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Definitions and Classification of LFWFs
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Hadrons seen as Fock States

Lightfront quantization allows to expand hadrons on a Fock basis:

|P, π⟩ ∝
∑
β

Ψqq̄
β |qq̄⟩+

∑
β

Ψqq̄,qq̄
β |qq̄, qq̄⟩+ . . .

|P,N⟩ ∝
∑
β

Ψqqq
β |qqq⟩+

∑
β

Ψqqq,qq̄
β |qqq, qq̄⟩+ . . .

Non-perturbative physics is contained in the N-particles
Lightfront-Wave Functions (LFWF) ΨN

Schematically a distribution amplitude φ is related to the LFWF
through:

φ(x) ∝
∫

d2k⊥
(2π)2

Ψ(x , k⊥)

S. Brodsky and G. Lepage, PRD 22, (1980)
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LFWFs and Hadron structure

Since they describe hadron states, LFWFs can be used to compute
matrix element of the type :

⟨p′|O(z1, . . . zn)|p⟩ →
∑
N

∑
N′

ψ∗
N′ψN⟨q1 . . . qN′ |O(z1, . . . , zn)|q1 . . . qN⟩

These matrix elements typically encode hadron structure properties
(EFF, PDFs, GPDs, etc)
Thus, we can compute hadron structure distributions, as a convolution
(or overlap) of Lightfront Wave functions

M. Diehl et al., Nucl. Phys B596 (2001)
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From Mesons to Baryons

LFWFs modelling techniques have been widely used on mesons
Simple Algebraic Nakanishi models for the pion and computation of
GPDs in the DGLAP region (parton number conserved)

for instance C. Mezrag et al., Few Body Syst. 57 (2016) 9, 729-772

Advanced modelling with and without Nakanishi parametrisations
for instance K. Raya et al., Chin.Phys.C 46 (2022) 1, 013105

Covariant extension from DGLAP to ERBL regions for GPDs
N. Chouika et al., EPJC 77 (2017)

Prediction for Sullivan DVCS at EIC and EicC with PARTONS
J.M. Morgado Chavez et al., Phys. Rev. Lett. 128 (2021)

B.Berthou et al., EPJC 78

We would like to extend all this to the baryon sector
and compute nucleon DVCS observable
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LFWFs: formal definitions

⟨0|Oα,...(
{
z−1 , z⊥1

}
, . . . ,

{
z−n , z⊥n

}
)|P, λ⟩

∣∣
z+i =0

=
n∑
j

τα,...j N(P, λ)Fj(zi )

Lightfront operator O of given number of quark and gluon fields

Expansion in terms of scalar non-pertubative functions F (zi )

The τj can be chosen to have a definite twist, i.e. a definit power
behaviour when P+ becomes large
Leading and higher twist contributions can be selected by adequate
projections of O
Quark helicity projection can also be selected through 1±γ5

2 projectors

Both mesons and baryons can (in principle) have multiple independent
leading-twist LFWFs
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An example on the pion

⟨0|q̄α(γ5q)β|π⟩|z+=0

⟨0|q̄n · γγ5q|π⟩|z+=0 ⟨0|q̄nµσµiγ5q|π⟩|z+=0

ψ↑↓ ψ↑↑

We can build one LFWFs with OAM projection 0, and one with OAM
projection 1.
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Nucleon LFWFs classification

In the nucleon case, the procedure applies with three quarks at leading
Fock state:

⟨0|ϵijkuiα(z1)ujβ(z2)dk
γ (z3)|P, ↑⟩

It results in defining 6 independent LFWFs
X. Ji, et al., Nucl Phys B652 383 (2003)

The LFWFs carry different amount of OAM projections:

states ⟨↓↓↓ |P, ↑⟩ ⟨↓↓↑ |P, ↑⟩ ⟨↑↓↑ |P, ↑⟩ ⟨↑↑↑ |P, ↑⟩
OAM 2 1 0 -1

LFWFs ψ6 ψ3, ψ4 ψ1, ψ2 ψ5
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Relation with the Faddeev Wave function

Since the Faddeev wave function χ is given as:

⟨0|T {qα1(z1)qα2(z2)qα3(z3)} |P, λ⟩ =
1
4
fNNσ(P, λ)

×
∫ 3∏

j=1

d(4)kje
−ikjzj δ(4)(P −

∑
j

kj)χα1α2α3σ(k1, k2, k3),

one can get the LFWFs schematically through

ψiΓα′
3σ

′ =

∫ 3∏
j=1

[dk−
j ]Pi ;α1α2α3α′

3σσ
′χα1α2α3σ

where Pi are the relevant leading-twist and OAM projectors.

Important
The FWF allows a consistent derivation of the 6 leading-fock states
LFWFs of the nucleon
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Modelling the Faddeev wave Function
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Baryon and Diquarks

The Faddeev equation provides a covariant framework to compute the
Faddeev wave function of the nucleon.

It predicts the existence of strong diquarks correlations inside the
nucleon.

=
a

Ψ
P

p
q

p
d

Γb

Γ
−a

p
d

p
q

b
Ψ

P
q

Mostly two types of diquark are dynamically generated by the Faddeev
equation:

▶ Scalar diquarks,
▶ Axial-Vector (AV) diquarks (not considered in this talk)

In the following we build a model inspired by numerical solutions of
the Faddeev equations
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Example with ψ1 and ψ2

A single projector allows us to compute both ψ1 and ψ2:

⟨0|ϵijk
(
ui
↑(z

−
1 , z1⊥)C/nu

j
↓(z

−
2 , z2⊥)

)
/nd

k
↑ (z

−
3 , z3⊥)|P, ↑⟩

→ψ1(x1, k1⊥, x2, k2⊥) + ϵijk1
i k

2
j ψ2(x1, k1⊥, x2, k2⊥)

Braun et al., Nucl.Phys. B589 (2000)
X. Ji et al., Nucl.Phys. B652 (2003)

We can apply it on the Faddeev wave function:
The operator then selects the relevant component of the wave
function.
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ϕ
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Non vanishing

+
O21
ϕ

O3
ϕ
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Dirac Structure and Factorisation I

Considering the diquark amplitude Γ0 and the Quark-diquark amplitude S,
we choose the following tensorial structure:

Γ0 ∝ iγ5C , S ∝ I

O21
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γν/nL↑S(k1)S

]︸ ︷︷ ︸
Projection of the

Faddeev WF

∆(K )

∝ψ1(x1, k1⊥, x2, k2⊥)

Note that
∫

d(2)k1⊥d(2)k2⊥ψ1 = φ, the nucleon DA.
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Dirac Structure and Factorisation II

Considering the diquark amplitude Γ0 and the Quark-diquark amplitude S,
we choose the following tensorial structure:

Γ0 ∝ iγ5C , S ∝ I

O21
ϕ

O3
ϕ

p1

p2

p3

∝γν
4

Tr
[
γν/nL↑S(k3)Γ

0TST (k1)L
↑/nT (C †)TL↓S(k2)S

]
∆(K )

∝γν
4

Tr
[
S(k3)Γ

0TST (k1)L
↑C †/nγα

]︸ ︷︷ ︸
Diquark LFWF ψ↑↑

Tr
[
γν/nγαL↓S(k2)S

]︸ ︷︷ ︸
Projection of the

Faddeev WF

∆(K )

∝ϵµνρσnµpνk1⊥ρk2⊥σψ2(x1, k1⊥, x2, k2⊥)

Note that the antisymmetric structure guarantees that the contribution
vanishes when integrated over the transverse momenta.
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Example with ψ3 and ψ4

ψ3 and ψ4 are given by:

⟨0|ϵijk
(
ui
↑(z

−
1 , z1⊥)C/nu

j
↓(z

−
2 , z2⊥)

)
/nd

k
↑ (z

−
3 , z3⊥)|P, ↓⟩

→ (k1,⊥ψ3(x1, k1⊥, x2, k2⊥) + k2,⊥ψ4(x1, k1⊥, x2, k2⊥)) γ
⊥

Braun et al., Nucl.Phys. B589 (2000)
X. Ji et al., Nucl.Phys. B652 (2003)

We can apply it on the Faddeev wave function:
The operator then selects the relevant component of the wave
function.
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Dirac Structure and Factorisation I

Considering the diquark amplitude Γ0 and the Quark-diquark amplitude S,
we choose the following tensorial structure:

Γ0 ∝ iγ5C , S ∝ I

O21
ϕ

O3
ϕ

p1

p2

p3

∝σµν
48

Tr
[
σµν/nL↑S(k3)Γ

0TST (k2)L
↓/nT (C †)TL↑S(k1)SΛ

+
]
∆(K )

∝σµν
48

Tr
[
S(k3)Γ

0TST (k2)L
↓C †/nL↑

]︸ ︷︷ ︸
Diquark LFWF ψ↑↓

Tr
[
σµν/nL↑S(k1)SΛ

+
]︸ ︷︷ ︸

Projection of the
Faddeev WF

∆(K )

∝k1⊥ψ3(x1, k1⊥, x2, k2⊥)
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Dirac Structure and Factorisation II

Considering the diquark amplitude Γ0 and the Quark-diquark amplitude S,
we choose the following tensorial structure:

Γ0 ∝ iγ5C , S ∝ I

O21
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O3
ϕ

p1

p2

p3

∝σµν
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Tr
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∆(K )
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S(k3)Γ
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↑C †/nγα

]︸ ︷︷ ︸
Diquark LFWF ψ↑↑

Tr
[
σµν/nγαL↓S(k2)S

]︸ ︷︷ ︸
Projection of the

Faddeev WF

∆(K )

∝k1⊥ρψ3(x1, k1⊥, x2, k2⊥) + k2⊥σψ4(x1, k1⊥, x2, k2⊥)

Cédric Mezrag (Irfu-DPhN) Nucleon LFWFs May 16th , 2024 17 / 34



Dirac Structure and Factorisation II

Considering the diquark amplitude Γ0 and the Quark-diquark amplitude S,
we choose the following tensorial structure:

Γ0 ∝ iγ5C , S ∝ I

O21
ϕ

O3
ϕ

p1

p2

p3

∝σµν
48

Tr
[
σµν/nL↑S(k3)Γ

0TST (k1)L
↑/nT (C †)TL↓S(k2)S

]
∆(K )

∝σµν
48

Tr
[
S(k3)Γ

0TST (k1)L
↑C †/nγα

]︸ ︷︷ ︸
Diquark LFWF ψ↑↑

Tr
[
σµν/nγαL↓S(k2)S

]︸ ︷︷ ︸
Projection of the

Faddeev WF

∆(K )

∝k1⊥ρψ3(x1, k1⊥, x2, k2⊥) + k2⊥σψ4(x1, k1⊥, x2, k2⊥)

Cédric Mezrag (Irfu-DPhN) Nucleon LFWFs May 16th , 2024 17 / 34



Dirac Structure and Factorisation II

Considering the diquark amplitude Γ0 and the Quark-diquark amplitude S,
we choose the following tensorial structure:

Γ0 ∝ iγ5C , S ∝ I

O21
ϕ

O3
ϕ

p1

p2

p3

∝σµν
48

Tr
[
σµν/nL↑S(k3)Γ

0TST (k1)L
↑/nT (C †)TL↓S(k2)S

]
∆(K )

∝σµν
48

Tr
[
S(k3)Γ

0TST (k1)L
↑C †/nγα

]︸ ︷︷ ︸
Diquark LFWF ψ↑↑

Tr
[
σµν/nγαL↓S(k2)S

]︸ ︷︷ ︸
Projection of the

Faddeev WF

∆(K )

∝k1⊥ρψ3(x1, k1⊥, x2, k2⊥) + k2⊥σψ4(x1, k1⊥, x2, k2⊥)

Cédric Mezrag (Irfu-DPhN) Nucleon LFWFs May 16th , 2024 17 / 34



Case of ψ5 and ψ6

ψ5 is connected to the matrix element:

⟨0|ϵijk
(
ui
↑(z

−
1 , z1⊥)Ciσ

ν⊥nνu
j
↑(z

−
2 , z2⊥)

)
/nd

k
↑ (z

−
3 , z3⊥)|P, ↑⟩

→k1,⊥(ψ5(x1, k1⊥, x2, k2⊥)− ψ5(x1, k1⊥, x3, k3⊥)) + . . .

Braun et al., Nucl.Phys. B589 (2000)
X. Ji et al., Nucl.Phys. B652 (2003)

ψ6 is obtained projecting:

⟨0|ϵijk
(
ui
↓(z

−
1 , z1⊥)Ciσ

ν⊥nνu
j
↓(z

−
2 , z2⊥)

)
/nd

k
↓ (z

−
3 , z3⊥)|P, ↑⟩

→k1,⊥k1,⊥′ψ6(x1, k1⊥, x2, k2⊥) + . . .

Braun et al., Nucl.Phys. B589 (2000)
X. Ji et al., Nucl.Phys. B652 (2003)
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Scalar Diquark part of the nucleon
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Computation Strategy

The diquark approach allows us to simplify a three-body system into two
convoluted two-body systems. The strategy is thus:

k1 = ℓ + 1
3
P

k2 = q +K/2

k3 = K/2− q

K = 2
3P − ℓ

1 Compute the virtuality (K ) dependent
LFWFs of the diquark by integrating
over q

2 Convolute with the quark-diquark
amplitude by integrating over ℓ.

For LFWFs, only the q− and ℓ− momenta should be integrated
For the Distribution Amplitude, we have to integrate also on q⊥ and
ℓ⊥.
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Mellin Moments

Reminder : we use a model, not a solution of the Faddeev equation
We do not integrate over the q− and ℓ− directly because we work on
Euclidean space. Instead, we work with Mellin moments of it:

⟨xm1 xn2 ⟩(k1⊥, k2⊥) =

∫ 1

0
dx1

∫ 1−x1

0
dx2 xm1 xn2ψ(x1, x2, k1⊥, k2⊥)

For a general moment ⟨xm1 xn2 ⟩, we change the variable in such a way
to write down our moments as:

⟨xm1 xn2 ⟩(k1⊥, k2⊥) =

∫ 1

0
dα

∫ 1−α

0
dβ αmβnf (α, β, k1⊥, k2⊥)

f is a complicated function involving the integration on 6 parameters
Uniqueness of the Mellin moments of continuous functions allows us
to identify f and ψ
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Preliminary Results at DA level
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Asymptotic DA

Typical symmetry in the pure scalar case

Nucleon DA is skewed compared to the asymptotic one
Deformation along the symmetry axis and orthogonally to it

▶ Impact of the virtuality dependence of the diquark WF

These properties are consequences of our quark-diquark picture
Improvement in the modelling with respect to our previous work

C. Mezrag et al., Phys.Lett. B783 (2018)
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Preliminary results for ψ1
Momentum dependence
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Preliminary results for ψ1
Angle dependence
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The case of ψ2

The results for ψ2 are the same, up to a permutation (x1, k1⊥) ↔ (x1, k1⊥)
and a normalisation factor because :

We have choosen a single Dirac structure for Γ0 and S, hence the
same Nakanishi weights and parametrisation contribute.

The Dirac structure selected by the trace is different, and this modifies
the momentum dependence at the numerator,
but the antisymmetric tensor forbids higher powers of k2

i at the
numerator.
Finally, the frozen propagators allow only for a normalisation factor
difference, proportional to the frozen mass M.

Adding tensorial structures or modifying the propagators
will break this symmetry between ψ1 and ψ2.
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The cases of ψ3 . . . ψ6

Pretty much the same analyses can be applied to the other LFWFs...
... but at the exception of small differences coming from kinematics
⇒ one can get an additional power of x1 or x2

... and contributions of multiple diquark configurations.
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Some illustrations
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Toward the computation of GPDs
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Generalised Parton Distributions

Generalised Parton Distributions (GPDs):

▶ “hadron-parton” amplitudes which depend on three variables (x , ξ, t)
and a scale µ,

▶ are defined in terms of a non-local matrix element,
▶ can be split into quark flavour and gluon contributions,
▶ are related to PDF in the forward limit H(x , ξ = 0, t = 0;µ) = q(x ;µ)
▶ are universal, i.e. are related to the Compton Form Factors (CFFs) of

various exclusive processes through convolutions
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−1≤ x≤−ξ

x +ξ ξ−x

−ξ≤ x ≤ ξ

x+ξ x−ξ
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1
2

∫
e ixP

+z−

2π
⟨P +

∆

2
|ψ̄q(−

z

2
)γ+ψq(

z

2
)|P −

∆

2
⟩dz−|z+=0,z=0

=
1

2P+

[
Hq(x , ξ, t)ūγ+u + Eq(x , ξ, t)ū

iσ+α∆α

2M
u

]
.

1
2

∫
e ixP

+z−

2π
⟨P +

∆

2
|ψ̄q(−

z

2
)γ+γ5ψ

q(
z

2
)|P −

∆

2
⟩dz−|z+=0,z=0

=
1

2P+

[
H̃q(x , ξ, t)ūγ+γ5u + Ẽq(x , ξ, t)ū

γ5∆+

2M
u

]
.

D. Müller et al., Fortsch. Phy. 42 101 (1994)
X. Ji, Phys. Rev. Lett. 78, 610 (1997)

A. Radyushkin, Phys. Lett. B380, 417 (1996)

4 GPDs without helicity transfer + 4 helicity flip GPDs

▶ can be split into quark flavour and gluon contributions,
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H(ξ, t) =

∫
dx C (x , ξ)H(x , ξ, t)

−q2 = Q2

q′
e−(k)

p1 = P − ∆
2

p2 = P + ∆
2GPDs

e−(k − q)

(x + ξ)P+ (x− ξ)P+

p1 = P − ∆
2

p2 = P + ∆
2GPDs

DA
−q2 = Q2
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Overlap Representation of GPDs

As Mentioned before, the GPDs can be computed as an overlap of LFWFs:

⟨P +
∆

2
|ψ̄(−z/2)γ · nψ(z/2)|P −∆/2⟩

=
∑∫

D(x , k⊥)Ψ
∗
outΨin⟨qqq, out|ψ̄(−z/2)γ · nψ(z/2)|qqq, in⟩

+ higher Fock states

where D is the measure term.

Caveat
This kind of formulæ are valid in the so-call DGLAP region only (|x | > |ξ|)
where GPDs can be seen as a putting out and then in a quark or an
antiquark.
We know how to get the inner region (up to the D-term)

N. Chouika et al., EPJC 77 (2017) 12, 906
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Status of the computation

A naive computation, we have to integrate on 6 × 2 + 5 = 17
integration variables.

We can analytically handle the four k⊥ variables (good because they
are the unbounded ones).
Yet still a 13 dimensional integrals with apparent singularities at the
boundaries
Multiple permutations and multiple LFWFs means that we need to
perform these integrals multiple times.
Bottom line: special care required for numerics

Results
We have obtained preliminary results in the case of the PDF using ψ1 only.

Good news: there is no show stopper and the computation can be
performed
Bad news: the results are too preliminary for me to show them now
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Summary
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Summary and conclusion

Achievements
DSE compatible framework for Nucleon LFWFs computations
Based on the Nakanishi representation
Improved models from the first exploratory work on PDA
Relation between LFWFs and GPDs has been worked out
Proof of concept up to PDF computations / no show stopper identified

Work in progress/future work
Finishing the computation for the 6 LFWFs
Tackling the AV-diquark contributions
Computations of GPDs
Finally, compute experimental observables
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Thank you for your attention
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Back up slides
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Nakanishi Representation

γ · n
At all order of perturbation theory, one can write (Euclidean space):

Γ(k ,P) = N

∫ ∞

0
dγ

∫ 1

−1
dz

ρn(γ, z)

(γ + (k + z
2P)

2)n

We use a “simpler” version of the latter as follow:

Γ̃(q,P) = N

∫ 1

−1
dz

ρn(z)

(Λ2 + (q + z
2P)

2)n
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Modelling the Scalar Diquark DA

We need to obtain the structure of the scalar diquark itself

γ · n= N

∫ 1

−1
dz

(1 − z2)

(Λ2
q + (q + z

2K )2)

▶ q is the relative momentum between the quarks and K the total
diquark momentum

▶ Λq is a free parameter to be fit on DSE computations
▶ ρ(z , γ) = ρ(z) = 1 − z2 → we keep only the 0th degree coefficient in a

Gegenbauer expansion of the Nakanishi weight

We couple this with a simple massive fermion propagator:

S(p) =
−ip · γ +M

p2 +M2
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Adjusting the parameters

Mass of the quarks: M = 2/5MN

▶ Sum of the frozen mass bigger than the nucleon mass for stability
(binding energy)

▶ Avoid singularities in the complex plane

Width of the diquark BSA Λq = 3/5MN fitted on previous
computations:

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

ÈqÈ

G
HÈqÈ,K

.q
=

0
L

red curve from Segovia et al.,Few Body Syst. 55 (2014) 1185-1222
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Scalar Diquark DA

From that we can compute the scalar diquark DA as:

ϕ(x , q⊥) ∝
∫

d (2)qδ (q · n − xK · n)Tr
[
SΓ0TSTL↓C †n · γL↑

]

We compute Mellin moments → avoid difficulties with lightcone in
euclidean space
Nakanishi representation → analytic treatments of singularities and
analytic reconstruction of the function from the moment

ϕ(x , q⊥) =

∫ 1

x

du
∫ x

0
dv

F (u, v , x)(
M2

eff(u, v , x ,M
2,Λ2) + (qeff

⊥ (u, v , x , q⊥,K⊥))2 + K 2
)2

F , Meff and qeff
⊥ are computed analytically
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First results for the diquark

We present the first results at the level of the diquark DA
▶ It depends on a single variable
▶ It has been computed in the RL case

Y. Lu et al., Eur.Phys.J.A 57 (2021) 4, 115

→ we have a comparison point for our simple Nakanishi model.
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Analytic results

In the specific case M2 = Λ2
q, the PDA can be analytically obtained:

ϕ(x) ∝ M2

K 2

1 − M2

K 2

ln
[
1 + K2

M2 x(1 − x)
]

x(1 − x)


C. Mezrag et al., Springer Proc.Phys. 238 (2020) 773-781

Note that expanding the log, one get:

ϕ(x) ∝ 1
2
x(1 − x)− 1

3
K 2/M2x2(1 − x)2 + . . .

so that:
▶ at the end point the DA remains linearly decreasing (important impact

on observable)
▶ at vanishing diquark virtuality, one recovers the asymptotic DA
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Comparison with DSE results

0.0 0.2 0.4 0.6 0.8 1.0

0.0
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2.0

x

ϕ
(x
) Model at K^2 = -(3/4MN)^2

Model at K^2 = 4MN^2

RL Result

Asymptotic

RL results from Y. Lu et al., Eur.Phys.J.A 57 (2021) 4, 115
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Limitations

Complex plane singularities for large timelike virtualities

ϕ(x) ∝ M2

K 2

1 − M2

K 2

ln
[
1 + K2

M2 x(1 − x)
]

x(1 − x)


▶ Cut of the log reached for K 2 ≤ −4M2

▶ It comes from the poles in the quark propagators when K 2 → −4M2

▶ Need of spectral representation with running mass to bypass this?

Virtuality flattening may be too slow compared to what meson masses
suggest (may be tuned by modifying the Nakanishi weight ρ)

But overall, we expect to gain insights from this simple model
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Quark-diquark amplitude
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Nucleon Quark-Diquark Amplitude
Scalar diquark case

= N

∫ 1

−1
dz

(1 − z2)ρ̃(z)

(Λ2 + (ℓ− 1+3z
6 P)2)3

, ρ̃(z) =
∏
j

(z − aj)(z − āj)

Fits of the parameters through comparison to Chebychev moments:

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

ÈqÈ

T
0
Hq²L

red curve from Segovia et al.,

Modification of the ρ̃ Ansatz ? ρ̃(z) → ρ̃(γ, z)?

Cédric Mezrag (Irfu-DPhN) Nucleon LFWFs May 16th , 2024 45 / 34



Nucleon Quark-Diquark Amplitude
Scalar diquark case

= N

∫ 1

−1
dz

(1 − z2)ρ̃(z)

(Λ2 + (ℓ− 1+3z
6 P)2)3

, ρ̃(z) =
∏
j

(z − aj)(z − āj)
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