\rangle
$$

- These matrix elements typically encode hadron structure properties (EFF, PDFs, GPDs, etc)
- Thus, we can compute hadron structure distributions, as a convolution (or overlap) of Lightfront Wave functions
M. Diehl et al., Nucl. Phys B596 (2001)

From Mesons to Baryons

LFWFs modelling techniques have been widely used on mesons

- Simple Algebraic Nakanishi models for the pion and computation of GPDs in the DGLAP region (parton number conserved) for instance C. Mezrag et al., Few Body Syst. 57 (2016) 9, 729-772
- Advanced modelling with and without Nakanishi parametrisations

$$
\text { for instance K. Raya et al., Chin.Phys.C } 46 \text { (2022) 1, } 013105
$$

- Covariant extension from DGLAP to ERBL regions for GPDs
N. Chouika et al., EPJC 77 (2017)
- Prediction for Sullivan DVCS at EIC and EicC with PARTONS
J.M. Morgado Chavez et al., Phys. Rev. Lett. 128 (2021)
B.Berthou et al., EPJC 78

From Mesons to Baryons

LFWFs modelling techniques have been widely used on mesons

- Simple Algebraic Nakanishi models for the pion and computation of GPDs in the DGLAP region (parton number conserved)

```
for instance C. Mezrag et al., Few Body Syst. 57 (2016) 9, 729-772
```

- Advanced modelling with and without Nakanishi parametrisations

$$
\text { for instance K. Raya et al., Chin.Phys.C } 46 \text { (2022) 1, } 013105
$$

- Covariant extension from DGLAP to ERBL regions for GPDs
N. Chouika et al., EPJC 77 (2017)
- Prediction for Sullivan DVCS at EIC and EicC with PARTONS
J.M. Morgado Chavez et al., Phys. Rev. Lett. 128 (2021)
B.Berthou et al., EPJC 78

We would like to extend all this to the baryon sector and compute nucleon DVCS observable

LFWFs: formal definitions

$\left.\langle 0| O^{\alpha, \ldots}\left(\left\{z_{1}^{-}, z_{\perp 1}\right\}, \ldots,\left\{z_{n}^{-}, z_{\perp n}\right\}\right)|P, \lambda\rangle\right|_{z_{i}^{+}=0}$

- Lightfront operator O of given number of quark and gluon fields

LFWFs: formal definitions

$$
\left.\langle 0| O^{\alpha, \ldots}\left(\left\{z_{1}^{-}, z_{\perp 1}\right\}, \ldots,\left\{z_{n}^{-}, z_{\perp n}\right\}\right)|P, \lambda\rangle\right|_{z_{i}^{+}=0}=\sum_{j}^{n} \tau_{j}^{\alpha, \ldots} N(P, \lambda) F_{j}\left(z_{i}\right)
$$

- Lightfront operator O of given number of quark and gluon fields
- Expansion in terms of scalar non-pertubative functions $F\left(z_{i}\right)$

$$
\left.\langle 0| O^{\alpha, \ldots}\left(\left\{z_{1}^{-}, z_{\perp 1}\right\}, \ldots,\left\{z_{n}^{-}, z_{\perp n}\right\}\right)|P, \lambda\rangle\right|_{z_{i}^{+}=0}=\sum_{j}^{n} \tau_{j}^{\alpha, \ldots} N(P, \lambda) F_{j}\left(z_{i}\right)
$$

- Lightfront operator O of given number of quark and gluon fields
- Expansion in terms of scalar non-pertubative functions $F\left(z_{i}\right)$
- The τ_{j} can be chosen to have a definite twist, i.e. a definit power behaviour when P^{+}becomes large

$$
\left.\langle 0| O^{\alpha, \ldots}\left(\left\{z_{1}^{-}, z_{\perp 1}\right\}, \ldots,\left\{z_{n}^{-}, z_{\perp n}\right\}\right)|P, \lambda\rangle\right|_{z_{i}^{+}=0}=\sum_{j}^{n} \tau_{j}^{\alpha, \ldots} N(P, \lambda) F_{j}\left(z_{i}\right)
$$

- Lightfront operator O of given number of quark and gluon fields
- Expansion in terms of scalar non-pertubative functions $F\left(z_{i}\right)$
- The τ_{j} can be chosen to have a definite twist, i.e. a definit power behaviour when P^{+}becomes large
- Leading and higher twist contributions can be selected by adequate projections of O

$$
\left.\langle 0| O^{\alpha, \ldots}\left(\left\{z_{1}^{-}, z_{\perp 1}\right\}, \ldots,\left\{z_{n}^{-}, z_{\perp n}\right\}\right)|P, \lambda\rangle\right|_{z_{i}^{+}=0}=\sum_{j}^{n} \tau_{j}^{\alpha, \ldots} N(P, \lambda) F_{j}\left(z_{i}\right)
$$

- Lightfront operator O of given number of quark and gluon fields
- Expansion in terms of scalar non-pertubative functions $F\left(z_{i}\right)$
- The τ_{j} can be chosen to have a definite twist, i.e. a definit power behaviour when P^{+}becomes large
- Leading and higher twist contributions can be selected by adequate projections of O
- Quark helicity projection can also be selected through $\frac{1 \pm \gamma_{5}}{2}$ projectors

$$
\left.\langle 0| O^{\alpha, \ldots}\left(\left\{z_{1}^{-}, z_{\perp 1}\right\}, \ldots,\left\{z_{n}^{-}, z_{\perp n}\right\}\right)|P, \lambda\rangle\right|_{z_{i}^{+}=0}=\sum_{j}^{n} \tau_{j}^{\alpha, \ldots} N(P, \lambda) F_{j}\left(z_{i}\right)
$$

- Lightfront operator O of given number of quark and gluon fields
- Expansion in terms of scalar non-pertubative functions $F\left(z_{i}\right)$
- The τ_{j} can be chosen to have a definite twist, i.e. a definit power behaviour when P^{+}becomes large
- Leading and higher twist contributions can be selected by adequate projections of O
- Quark helicity projection can also be selected through $\frac{1 \pm \gamma_{5}}{2}$ projectors

Both mesons and baryons can (in principle) have multiple independent leading-twist LFWFs

An example on the pion

$$
\left.\langle 0| \bar{q}_{\alpha}\left(\gamma_{5} q\right)_{\beta}|\pi\rangle\right|_{z^{+}=0}
$$

An example on the pion

An example on the pion

An example on the pion

We can build one LFWFs with OAM projection 0 , and one with OAM projection 1.

Nucleon LFWFs classification

- In the nucleon case, the procedure applies with three quarks at leading Fock state:

$$
\langle 0| \epsilon^{i j k} u_{\alpha}^{i}\left(z_{1}\right) u_{\beta}^{j}\left(z_{2}\right) d_{\gamma}^{k}\left(z_{3}\right)|P, \uparrow\rangle
$$

Nucleon LFWFs classification

- In the nucleon case, the procedure applies with three quarks at leading Fock state:

$$
\langle 0| \epsilon^{i j k} u_{\alpha}^{i}\left(z_{1}\right) u_{\beta}^{j}\left(z_{2}\right) d_{\gamma}^{k}\left(z_{3}\right)|P, \uparrow\rangle
$$

- It results in defining 6 independent LFWFs
X. Ji, et al., Nucl Phys B652 383 (2003)

Nucleon LFWFs classification

- In the nucleon case, the procedure applies with three quarks at leading Fock state:

$$
\langle 0| \epsilon^{i j k} u_{\alpha}^{i}\left(z_{1}\right) u_{\beta}^{j}\left(z_{2}\right) d_{\gamma}^{k}\left(z_{3}\right)|P, \uparrow\rangle
$$

- It results in defining 6 independent LFWFs
- The LFWFs carry different amount of OAM projections:

states	$\langle\downarrow \downarrow \downarrow \mid P, \uparrow\rangle$	$\langle\downarrow \downarrow \uparrow \mid P, \uparrow\rangle$	$\langle\uparrow \downarrow \uparrow \mid P, \uparrow\rangle$	$\langle\uparrow \uparrow \uparrow \mid P, \uparrow\rangle$
OAM	2	1	0	-1
LFWFs	ψ^{6}	ψ^{3}, ψ^{4}	ψ^{1}, ψ^{2}	ψ^{5}

Relation with the Faddeev Wave function

- Since the Faddeev wave function χ is given as:

$$
\begin{aligned}
& \langle 0| T\left\{q_{\alpha_{1}}\left(z_{1}\right) q_{\alpha_{2}}\left(z_{2}\right) q_{\alpha_{3}}\left(z_{3}\right)\right\}|P, \lambda\rangle=\frac{1}{4} f_{N} N_{\sigma}(P, \lambda) \\
& \times \int \prod_{j=1}^{3} \mathrm{~d}^{(4)} k_{j} e^{-i k_{j} z_{j}} \delta^{(4)}\left(P-\sum_{j} k_{j}\right) \chi_{\alpha_{1} \alpha_{2} \alpha_{3} \sigma}\left(k_{1}, k_{2}, k_{3}\right),
\end{aligned}
$$

Relation with the Faddeev Wave function

- Since the Faddeev wave function χ is given as:

$$
\begin{aligned}
& \langle 0| T\left\{q_{\alpha_{1}}\left(z_{1}\right) q_{\alpha_{2}}\left(z_{2}\right) q_{\alpha_{3}}\left(z_{3}\right)\right\}|P, \lambda\rangle=\frac{1}{4} f_{N} N_{\sigma}(P, \lambda) \\
& \times \int \prod_{j=1}^{3} \mathrm{~d}^{(4)} k_{j} e^{-i k_{j} z_{j}} \delta^{(4)}\left(P-\sum_{j} k_{j}\right) \chi_{\alpha_{1} \alpha_{2} \alpha_{3} \sigma}\left(k_{1}, k_{2}, k_{3}\right),
\end{aligned}
$$

- one can get the LFWFs schematically through

$$
\psi_{i} \Gamma_{\alpha_{3}^{\prime} \sigma^{\prime}}=\int \prod_{j=1}^{3}\left[\mathrm{~d} k_{j}^{-}\right] \mathcal{P}_{i ; \alpha_{1} \alpha_{2} \alpha_{3} \alpha_{3}^{\prime} \sigma \sigma^{\prime}} \chi_{\alpha_{1} \alpha_{2} \alpha_{3} \sigma}
$$

where \mathcal{P}_{i} are the relevant leading-twist and OAM projectors.

Relation with the Faddeev Wave function

- Since the Faddeev wave function χ is given as:

$$
\begin{aligned}
& \langle 0| T\left\{q_{\alpha_{1}}\left(z_{1}\right) q_{\alpha_{2}}\left(z_{2}\right) q_{\alpha_{3}}\left(z_{3}\right)\right\}|P, \lambda\rangle=\frac{1}{4} f_{N} N_{\sigma}(P, \lambda) \\
& \times \int \prod_{j=1}^{3} \mathrm{~d}^{(4)} k_{j} e^{-i k_{j} z_{j}} \delta^{(4)}\left(P-\sum_{j} k_{j}\right) \chi_{\alpha_{1} \alpha_{2} \alpha_{3} \sigma}\left(k_{1}, k_{2}, k_{3}\right),
\end{aligned}
$$

- one can get the LFWFs schematically through

$$
\psi_{i} \Gamma_{\alpha_{3}^{\prime} \sigma^{\prime}}=\int \prod_{j=1}^{3}\left[\mathrm{~d} k_{j}^{-}\right] \mathcal{P}_{i ; \alpha_{1} \alpha_{2} \alpha_{3} \alpha_{3}^{\prime} \sigma \sigma^{\prime}} \chi_{\alpha_{1} \alpha_{2} \alpha_{3} \sigma}
$$

where \mathcal{P}_{i} are the relevant leading-twist and OAM projectors.

Important

The FWF allows a consistent derivation of the 6 leading-fock states LFWFs of the nucleon

Modelling the Faddeev wave Function

Baryon and Diquarks

- The Faddeev equation provides a covariant framework to compute the Faddeev wave function of the nucleon.

Baryon and Diquarks

- The Faddeev equation provides a covariant framework to compute the Faddeev wave function of the nucleon.
- It predicts the existence of strong diquarks correlations inside the nucleon.

Baryon and Diquarks

- The Faddeev equation provides a covariant framework to compute the Faddeev wave function of the nucleon.
- It predicts the existence of strong diquarks correlations inside the nucleon.

- Mostly two types of diquark are dynamically generated by the Faddeev equation:
- Scalar diquarks,
- Axial-Vector (AV) diquarks (not considered in this talk)

Baryon and Diquarks

- The Faddeev equation provides a covariant framework to compute the Faddeev wave function of the nucleon.
- It predicts the existence of strong diquarks correlations inside the nucleon.

- Mostly two types of diquark are dynamically generated by the Faddeev equation:
- Scalar diquarks,
- Axial-Vector (AV) diquarks (not considered in this talk)
- In the following we build a model inspired by numerical solutions of the Faddeev equations

Example with ψ_{1} and ψ_{2}

- A single projector allows us to compute both ψ_{1} and ψ_{2} :

$$
\begin{aligned}
& \langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}^{-}, z_{1 \perp}\right) C \phi u_{\downarrow}^{j}\left(z_{2}^{-}, z_{2 \perp}\right)\right) \phi d_{\uparrow}^{k}\left(z_{3}^{-}, z_{3 \perp}\right)|P, \uparrow\rangle \\
\rightarrow & \psi_{1}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right)+\epsilon^{i j} k_{i}^{1} k_{j}^{2} \psi_{2}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right)
\end{aligned}
$$

Braun et al., Nucl.Phys. B589 (2000)
X. Ji et al., Nucl.Phys. B652 (2003)

Example with ψ_{1} and ψ_{2}

- A single projector allows us to compute both ψ_{1} and ψ_{2} :

$$
\begin{aligned}
& \langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}^{-}, z_{1 \perp}\right) C h u_{\downarrow}^{j}\left(z_{2}^{-}, z_{2 \perp}\right)\right) \phi d_{\uparrow}^{k}\left(z_{3}^{-}, z_{3 \perp}\right)|P, \uparrow\rangle \\
\rightarrow & \psi_{1}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right)+\epsilon^{i j} k_{i}^{1} k_{j}^{2} \psi_{2}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right)
\end{aligned}
$$

- We can apply it on the Faddeev wave function:

Example with ψ_{1} and ψ_{2}

- A single projector allows us to compute both ψ_{1} and ψ_{2} :

$$
\begin{aligned}
& \langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}^{-}, z_{1 \perp}\right) C \mathscr{n} u_{\downarrow}^{j}\left(z_{2}^{-}, z_{2 \perp}\right)\right) \not h d_{\uparrow}^{k}\left(z_{3}^{-}, z_{3 \perp}\right)|P, \uparrow\rangle \\
\rightarrow & \psi_{1}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right)+\epsilon^{i j} k_{i}^{1} k_{j}^{2} \psi_{2}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right)
\end{aligned}
$$

X. Ji et al., Nucl.Phys. B652 (2003)

- We can apply it on the Faddeev wave function:

Example with ψ_{1} and ψ_{2}

- A single projector allows us to compute both ψ_{1} and ψ_{2} :

$$
\begin{aligned}
& \langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}^{-}, z_{1 \perp}\right) C \mathscr{n} u_{\downarrow}^{j}\left(z_{2}^{-}, z_{2 \perp}\right)\right) \not h d_{\uparrow}^{k}\left(z_{3}^{-}, z_{3 \perp}\right)|P, \uparrow\rangle \\
\rightarrow & \psi_{1}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right)+\epsilon^{i j} k_{i}^{1} k_{j}^{2} \psi_{2}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right)
\end{aligned}
$$

- We can apply it on the Faddeev wave function:

- The operator then selects the relevant component of the wave function.

Dirac Structure and Factorisation I

Considering the diquark amplitude Γ_{0} and the Quark-diquark amplitude \mathcal{S}, we choose the following tensorial structure:

$$
\Gamma_{0} \propto i \gamma_{5} C, \quad \mathcal{S} \propto I
$$

$$
\propto \frac{\gamma_{\nu}}{4} \operatorname{Tr}\left[\gamma^{\nu} \pitchfork L^{\uparrow} S\left(k_{3}\right) \Gamma^{0 T} S^{T}\left(k_{2}\right) L^{\downarrow} \phi^{\top}\left(C^{\dagger}\right)^{T} L^{\uparrow} S\left(k_{1}\right) S\right] \Delta(K)
$$

Dirac Structure and Factorisation I

Considering the diquark amplitude Γ_{0} and the Quark-diquark amplitude \mathcal{S}, we choose the following tensorial structure:

$$
\Gamma_{0} \propto i \gamma_{5} C, \quad \mathcal{S} \propto I
$$

$$
\begin{aligned}
& \propto \frac{\gamma_{\nu}}{4} \operatorname{Tr}\left[\gamma^{\nu} \phi L^{\uparrow} S\left(k_{3}\right) \Gamma^{0 \top} S^{\top}\left(k_{2}\right) L^{\downarrow} \phi^{\top}\left(C^{\dagger}\right)^{\top} L^{\uparrow} S\left(k_{1}\right) S\right] \Delta(K) \\
& \propto \frac{\gamma_{\nu}}{4} \underbrace{\operatorname{Tr}\left[S\left(k_{3}\right) \Gamma^{0 \top} S^{\top}\left(k_{2}\right) L^{\downarrow} C^{\dagger} \phi L^{\uparrow}\right]}_{\text {Diquark LFWF } \psi_{\uparrow \downarrow}} \underbrace{\operatorname{Tr}\left[\gamma^{\nu} \phi L^{\uparrow} S\left(k_{1}\right) S\right]}_{\begin{array}{c}
\text { Projection of the } \\
\text { Faddeev WF }
\end{array}} \Delta(K)
\end{aligned}
$$

Dirac Structure and Factorisation I

Considering the diquark amplitude Γ_{0} and the Quark-diquark amplitude \mathcal{S}, we choose the following tensorial structure:

$$
\Gamma_{0} \propto i \gamma_{5} C, \quad \mathcal{S} \propto I
$$

$$
\begin{aligned}
& \propto \frac{\gamma_{\nu}}{4} \operatorname{Tr}\left[\gamma^{\nu} \pitchfork L^{\uparrow} S\left(k_{3}\right) \Gamma^{0 T} S^{T}\left(k_{2}\right) L^{\downarrow} 巾^{T}\left(C^{\dagger}\right)^{T} L^{\uparrow} S\left(k_{1}\right) \mathcal{S}\right] \Delta(K) \\
& \propto \frac{\gamma_{\nu}}{4} \underbrace{\operatorname{Tr}\left[S\left(k_{3}\right) \Gamma^{0 T} S^{T}\left(k_{2}\right) L^{\downarrow} C^{\dagger} \pitchfork L^{\uparrow}\right]}_{\text {Diquark LFWF } \psi_{\uparrow \downarrow}} \underbrace{\operatorname{Tr}\left[\gamma^{\nu} 巾 L^{\uparrow} S\left(k_{1}\right) \mathcal{S}\right]}_{\begin{array}{c}
\text { Projection of the } \\
\text { Faddeev WF }
\end{array}} \Delta(K) \\
& \propto \psi_{1}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right)
\end{aligned}
$$

Dirac Structure and Factorisation I

Considering the diquark amplitude Γ_{0} and the Quark-diquark amplitude \mathcal{S}, we choose the following tensorial structure:

$$
\Gamma_{0} \propto i \gamma_{5} C, \quad \mathcal{S} \propto I
$$

$$
\begin{aligned}
& \propto \frac{\gamma_{\nu}}{4} \operatorname{Tr}\left[\gamma^{\nu} \pitchfork L^{\uparrow} S\left(k_{3}\right) \Gamma^{0 T} S^{T}\left(k_{2}\right) L^{\downarrow} 巾^{T}\left(C^{\dagger}\right)^{T} L^{\uparrow} S\left(k_{1}\right) \mathcal{S}\right] \Delta(K) \\
& \propto \frac{\gamma_{\nu}}{4} \underbrace{\operatorname{Tr}\left[S\left(k_{3}\right) \Gamma^{0 T} S^{T}\left(k_{2}\right) L^{\downarrow} C^{\dagger} \pitchfork L^{\uparrow}\right]}_{\text {Diquark LFWF } \psi_{\uparrow \downarrow}} \underbrace{\operatorname{Tr}\left[\gamma^{\nu} 巾 L^{\uparrow} S\left(k_{1}\right) \mathcal{S}\right]}_{\begin{array}{c}
\text { Projection of the } \\
\text { Faddeev WF }
\end{array}} \Delta(K) \\
& \propto \psi_{1}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right)
\end{aligned}
$$

Note that $\int \mathrm{d}^{(2)} k_{1 \perp} \mathrm{~d}^{(2)} k_{2 \perp} \psi_{1}=\varphi$, the nucleon DA.

Dirac Structure and Factorisation II

Considering the diquark amplitude Γ_{0} and the Quark-diquark amplitude \mathcal{S}, we choose the following tensorial structure:

$$
\Gamma_{0} \propto i \gamma_{5} C, \quad \mathcal{S} \propto I
$$

$$
\propto \frac{\gamma_{\nu}}{4} \operatorname{Tr}\left[\gamma^{\nu} \phi L^{\uparrow} S\left(k_{3}\right) \Gamma^{0 \top} S^{T}\left(k_{1}\right) L^{\uparrow} \dot{h}^{T}\left(C^{\dagger}\right)^{T} L^{\downarrow} S\left(k_{2}\right) S\right] \Delta(K)
$$

Dirac Structure and Factorisation II

Considering the diquark amplitude Γ_{0} and the Quark-diquark amplitude \mathcal{S}, we choose the following tensorial structure:

$$
\Gamma_{0} \propto i \gamma_{5} C, \quad \mathcal{S} \propto I
$$

$$
\begin{aligned}
& \propto \frac{\gamma_{\nu}}{4} \operatorname{Tr}\left[\gamma^{\nu} \phi L^{\uparrow} S\left(k_{3}\right) \Gamma^{0 \top} S^{\top}\left(k_{1}\right) L^{\uparrow} \phi^{\top}\left(C^{\dagger}\right)^{\top} L^{\downarrow} S\left(k_{2}\right) S\right] \Delta(K) \\
& \propto \frac{\gamma_{\nu}}{4} \underbrace{\operatorname{Tr}\left[S\left(k_{3}\right) \Gamma^{0 T} S^{T}\left(k_{1}\right) L^{\uparrow} C^{\dagger} \phi \gamma_{\alpha}\right]}_{\text {Diquark LFWF } \psi_{\uparrow \uparrow}} \underbrace{\operatorname{Tr}\left[\gamma^{\nu} \phi \gamma^{\alpha} L^{\downarrow} S\left(k_{2}\right) S\right]}_{\begin{array}{c}
\text { Projection of the } \\
\text { Faddeev WF }
\end{array}} \Delta(K)
\end{aligned}
$$

Dirac Structure and Factorisation II

Considering the diquark amplitude Γ_{0} and the Quark-diquark amplitude \mathcal{S}, we choose the following tensorial structure:

$$
\Gamma_{0} \propto i \gamma_{5} C, \quad \mathcal{S} \propto I
$$

$$
\begin{aligned}
& \propto \frac{\gamma_{\nu}}{4} \operatorname{Tr}\left[\gamma^{\nu} \phi L^{\uparrow} S\left(k_{3}\right) \Gamma^{0 T} S^{T}\left(k_{1}\right) L^{\uparrow} \phi^{T}\left(C^{\dagger}\right)^{T} L^{\downarrow} S\left(k_{2}\right) S\right] \Delta(K) \\
& \propto \frac{\gamma_{\nu}}{4} \underbrace{\operatorname{Tr}\left[S\left(k_{3}\right) \Gamma^{0 T} S^{T}\left(k_{1}\right) L^{\uparrow} C^{\dagger} \phi \gamma_{\alpha}\right]}_{\text {Diquark LFWF } \psi_{\uparrow \uparrow}} \underbrace{\operatorname{Tr}\left[\gamma^{\nu} \phi \gamma^{\alpha} L^{\downarrow} S\left(k_{2}\right) S\right]}_{\begin{array}{c}
\text { Projection of the } \\
\text { Faddeev WF }
\end{array}} \Delta(K) \\
& \propto \epsilon^{\mu \nu \rho \sigma} n_{\mu} p_{\nu} k_{1 \perp \rho} k_{2 \perp \sigma} \psi_{2}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right)
\end{aligned}
$$

Dirac Structure and Factorisation II

Considering the diquark amplitude Γ_{0} and the Quark-diquark amplitude \mathcal{S}, we choose the following tensorial structure:

$$
\Gamma_{0} \propto i \gamma_{5} C, \quad \mathcal{S} \propto I
$$

$$
\begin{aligned}
& \propto \frac{\gamma_{\nu}}{4} \operatorname{Tr}\left[\gamma^{\nu} \phi L^{\uparrow} S\left(k_{3}\right) \Gamma^{0 \top} S^{T}\left(k_{1}\right) L^{\uparrow} \phi^{T}\left(C^{\dagger}\right)^{T} L^{\downarrow} S\left(k_{2}\right) S\right] \Delta(K) \\
& \propto \frac{\gamma_{\nu}}{4} \underbrace{\operatorname{Tr}\left[S\left(k_{3}\right) \Gamma^{0 T} S^{T}\left(k_{1}\right) L^{\uparrow} C^{\dagger} \phi \gamma_{\alpha}\right]}_{\text {Diquark LFWF } \psi_{\uparrow \uparrow}} \underbrace{\operatorname{Tr}\left[\gamma^{\nu} \phi \gamma^{\alpha} L^{\downarrow} S\left(k_{2}\right) S\right]}_{\begin{array}{c}
\text { Projection of the } \\
\text { Faddeev WF }
\end{array}} \Delta(K) \\
& \propto \epsilon^{\mu \nu \rho \sigma} n_{\mu} p_{\nu} k_{1 \perp \rho} k_{2 \perp \sigma} \psi_{2}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right)
\end{aligned}
$$

Note that the antisymmetric structure guarantees that the contribution vanishes when integrated over the transverse momenta.

Example with ψ_{3} and ψ_{4}

- ψ_{3} and ψ_{4} are given by:

$$
\begin{aligned}
& \langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}^{-}, z_{1 \perp}\right) C 巾 h u_{\downarrow}^{j}\left(z_{2}^{-}, z_{2 \perp}\right)\right) \nmid h d_{\uparrow}^{k}\left(z_{3}^{-}, z_{3 \perp}\right)|P, \downarrow\rangle \\
\rightarrow & \left(k_{1, \perp} \psi_{3}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right)+k_{2, \perp} \psi_{4}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right)\right) \gamma^{\perp}
\end{aligned}
$$

Braun et al., Nucl.Phys. B589 (2000)
X. Ji et al., Nucl.Phys. B652 (2003)

Example with ψ_{3} and ψ_{4}

- ψ_{3} and ψ_{4} are given by:

$$
\begin{aligned}
& \langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}^{-}, z_{1 \perp}\right) C 巾 h u_{\downarrow}^{j}\left(z_{2}^{-}, z_{2 \perp}\right)\right) \not \phi d_{\uparrow}^{k}\left(z_{3}^{-}, z_{3 \perp}\right)|P, \downarrow\rangle \\
\rightarrow & \left(k_{1, \perp} \psi_{3}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right)+k_{2, \perp} \psi_{4}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right)\right) \gamma^{\perp}
\end{aligned}
$$

Braun et al., Nucl.Phys. B589 (2000)
X. Ji et al., Nucl.Phys. B652 (2003)

- We can apply it on the Faddeev wave function:

Example with ψ_{3} and ψ_{4}

- ψ_{3} and ψ_{4} are given by:

$$
\begin{aligned}
& \langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}^{-}, z_{1 \perp}\right) C 巾 h u_{\downarrow}^{j}\left(z_{2}^{-}, z_{2 \perp}\right)\right) \not \phi d_{\uparrow}^{k}\left(z_{3}^{-}, z_{3 \perp}\right)|P, \downarrow\rangle \\
\rightarrow & \left(k_{1, \perp} \psi_{3}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right)+k_{2, \perp} \psi_{4}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right)\right) \gamma^{\perp}
\end{aligned}
$$

Braun et al., Nucl.Phys. B589 (2000)
X. Ji et al., Nucl.Phys. B652 (2003)

- We can apply it on the Faddeev wave function:

Example with ψ_{3} and ψ_{4}

- ψ_{3} and ψ_{4} are given by:

$$
\begin{aligned}
& \langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}^{-}, z_{1 \perp}\right) C \nmid u_{\downarrow}^{j}\left(z_{2}^{-}, z_{2 \perp}\right)\right) \phi \phi d_{\uparrow}^{k}\left(z_{3}^{-}, z_{3 \perp}\right)|P, \downarrow\rangle \\
\rightarrow & \left(k_{1, \perp} \psi_{3}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right)+k_{2, \perp} \psi_{4}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right)\right) \gamma^{\perp}
\end{aligned}
$$

Braun et al., Nucl.Phys. B589 (2000) X. Ji et al., Nucl.Phys. B652 (2003)

- We can apply it on the Faddeev wave function:

- The operator then selects the relevant component of the wave function.

Dirac Structure and Factorisation I

Considering the diquark amplitude Γ_{0} and the Quark-diquark amplitude \mathcal{S}, we choose the following tensorial structure:

$$
\Gamma_{0} \propto i \gamma_{5} C, \quad \mathcal{S} \propto I
$$

$$
\propto \frac{\sigma_{\mu \nu}}{48} \operatorname{Tr}\left[\sigma^{\mu \nu} \phi L^{\uparrow} S\left(k_{3}\right) \Gamma^{0 T} S^{T}\left(k_{2}\right) L^{\downarrow} \phi^{\top}\left(C^{\dagger}\right)^{T} L^{\uparrow} S\left(k_{1}\right) S \Lambda^{+}\right] \Delta(K)
$$

Dirac Structure and Factorisation I

Considering the diquark amplitude Γ_{0} and the Quark-diquark amplitude \mathcal{S}, we choose the following tensorial structure:

$$
\Gamma_{0} \propto i \gamma_{5} C, \quad \mathcal{S} \propto I
$$

$$
\begin{aligned}
& \propto \frac{\sigma_{\mu \nu}}{48} \operatorname{Tr}\left[\sigma^{\mu \nu} L^{\uparrow} S\left(k_{3}\right) \Gamma^{0 T} S^{T}\left(k_{2}\right) L^{\downarrow} \boldsymbol{h}^{\top}\left(C^{\dagger}\right)^{T} L^{\uparrow} S\left(k_{1}\right) S \Lambda^{+}\right] \Delta(K) \\
& \propto \frac{\sigma_{\mu \nu}}{48} \underbrace{\operatorname{Tr}\left[S\left(k_{3}\right) \Gamma^{0 T} S^{T}\left(k_{2}\right) L^{\downarrow} C^{\dagger} \phi L^{\uparrow}\right]}_{\text {Diquark LFWF } \psi_{\uparrow \downarrow}} \underbrace{\operatorname{Tr}\left[\sigma^{\mu \nu} \phi L^{\uparrow} S\left(k_{1}\right) S \Lambda^{+}\right]}_{\begin{array}{c}
\text { Projection of the } \\
\text { Faddeev WF }
\end{array}} \Delta(K)
\end{aligned}
$$

Dirac Structure and Factorisation I

Considering the diquark amplitude Γ_{0} and the Quark-diquark amplitude \mathcal{S}, we choose the following tensorial structure:

$$
\Gamma_{0} \propto i \gamma_{5} C, \quad \mathcal{S} \propto I
$$

$$
\begin{aligned}
& \propto \frac{\sigma_{\mu \nu}}{48} \operatorname{Tr}\left[\sigma^{\mu \nu} \phi L^{\uparrow} S\left(k_{3}\right) \Gamma^{0 T} S^{T}\left(k_{2}\right) L^{\downarrow} 巾^{T}\left(C^{\dagger}\right)^{T} L^{\uparrow} S\left(k_{1}\right) S \Lambda^{+}\right] \Delta(K) \\
& \propto \frac{\sigma_{\mu \nu}}{48} \underbrace{\operatorname{Tr}\left[S\left(k_{3}\right) \Gamma^{0 T} S^{T}\left(k_{2}\right) L^{\downarrow} C^{\dagger} \phi L^{\uparrow}\right]}_{\text {Diquark LFWF } \psi_{\uparrow \downarrow}} \underbrace{\operatorname{Tr}\left[\sigma^{\mu \nu} \phi L^{\uparrow} S\left(k_{1}\right) S \Lambda^{+}\right]}_{\begin{array}{c}
\text { Projection of the } \\
\text { Faddeev WF }
\end{array}} \Delta(K) \\
& \propto k_{1 \perp} \psi_{3}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right)
\end{aligned}
$$

Dirac Structure and Factorisation II

Considering the diquark amplitude Γ_{0} and the Quark-diquark amplitude \mathcal{S}, we choose the following tensorial structure:

$$
\Gamma_{0} \propto i \gamma_{5} C, \quad \mathcal{S} \propto l
$$

$$
\propto \frac{\sigma_{\mu \nu}}{48} \operatorname{Tr}\left[\sigma^{\mu \nu} \phi L^{\uparrow} S\left(k_{3}\right) \Gamma^{0 T} S^{T}\left(k_{1}\right) L^{\uparrow} \phi^{T}\left(C^{\dagger}\right)^{T} L^{\downarrow} S\left(k_{2}\right) S\right] \Delta(K)
$$

Dirac Structure and Factorisation II

Considering the diquark amplitude Γ_{0} and the Quark-diquark amplitude \mathcal{S}, we choose the following tensorial structure:

$$
\Gamma_{0} \propto i \gamma_{5} C, \quad \mathcal{S} \propto l
$$

$$
\begin{aligned}
& \propto \frac{\sigma_{\mu \nu}}{48} \operatorname{Tr}\left[\sigma^{\mu \nu} \phi L^{\uparrow} S\left(k_{3}\right) \Gamma^{0 T} S^{T}\left(k_{1}\right) L^{\uparrow} \phi^{\top}\left(C^{\dagger}\right)^{T} L^{\downarrow} S\left(k_{2}\right) S\right] \Delta(K) \\
& \propto \frac{\sigma_{\mu \nu}}{48} \underbrace{\operatorname{Tr}\left[S\left(k_{3}\right) \Gamma^{0 T} S^{T}\left(k_{1}\right) L^{\uparrow} C^{\dagger} \phi \gamma_{\alpha}\right]}_{\text {Diquark LFWF } \psi_{\uparrow \uparrow}} \underbrace{\operatorname{Tr}\left[\sigma^{\mu \nu} \phi \gamma^{\alpha} L^{\downarrow} S\left(k_{2}\right) S\right]}_{\begin{array}{c}
\text { Projection of the } \\
\text { Faddeev WF }
\end{array}} \Delta(K)
\end{aligned}
$$

Dirac Structure and Factorisation II

Considering the diquark amplitude Γ_{0} and the Quark-diquark amplitude \mathcal{S}, we choose the following tensorial structure:

$$
\Gamma_{0} \propto i \gamma_{5} C, \quad \mathcal{S} \propto I
$$

$$
\begin{aligned}
& \propto \frac{\sigma_{\mu \nu}}{48} \operatorname{Tr}\left[\sigma^{\mu \nu} \phi L^{\uparrow} S\left(k_{3}\right) \Gamma^{0 T} S^{T}\left(k_{1}\right) L^{\uparrow} \phi^{\top}\left(C^{\dagger}\right)^{T} L^{\downarrow} S\left(k_{2}\right) S\right] \Delta(K) \\
& \propto \frac{\sigma_{\mu \nu}}{48} \underbrace{\operatorname{Tr}\left[S\left(k_{3}\right) \Gamma^{0 T} S^{T}\left(k_{1}\right) L^{\uparrow} C^{\dagger} \phi \gamma_{\alpha}\right]}_{\text {Diquark LFWF } \psi_{\uparrow \uparrow}} \underbrace{\operatorname{Tr}\left[\sigma^{\mu \nu} \phi \gamma^{\alpha} L^{\downarrow} S\left(k_{2}\right) S\right]}_{\begin{array}{c}
\text { Projection of the } \\
\text { Faddeev WF }
\end{array}} \Delta(K) \\
& \propto k_{1 \perp \rho} \psi_{3}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right)+k_{2 \perp \sigma} \psi_{4}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2} \perp\right)
\end{aligned}
$$

Case of ψ_{5} and ψ_{6}

- ψ_{5} is connected to the matrix element:

$$
\begin{array}{r}
\langle 0| \epsilon^{i j k}\left(u_{\uparrow}^{i}\left(z_{1}^{-}, z_{1 \perp}\right) C i \sigma^{\nu \perp} n_{\nu} u_{\uparrow}^{j}\left(z_{2}^{-}, z_{2 \perp}\right)\right) \not h d_{\uparrow}^{k}\left(z_{3}^{-}, z_{3 \perp}\right)|P, \uparrow\rangle \\
\rightarrow k_{1, \perp}\left(\psi_{5}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right)-\psi_{5}\left(x_{1}, k_{1 \perp}, x_{3}, k_{3 \perp}\right)\right)+\ldots \\
\text { Braun et al., Nucl.Phys. B589 (2000) } \\
\text { X. Ji et al., Nucl.Phys. B652 (2003) }
\end{array}
$$

- ψ_{6} is obtained projecting:

$$
\begin{aligned}
& \langle 0| \epsilon^{i j k}\left(u_{\downarrow}^{i}\left(z_{1}^{-}, z_{1 \perp}\right) C i \sigma^{\nu \perp} n_{\nu} u_{\downarrow}^{j}\left(z_{2}^{-}, z_{2 \perp}\right)\right) \nmid d d_{\downarrow}^{k}\left(z_{3}^{-}, z_{3 \perp}\right)|P, \uparrow\rangle \\
\rightarrow & k_{1, \perp} k_{1, \perp^{\prime}} \psi_{6}\left(x_{1}, k_{1 \perp}, x_{2}, k_{2 \perp}\right)+\ldots
\end{aligned}
$$

Scalar Diquark part of the nucleon

Computation Strategy

The diquark approach allows us to simplify a three-body system into two convoluted two-body systems. The strategy is thus:
(1) Compute the virtuality (K) dependent LFWFs of the diquark by integrating over q
(2) Convolute with the quark-diquark amplitude by integrating over ℓ.

Computation Strategy

The diquark approach allows us to simplify a three-body system into two convoluted two-body systems. The strategy is thus:

$$
\longrightarrow \begin{aligned}
& k_{1}=\ell+\frac{1}{3} P \\
& k_{2}=q+K / 2 \\
& k_{3}=K / 2-q
\end{aligned}
$$

(1) Compute the virtuality (K) dependent LFWFs of the diquark by integrating over q
(2) Convolute with the quark-diquark amplitude by integrating over ℓ.

- For LFWFs, only the q^{-}and ℓ^{-}momenta should be integrated
- For the Distribution Amplitude, we have to integrate also on q_{\perp} and ℓ_{\perp}.

Mellin Moments

- Reminder : we use a model, not a solution of the Faddeev equation
- We do not integrate over the q^{-}and ℓ^{-}directly because we work on Euclidean space. Instead, we work with Mellin moments of it:

$$
\left\langle x_{1}^{m} x_{2}^{n}\right\rangle\left(k_{1 \perp}, k_{2 \perp}\right)=\int_{0}^{1} \mathrm{~d} x_{1} \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} x_{1}^{m} x_{2}^{n} \psi\left(x_{1}, x_{2}, k_{1 \perp}, k_{2 \perp}\right)
$$

- For a general moment $\left\langle x_{1}^{m} x_{2}^{n}\right\rangle$, we change the variable in such a way to write down our moments as:

$$
\left\langle x_{1}^{m} x_{2}^{n}\right\rangle\left(k_{1 \perp}, k_{2 \perp}\right)=\int_{0}^{1} \mathrm{~d} \alpha \int_{0}^{1-\alpha} \mathrm{d} \beta \alpha^{m} \beta^{n} f\left(\alpha, \beta, k_{1 \perp}, k_{2 \perp}\right)
$$

- f is a complicated function involving the integration on 6 parameters
- Uniqueness of the Mellin moments of continuous functions allows us to identify f and ψ

Preliminary Results at DA level

Scalar diquark Only

Asymptotic DA

- Typical symmetry in the pure scalar case

Preliminary Results at DA level

Scalar diquark Only

Asymptotic DA

- Typical symmetry in the pure scalar case
- Nucleon DA is skewed compared to the asymptotic one

Preliminary Results at DA level

Scalar diquark Only

Asymptotic DA

- Typical symmetry in the pure scalar case
- Nucleon DA is skewed compared to the asymptotic one
- Deformation along the symmetry axis and orthogonally to it
- Impact of the virtuality dependence of the diquark WF

Preliminary Results at DA level

Scalar diquark Only

Asymptotic DA

- Typical symmetry in the pure scalar case
- Nucleon DA is skewed compared to the asymptotic one
- Deformation along the symmetry axis and orthogonally to it
- Impact of the virtuality dependence of the diquark WF
- These properties are consequences of our quark-diquark picture

Preliminary Results at DA level

Scalar diquark Only

Asymptotic DA

- Typical symmetry in the pure scalar case
- Nucleon DA is skewed compared to the asymptotic one
- Deformation along the symmetry axis and orthogonally to it
- Impact of the virtuality dependence of the diquark WF
- These properties are consequences of our quark-diquark picture
- Improvement in the modelling with respect to our previous work
C. Mezrag et al., Phys.Lett. B783 (2018)

Preliminary results for ψ_{1}

Momentum dependence

Preliminary results for ψ_{1}

Momentum dependence

Preliminary results for ψ_{1}

Momentum dependence

Preliminary results for ψ_{1}

Angle dependence

Preliminary results for ψ_{1}

Angle dependence

$\psi_{1}\left(x_{1}, x_{2}, q_{\perp}^{2}=\ell_{\perp}^{2}=0.1 M_{N}^{2}, \theta_{q \ell}=0\right) / 10$

Preliminary results for ψ_{1}

Angle dependence

$\psi_{1}\left(x_{1}, x_{2}, q_{\perp}^{2}=\ell_{\perp}^{2}=0.1 M_{N}^{2}, \theta_{q \ell}=\pi / 2\right) / 3$

$\psi_{1}\left(x_{1}, x_{2}, q_{\perp}^{2}=\ell_{\perp}^{2}=0.1 M_{N}^{2}, \theta_{q \ell}=0\right) / 10 \quad \psi_{1}\left(x_{1}, x_{2}, q_{\perp}^{2}=\ell_{\perp}^{2}=0.1 M_{N}^{2}, \theta_{q \ell}=\pi\right) / 3$

The case of ψ_{2}

The results for ψ_{2} are the same, up to a permutation $\left(x_{1}, k_{1 \perp}\right) \leftrightarrow\left(x_{1}, k_{1 \perp}\right)$ and a normalisation factor because :

- We have choosen a single Dirac structure for Γ_{0} and \mathcal{S}, hence the same Nakanishi weights and parametrisation contribute.

The case of ψ_{2}

The results for ψ_{2} are the same, up to a permutation $\left(x_{1}, k_{1 \perp}\right) \leftrightarrow\left(x_{1}, k_{1 \perp}\right)$ and a normalisation factor because :

- We have choosen a single Dirac structure for Γ_{0} and \mathcal{S}, hence the same Nakanishi weights and parametrisation contribute.
- The Dirac structure selected by the trace is different, and this modifies the momentum dependence at the numerator,

The results for ψ_{2} are the same, up to a permutation $\left(x_{1}, k_{1 \perp}\right) \leftrightarrow\left(x_{1}, k_{1 \perp}\right)$ and a normalisation factor because:

- We have choosen a single Dirac structure for Γ_{0} and \mathcal{S}, hence the same Nakanishi weights and parametrisation contribute.
- The Dirac structure selected by the trace is different, and this modifies the momentum dependence at the numerator,
- but the antisymmetric tensor forbids higher powers of k_{i}^{2} at the numerator.

The results for ψ_{2} are the same, up to a permutation $\left(x_{1}, k_{1 \perp}\right) \leftrightarrow\left(x_{1}, k_{1 \perp}\right)$ and a normalisation factor because:

- We have choosen a single Dirac structure for Γ_{0} and \mathcal{S}, hence the same Nakanishi weights and parametrisation contribute.
- The Dirac structure selected by the trace is different, and this modifies the momentum dependence at the numerator,
- but the antisymmetric tensor forbids higher powers of k_{i}^{2} at the numerator.
- Finally, the frozen propagators allow only for a normalisation factor difference, proportional to the frozen mass M.

The results for ψ_{2} are the same, up to a permutation $\left(x_{1}, k_{1 \perp}\right) \leftrightarrow\left(x_{1}, k_{1 \perp}\right)$ and a normalisation factor because :

- We have choosen a single Dirac structure for Γ_{0} and \mathcal{S}, hence the same Nakanishi weights and parametrisation contribute.
- The Dirac structure selected by the trace is different, and this modifies the momentum dependence at the numerator,
- but the antisymmetric tensor forbids higher powers of k_{i}^{2} at the numerator.
- Finally, the frozen propagators allow only for a normalisation factor difference, proportional to the frozen mass M.

Adding tensorial structures or modifying the propagators will break this symmetry between ψ_{1} and ψ_{2}.

The cases of $\psi_{3} \ldots \psi_{6}$

- Pretty much the same analyses can be applied to the other LFWFs...
- ... but at the exception of small differences coming from kinematics
\Rightarrow one can get an additional power of x_{1} or x_{2}
- ... and contributions of multiple diquark configurations.

Some illustrations

Some illustrations

Some illustrations

$\psi_{3}\left(x_{1}, x_{2}, q_{\perp}^{2}=\ell_{\perp}^{2}=0\right) / 20$

$$
\psi_{4}\left(x_{1}, x_{2}, q_{\perp}^{2}=\ell_{\perp}^{2}=0\right) / 20
$$

Toward the computation of GPDs

Generalised Parton Distributions

- Generalised Parton Distributions (GPDs):

Generalised Parton Distributions

- Generalised Parton Distributions (GPDs):
- "hadron-parton" amplitudes which depend on three variables (x, ξ, t) and a scale μ,

$\star x$: average momentum fraction carried by the active parton
$\star \xi$: skewness parameter $\xi \simeq \frac{x_{B}}{2-x_{B}}$
$\star t$: the Mandelstam variable

Generalised Parton Distributions

- Generalised Parton Distributions (GPDs):
- "hadron-parton" amplitudes which depend on three variables (x, ξ, t) and a scale μ,
- are defined in terms of a non-local matrix element,

$$
\begin{aligned}
& \left.\frac{1}{2} \int \frac{e^{i x P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0} \\
& =\frac{1}{2 P^{+}}\left[H^{q}(x, \xi, t) \bar{u} \gamma^{+} u+E^{q}(x, \xi, t) \bar{u} \frac{i \sigma^{+\alpha} \Delta}{2 M} u\right] . \\
& \left.\frac{1}{2} \int \frac{e^{i x P^{+} z^{-}}}{2 \pi}\left\langle P+\frac{\Delta}{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \gamma_{5} \psi^{q}\left(\frac{z}{2}\right)\left|P-\frac{\Delta}{2}\right\rangle \mathrm{d} z^{-}\right|_{z^{+}=0, z=0} \\
& =\frac{1}{2 P^{+}}\left[\tilde{H}^{q}(x, \xi, t) \bar{u} \gamma^{+} \gamma_{5} u+\tilde{E}^{q}(x, \xi, t) \bar{u} \frac{\gamma_{5} \Delta^{+}}{2 M} u\right] .
\end{aligned}
$$

D. Müller et al., Fortsch. Phy. 42101 (1994)
X. Ji, Phys. Rev. Lett. 78, 610 (1997)
A. Radyushkin, Phys. Lett. B380, 417 (1996)

4 GPDs without helicity transfer +4 helicity flip GPDs

Generalised Parton Distributions

- Generalised Parton Distributions (GPDs):
- "hadron-parton" amplitudes which depend on three variables (x, ξ, t) and a scale μ,
- are defined in terms of a non-local matrix element,
- can be split into quark flavour and gluon contributions,

Generalised Parton Distributions

- Generalised Parton Distributions (GPDs):
- "hadron-parton" amplitudes which depend on three variables (x, ξ, t) and a scale μ,
- are defined in terms of a non-local matrix element,
- can be split into quark flavour and gluon contributions,
- are related to PDF in the forward limit $H(x, \xi=0, t=0 ; \mu)=q(x ; \mu)$

Generalised Parton Distributions

- Generalised Parton Distributions (GPDs):
- "hadron-parton" amplitudes which depend on three variables (x, ξ, t) and a scale μ,
- are defined in terms of a non-local matrix element,
- can be split into quark flavour and gluon contributions,
- are related to PDF in the forward limit $H(x, \xi=0, t=0 ; \mu)=q(x ; \mu)$
- are universal, i.e. are related to the Compton Form Factors (CFFs) of various exclusive processes through convolutions

$$
\mathcal{H}(\xi, t)=\int \mathrm{d} x C(x, \xi) H(x, \xi, t)
$$

Overlap Representation of GPDs

As Mentioned before, the GPDs can be computed as an overlap of LFWFs:

$$
\begin{aligned}
& \left\langle P+\frac{\Delta}{2}\right| \bar{\psi}(-z / 2) \gamma \cdot n \psi(z / 2)|P-\Delta / 2\rangle \\
= & \left.\sum \int \mathcal{D}\left(x, k_{\perp}\right) \Psi_{o u t}^{*} \Psi_{i n}\langle q q q, \text { out }| \bar{\psi}(-z / 2) \gamma \cdot n \psi(z / 2) \mid q q q, \text { in }\right\rangle
\end{aligned}
$$

+ higher Fock states
where \mathcal{D} is the measure term.

Overlap Representation of GPDs

As Mentioned before, the GPDs can be computed as an overlap of LFWFs:

$$
\begin{aligned}
& \left\langle P+\frac{\Delta}{2}\right| \bar{\psi}(-z / 2) \gamma \cdot n \psi(z / 2)|P-\Delta / 2\rangle \\
= & \left.\sum \int \mathcal{D}\left(x, k_{\perp}\right) \Psi_{o u t}^{*} \Psi_{i n}\langle q q q, \text { out }| \bar{\psi}(-z / 2) \gamma \cdot n \psi(z / 2) \mid q q q, \text { in }\right\rangle
\end{aligned}
$$

+ higher Fock states
where \mathcal{D} is the measure term.

Caveat

This kind of formulæ are valid in the so-call DGLAP region only $(|x|>|\xi|)$ where GPDs can be seen as a putting out and then in a quark or an antiquark.
We know how to get the inner region (up to the D-term)
N. Chouika et al., EPJC 77 (2017) 12, 906

Status of the computation

- A naive computation, we have to integrate on $6 \times 2+5=17$ integration variables.

Status of the computation

- A naive computation, we have to integrate on $6 \times 2+5=17$ integration variables.
- We can analytically handle the four k_{\perp} variables (good because they are the unbounded ones).

Status of the computation

- A naive computation, we have to integrate on $6 \times 2+5=17$ integration variables.
- We can analytically handle the four k_{\perp} variables (good because they are the unbounded ones).
- Yet still a 13 dimensional integrals with apparent singularities at the boundaries

Status of the computation

- A naive computation, we have to integrate on $6 \times 2+5=17$ integration variables.
- We can analytically handle the four k_{\perp} variables (good because they are the unbounded ones).
- Yet still a 13 dimensional integrals with apparent singularities at the boundaries
- Multiple permutations and multiple LFWFs means that we need to perform these integrals multiple times.

Status of the computation

- A naive computation, we have to integrate on $6 \times 2+5=17$ integration variables.
- We can analytically handle the four k_{\perp} variables (good because they are the unbounded ones).
- Yet still a 13 dimensional integrals with apparent singularities at the boundaries
- Multiple permutations and multiple LFWFs means that we need to perform these integrals multiple times.
- Bottom line: special care required for numerics

Status of the computation

- A naive computation, we have to integrate on $6 \times 2+5=17$ integration variables.
- We can analytically handle the four k_{\perp} variables (good because they are the unbounded ones).
- Yet still a 13 dimensional integrals with apparent singularities at the boundaries
- Multiple permutations and multiple LFWFs means that we need to perform these integrals multiple times.
- Bottom line: special care required for numerics

Results

We have obtained preliminary results in the case of the PDF using ψ_{1} only.

- Good news: there is no show stopper and the computation can be performed
- Bad news: the results are too preliminary for me to show them now

Summary and conclusion

Achievements

- DSE compatible framework for Nucleon LFWFs computations
- Based on the Nakanishi representation
- Improved models from the first exploratory work on PDA
- Relation between LFWFs and GPDs has been worked out
- Proof of concept up to PDF computations / no show stopper identified

Work in progress/future work

- Finishing the computation for the 6 LFWFs
- Tackling the AV-diquark contributions
- Computations of GPDs
- Finally, compute experimental observables

Thank you for your attention

Back up slides

Nakanishi Representation

At all order of perturbation theory, one can write (Euclidean space):

$$
\Gamma(k, P)=\mathcal{N} \int_{0}^{\infty} \mathrm{d} \gamma \int_{-1}^{1} \mathrm{~d} z \frac{\rho_{n}(\gamma, z)}{\left(\gamma+\left(k+\frac{z}{2} P\right)^{2}\right)^{n}}
$$

We use a "simpler" version of the latter as follow:

$$
\tilde{\Gamma}(q, P)=\mathcal{N} \int_{-1}^{1} \mathrm{~d} z \frac{\rho_{n}(z)}{\left(\Lambda^{2}+\left(q+\frac{z}{2} P\right)^{2}\right)^{n}}
$$

Modelling the Scalar Diquark DA

- We need to obtain the structure of the scalar diquark itself

$$
=\mathcal{N} \int_{-1}^{1} \mathrm{~d} z \frac{\left(1-z^{2}\right)}{\left(\Lambda_{q}^{2}+\left(q+\frac{z}{2} K\right)^{2}\right)}
$$

- q is the relative momentum between the quarks and K the total diquark momentum
- Λ_{q} is a free parameter to be fit on DSE computations
- $\rho(z, \gamma)=\rho(z)=1-z^{2} \rightarrow$ we keep only the 0th degree coefficient in a Gegenbauer expansion of the Nakanishi weight

Modelling the Scalar Diquark DA

- We need to obtain the structure of the scalar diquark itself

- q is the relative momentum between the quarks and K the total diquark momentum
- Λ_{q} is a free parameter to be fit on DSE computations
- $\rho(z, \gamma)=\rho(z)=1-z^{2} \rightarrow$ we keep only the 0th degree coefficient in a Gegenbauer expansion of the Nakanishi weight
- We couple this with a simple massive fermion propagator:

$$
S(p)=\frac{-i p \cdot \gamma+M}{p^{2}+M^{2}}
$$

Adjusting the parameters

- Mass of the quarks: $M=2 / 5 M_{N}$
- Sum of the frozen mass bigger than the nucleon mass for stability (binding energy)
- Avoid singularities in the complex plane

Adjusting the parameters

- Mass of the quarks: $M=2 / 5 M_{N}$
- Sum of the frozen mass bigger than the nucleon mass for stability (binding energy)
- Avoid singularities in the complex plane
- Width of the diquark BSA $\Lambda_{q}=3 / 5 M_{N}$ fitted on previous computations:

red curve from Segovia et al.,Few Body Syst. 55 (2014) 1185-1222

Scalar Diquark DA

- From that we can compute the scalar diquark DA as:

$$
\phi\left(x, q_{\perp}\right) \propto \int d^{(2)} q \delta(q \cdot n-x K \cdot n) \operatorname{Tr}\left[S \Gamma^{0 T} S^{T} L^{\downarrow} C^{\dagger} n \cdot \gamma L^{\uparrow}\right]
$$

Scalar Diquark DA

- From that we can compute the scalar diquark DA as:

$$
\phi\left(x, q_{\perp}\right) \propto \int d^{(2)} q \delta(q \cdot n-x K \cdot n) \operatorname{Tr}\left[S \Gamma^{0 T} S^{T} L^{\downarrow} C^{\dagger} n \cdot \gamma L^{\uparrow}\right]
$$

- We compute Mellin moments \rightarrow avoid difficulties with lightcone in euclidean space

Scalar Diquark DA

- From that we can compute the scalar diquark DA as:

$$
\phi\left(x, q_{\perp}\right) \propto \int d^{(2)} q \delta(q \cdot n-x K \cdot n) \operatorname{Tr}\left[S \Gamma^{0 T} S^{T} L^{\downarrow} C^{\dagger} n \cdot \gamma L^{\uparrow}\right]
$$

- We compute Mellin moments \rightarrow avoid difficulties with lightcone in euclidean space
- Nakanishi representation \rightarrow analytic treatments of singularities and analytic reconstruction of the function from the moment

$$
\phi\left(x, q_{\perp}\right)=\int_{x}^{1} \mathrm{~d} u \int_{0}^{x} \mathrm{~d} v \frac{F(u, v, x)}{\left(M_{\mathrm{eff}}^{2}\left(u, v, x, M^{2}, \Lambda^{2}\right)+\left(q_{\perp}^{\mathrm{eff}}\left(u, v, x, q_{\perp}, K_{\perp}\right)\right)^{2}+K^{2}\right)^{2}}
$$

$F, M_{\text {eff }}$ and $q_{\perp}^{\text {eff }}$ are computed analytically

First results for the diquark

- We present the first results at the level of the diquark DA
- It depends on a single variable
- It has been computed in the RL case
Y. Lu et al., Eur.Phys.J.A 57 (2021) 4, 115
\rightarrow we have a comparison point for our simple Nakanishi model.

Analytic results

- In the specific case $M^{2}=\Lambda_{q}^{2}$, the PDA can be analytically obtained:

$$
\phi(x) \propto \frac{M^{2}}{K^{2}}\left[1-\frac{M^{2}}{K^{2}} \frac{\ln \left[1+\frac{K^{2}}{M^{2}} x(1-x)\right]}{x(1-x)}\right]
$$

C. Mezrag et al., Springer Proc.Phys. 238 (2020) 773-781

Analytic results

- In the specific case $M^{2}=\Lambda_{q}^{2}$, the PDA can be analytically obtained:

$$
\phi(x) \propto \frac{M^{2}}{K^{2}}\left[1-\frac{M^{2}}{K^{2}} \frac{\ln \left[1+\frac{K^{2}}{M^{2}} x(1-x)\right]}{x(1-x)}\right]
$$

C. Mezrag et al., Springer Proc.Phys. 238 (2020) 773-781

- Note that expanding the log, one get:

$$
\phi(x) \propto \frac{1}{2} x(1-x)-\frac{1}{3} K^{2} / M^{2} x^{2}(1-x)^{2}+\ldots
$$

so that:

- at the end point the DA remains linearly decreasing (important impact on observable)
- at vanishing diquark virtuality, one recovers the asymptotic DA

Comparison with DSE results

RL results from Y. Lu et al., Eur.Phys.J.A 57 (2021) 4, 115

Limitations

- Complex plane singularities for large timelike virtualities

$$
\phi(x) \propto \frac{M^{2}}{K^{2}}\left[1-\frac{M^{2}}{K^{2}} \frac{\ln \left[1+\frac{K^{2}}{M^{2}} x(1-x)\right]}{x(1-x)}\right]
$$

- Cut of the \log reached for $K^{2} \leq-4 M^{2}$
- It comes from the poles in the quark propagators when $K^{2} \rightarrow-4 M^{2}$
- Need of spectral representation with running mass to bypass this?

Limitations

- Complex plane singularities for large timelike virtualities

$$
\phi(x) \propto \frac{M^{2}}{K^{2}}\left[1-\frac{M^{2}}{K^{2}} \frac{\ln \left[1+\frac{K^{2}}{M^{2}} x(1-x)\right]}{x(1-x)}\right]
$$

- Cut of the \log reached for $K^{2} \leq-4 M^{2}$
- It comes from the poles in the quark propagators when $K^{2} \rightarrow-4 M^{2}$
- Need of spectral representation with running mass to bypass this?
- Virtuality flattening may be too slow compared to what meson masses suggest (may be tuned by modifying the Nakanishi weight ρ)

Limitations

- Complex plane singularities for large timelike virtualities

$$
\phi(x) \propto \frac{M^{2}}{K^{2}}\left[1-\frac{M^{2}}{K^{2}} \frac{\ln \left[1+\frac{K^{2}}{M^{2}} x(1-x)\right]}{x(1-x)}\right]
$$

- Cut of the \log reached for $K^{2} \leq-4 M^{2}$
- It comes from the poles in the quark propagators when $K^{2} \rightarrow-4 M^{2}$
- Need of spectral representation with running mass to bypass this?
- Virtuality flattening may be too slow compared to what meson masses suggest (may be tuned by modifying the Nakanishi weight ρ)

But overall, we expect to gain insights from this simple model

Quark-diquark amplitude

Nucleon Quark-Diquark Amplitude

$$
\bar{\square}=\mathcal{N} \int_{-1}^{1} \mathrm{~d} z \frac{\left(1-z^{2}\right) \tilde{\rho}(z)}{\left(\Lambda^{2}+\left(\ell-\frac{1+3 z}{6} P\right)^{2}\right)^{3}}, \quad \tilde{\rho}(z)=\prod_{j}\left(z-a_{j}\right)\left(z-\bar{a}_{j}\right)
$$

Fits of the parameters through comparison to Chebychev moments:

red curve from Segovia et al.,

Nucleon Quark-Diquark Amplitude

Scalar diquark case

$$
\check{\sim}=\mathcal{N} \int_{-1}^{1} \mathrm{~d} z \frac{\left(1-z^{2}\right) \tilde{\rho}(z)}{\left(\Lambda^{2}+\left(\ell-\frac{1+3 z}{6} P\right)^{2}\right)^{3}}, \quad \tilde{\rho}(z)=\prod_{j}\left(z-a_{j}\right)\left(z-\bar{a}_{j}\right)
$$

Fits of the parameters through comparison to Chebychev moments:

red curves from Segovia et al.,

Nucleon Quark-Diquark Amplitude

Scalar diquark case

$$
\check{\sim}=\mathcal{N} \int_{-1}^{1} \mathrm{~d} z \frac{\left(1-z^{2}\right) \tilde{\rho}(z)}{\left(\Lambda^{2}+\left(\ell-\frac{1+3 z}{6} P\right)^{2}\right)^{3}}, \quad \tilde{\rho}(z)=\prod_{j}\left(z-a_{j}\right)\left(z-\bar{a}_{j}\right)
$$

Fits of the parameters through comparison to Chebychev moments:

red curves from Segovia et al.,

Modification of the $\tilde{\rho}$ Ansatz ? $\tilde{\rho}(z) \rightarrow \tilde{\rho}(\gamma, z)$?

