Opportunities for SIDIS in 12 GeV era at Jlab

Anselm Vossen

What makes the 12 GeV era?

Luminosity + DIS Kinematics = Precision tests of QCD, 3D structure of the nucleon

Notional CEBAF & upgrade schedule (FY24 – FY42)

- Accelerator and engineering team have worked up an early schedule and cost estimate
 - Schedule assumptions based on a notional timing of when funds might be available (near EIC ramp down based on EIC V3 profile)
 - For completeness, Moller and SoLID (part of 12 GeV program) are shown; positron source development also shown

	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41
Moller (funded)																		
SoLID (science rev)																		
Positron Source Dev																		
Pre-Project Dev																		
Upgrade Phase 1																		
Transport comm/e+																		
Upgrade Phase 2																		
CEBAF Up																		

Tia Keppel at

Kinematic comparisons

NB: Kinematic slice heavily biased towards Jlab

Jefferson Lab with CEBAF at 12 GeV

Detector Requirements: Complementarity

GlueX/Hall D Detector						
Hall D	Hall B	Hall C	Hall A			
excellent hermeticity	luminosity 10 ³⁵	energy reach	custom installations			
polarized photons	Hermeticity	precision				
Ε _γ ~8.5-9 GeV		11 GeV beamline				
10 ⁸ photons/s		target flexibility				
good momentum/a	excellent momen	tum resolution				
high multiplicity	reconstruction	luminosity ເ	up to 10 ³⁸			
particle ID						

Detector Requirements: Complementarity

GlueX/Hall D Detector	14 10 10 10 10 10 ⁴ 10				
Hall D	Hall B	Hall C	Hall A		
excellent hermeticity	luminosity 10 ³⁵	energy reach	custom installations		
polarized photons	hermeticity	precision			
Ε_γ~8.5-9 GeV		11 GeV beamline			
10 ⁸ photons/s		target flexibility			
good momentum/a	ingle resolution	excellent momentum resolution			
high multiplicity r	reconstruction	luminosity up to 10 ³⁸			
particle ID					

Detector Requirements: Complementarity

GlueX/Hall D Detector	14 10 10 10 10 10 10 10 10 10 10 10 10 10					
Hall D	Hall B	Hall C	Hall A			
excellent hermeticity	luminosity 10 ³⁵	energy reach	SoLID ≈ 2028			
polarized photons	hermeticity	precision				
Ε_γ~8.5-9 GeV		11 GeV beamline				
10 ⁸ photons/s		target flexibility				
good momentum/a	angle resolution	excellent momentum resolution				
high multiplicity I	reconstruction	luminosity ເ	up to 10 ³⁸			
particle ID						

SIDIS Datasets, present and future

CLAS12 in Hall B

Run Group A (Unpolarized LH₂ target

- ★ unpolarized SIDIS cross section off
- **\star** A_{LU} in Beam Spin Asymmetries

Run Goup B (Unpolarized LD₂ target)

★ Complementary to RG-A → allow for u/d quark flavor separation

 $\frac{\textbf{Run Group C}}{\text{and ND}_3} \left(\textbf{longitudinally polarized NH}_3 \right)$

★ F_{UL} and F_{LL}

<u>Run Group K</u> (Unpolarized LH₂ target)

- ★ 6.5, 7.5, 8.4 GeV e- beam
- **★** $F_{UU,L}, F_{UU,T}$ Separation

Run Group H (transversely polarized NH₃)

★ **F**_{UT} structure function

<u>Hall A</u>

 ≈2028 SoLID with He3/proton target (long/transverse)

 \Rightarrow should be completed before 1st Shutdonw ≈ 2032

$$\begin{split} \frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} &= \\ \frac{\alpha^2}{xyQ^2} \frac{y^2}{2\left(1-\varepsilon\right)} \left(1+\frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)}\cos\phi_h F_{UU}^{\cos\phi_h} \right. \\ &+ \varepsilon\cos(2\phi_h) F_{UU}^{\cos 2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_h F_{LU}^{\sin\phi_h} \\ &+ S_{\parallel} \left[\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_h F_{UL}^{\sin\phi_h} + \varepsilon\sin(2\phi_h) F_{UL}^{\sin2\phi_h} \right] \\ &+ S_{\parallel}\lambda_e \left[\sqrt{1-\varepsilon^2} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_h F_{LL}^{\cos\phi_h} \right] \\ &+ |S_{\perp}| \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) \right. \\ &+ \varepsilon\sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon\sin(3\phi_h - \phi_S) F_{UT}^{\sin(2\phi_h - \phi_S)} \\ &+ \sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_S F_{UT}^{\sin\phi_S} + \sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_h - \phi_S) F_{UT}^{\sin(2\phi_h - \phi_S)} \\ &+ \sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_h - \phi_S) F_{LT}^{\cos(\phi_h - \phi_S)} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_S F_{LT}^{\cos\phi_S} \\ &+ \sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_h - \phi_S) F_{LT}^{\cos(2\phi_h - \phi_S)} \right] \bigg\}, \end{split}$$

Run Group A (Unpolarized LH₂ target

- ★ unpolarized SIDIS cross section off proton
 ★ A_{LU} in Beam Spin Asymmetries

$$\begin{split} \frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} &= \\ \frac{\alpha^2}{xyQ^2} \frac{y^2}{2\left(1-\varepsilon\right)} \left(1+\frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)}\cos\phi_h F_{UU}^{\cos\phi_h} \right. \\ \left. + \varepsilon\cos(2\phi_h) F_{UU}^{\cos 2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_h F_{LU}^{\sin\phi_h} \right. \\ \left. + S_{\parallel} \left[\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_h F_{UL}^{\sin\phi_h} + \varepsilon\sin(2\phi_h) F_{UL}^{\sin 2\phi_h} \right] \\ \left. + S_{\parallel} \lambda_e \left[\sqrt{1-\varepsilon^2} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_h F_{LL}^{\cos\phi_h} \right] \right. \\ \left. + S_{\parallel} \lambda_e \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) \right. \\ \left. + \varepsilon\sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon\sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)} \right. \\ \left. + \sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_S F_{UT}^{\sin\phi_S} + \sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_h - \phi_S) F_{UT}^{\sin(2\phi_h - \phi_S)} \right] \\ \left. + \left| S_{\perp} \right| \lambda_e \left[\sqrt{1-\varepsilon^2}\cos(\phi_h - \phi_S) F_{LT}^{\cos(\phi_h - \phi_S)} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_S F_{LT}^{\cos\phi_S} \right] \right\}, \end{split}$$

<u>Run Group A</u> (Unpolarized LH₂ target

- ★ unpolarized SIDIS cross section off proton
- ★ A_{LU} in Beam Spin Asymmetries

Run Goup B (Unpolarized LD₂ target)

★ Complementary to RG-A → allow for u/d quark flavor separation

$$\begin{split} \frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_{h}\,dP_{h\perp}^{2}} &= \\ \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2\left(1-\varepsilon\right)}\left(1+\frac{\gamma^{2}}{2x}\right)\left\{F_{UU,T}+\varepsilon F_{UU,L}+\sqrt{2\,\varepsilon(1+\varepsilon)}\,\cos\phi_{h}\,F_{UU}^{\cos\,\phi_{h}}\right.\\ &+\varepsilon\cos(2\phi_{h})\,F_{UU}^{\cos\,2\phi_{h}}+\lambda_{e}\,\sqrt{2\,\varepsilon(1-\varepsilon)}\,\sin\phi_{h}\,F_{LU}^{\sin\,\phi_{h}}\\ &+S_{\parallel}\left[\sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_{h}\,F_{UL}^{\sin\,\phi_{h}}+\varepsilon\sin(2\phi_{h})\,F_{UL}^{\sin\,2\phi_{h}}\right]\\ &+S_{\parallel}\lambda_{e}\left[\sqrt{1-\varepsilon^{2}}\,F_{LL}+\sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_{h}\,F_{LL}^{\cos\,\phi_{h}}\right]\\ &+|S_{\perp}|\left[\sin(\phi_{h}-\phi_{S})\left(F_{UT,T}^{\sin(\phi_{h}-\phi_{S})}+\varepsilon\,F_{UT,L}^{\sin(\phi_{h}-\phi_{S})}\right)\right.\\ &+\varepsilon\sin(\phi_{h}+\phi_{S})\,F_{UT}^{\sin(\phi_{h}+\phi_{S})}+\varepsilon\sin(3\phi_{h}-\phi_{S})\,F_{UT}^{\sin(3\phi_{h}-\phi_{S})}\\ &+\sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_{S}\,F_{UT}^{\sin\phi_{S}}+\sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin(2\phi_{h}-\phi_{S})\,F_{UT}^{\sin(2\phi_{h}-\phi_{S})}\right]\\ &+|S_{\perp}|\lambda_{e}\left[\sqrt{1-\varepsilon^{2}}\,\cos(\phi_{h}-\phi_{S})\,F_{LT}^{\cos(\phi_{h}-\phi_{S})}+\sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_{S}\,F_{LT}^{\cos\phi_{S}}\right]\\ &+\sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos(2\phi_{h}-\phi_{S})\,F_{LT}^{\cos(2\phi_{h}-\phi_{S})}\right]\Big\}, \end{split}$$

<u>Run Group A</u> (Unpolarized LH₂ target

- ★ unpolarized SIDIS cross section off proton
- $\star \quad \begin{array}{l} \text{proton} \\ A_{LU} \text{ in Beam Spin Asymmetries} \end{array}$

<u>Run Goup B</u> (Unpolarized LD₂ target)

★ Complementary to RG-A → allow for u/d quark flavor separation

 $\underline{\text{Run Group C}}$ (longitudinally polarized NH_3 and ND_3)

★ F_{UL} and F_{LL}

$$\frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_h\,dP_{h\perp}^2} = \frac{a^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1+\frac{\gamma^2}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} \cos\phi_h F_{UU}^{\sin\phi_h} + \varepsilon \sin(\phi_h + \phi_h) F_{UU}^{\sin\phi_h}} + \varepsilon \cos(2\phi_h) F_{UU}^{\cos\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \sin\phi_h F_{LL}^{\sin\phi_h}} + \delta_{H_{L}} \left[\sqrt{2\varepsilon(1+\varepsilon)} \sin\phi_h F_{UL}^{\sin\phi_h} + \varepsilon \sin(2\phi_h) F_{UL}^{\sin\phi_h}} \right] + S_{I_{L}} \left[\sqrt{2\varepsilon(1+\varepsilon)} \sin\phi_h F_{UL}^{\sin\phi_h} + \varepsilon \sin(2\phi_h) F_{UL}^{\sin\phi_h}} + \delta_{H_{L}} \left[\sqrt{1-\varepsilon^2} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)} \cos\phi_h F_{UL}^{\sin\phi_h}} + \delta_{H_{L}} \right] + S_{I_{L}} \left[\sqrt{1-\varepsilon^2} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)} \cos\phi_h F_{UL}^{\sin(\phi_h-\phi_h)}} + \delta_{H_{L}} \right] + \delta_{H_{L}} \left[\sin(\phi_h - \phi_h) \left[F_{UT,T}^{\sin(\phi_h-\phi_h)} + \varepsilon \sin(3\phi_h - \phi_h) \right] F_{UT}^{\sin(\phi_h-\phi_h)} + \varepsilon \sin(3\phi_h - \phi_h) \right] + \delta_{H_{L}} \left[\sqrt{1-\varepsilon^2} \cos(\phi_h - \phi_h) F_{UT}^{\sin(\phi_h-\phi_h)}} + \sqrt{2\varepsilon(1+\varepsilon)} \sin(2\phi_h - \phi_h) F_{UT}^{\sin(\phi_h-\phi_h)} + \delta_{H_{L}} \right] + S_{L} \left[\sqrt{1-\varepsilon^2} \cos(\phi_h - \phi_h) F_{UT}^{\sin(\phi_h-\phi_h)} + \sqrt{2\varepsilon(1-\varepsilon)} \cos\phi_h F_{UT}^{\cos\phi_h} + \sqrt{2\varepsilon(1-\varepsilon)} \cos\phi_h F_{UT}^{\cos\phi_h}} + \sqrt{2\varepsilon(1-\varepsilon)} \cos\phi_h F_{UT}^{\cos\phi_h} + \sqrt{2\varepsilon(1-\varepsilon)} \cos\phi_h F_{UT}^{\cos\phi_h} + \sqrt{2\varepsilon(1-\varepsilon)} \cos\phi_h F_{UT}^{\cos\phi_h} + \sqrt{2\varepsilon(1-\varepsilon)} \cos\phi_h F_{UT}^{\cos\phi_h}} \right] \right],$$

13

$$\frac{d\sigma}{dx\,dy\,d\psi\,dz\,d\phi_{h}dP_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}} \frac{y^{2}}{2(1-\varepsilon)} \left(1+\frac{\gamma^{2}}{2x}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)}\cos\phi_{h}F_{UU}^{\cos\phi_{h}} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{h}F_{UU}^{\cos\phi_{h}} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{h}F_{UU}^{\cos\phi_{h}} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{h}F_{UL}^{\cos\phi_{h}} + \sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_{h}F_{UL}^{\sin\phi_{h}} + \frac{1}{2}\left[\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{h}F_{UL}^{\sin\phi_{h}} + \varepsilon\sin(2\phi_{h})F_{UL}^{\sin\phi_{h}}\right] + S_{\parallel}\left[\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{h}F_{UL}^{\sin\phi_{h}} + \varepsilon\sin(2\phi_{h})F_{UL}^{\sin\phi_{h}}\right] + S_{\parallel}\lambda_{\epsilon}\left[\sqrt{1-\varepsilon^{2}}F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{h}F_{UL}^{\cos\phi_{h}}\right] + S_{\parallel}\lambda_{\epsilon}\left[\sqrt{1-\varepsilon^{2}}F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{h}F_{UL}^{\sin\phi_{h}} + \varepsilon\sin(2\phi_{h}-\phi_{h})F_{UL}^{\sin(\phi_{h}-\phi_{h})}\right] + \varepsilon\sin(\phi_{h}-\phi_{h})F_{UL}^{\sin(\phi_{h}-\phi_{h})} + \varepsilon\sin(3\phi_{h}-\phi_{h})F_{UL}^{\sin(\phi_{h}-\phi_{h})} + \varepsilon\sin(3\phi_{h}-\phi_{h})F_{UL}^{\sin(\phi_{h}-\phi_{h})} + \varepsilon\sin(3\phi_{h}-\phi_{h})F_{UL}^{\sin(\phi_{h}-\phi_{h})} + \sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{h}F_{UL}^{\sin(\phi_{h}-\phi_{h})} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{h}F_{UL}^{\cos\phi_{h}} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{h}F_{UL}^{\cos\phi_{h}}} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{h}F_{UL}^{\cos\phi_{h}} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{h}F_{UL}^{\cos\phi_{h}}} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{h}F_{UL}^{\cos\phi_{h}} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{h}F_{UL}^{\cos\phi_{h}}} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{h}F_{UL}^{\cos\phi_{h}}} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{h}F_{UL}^{\cos\phi_{h}}} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{h}F_{UL}^{\cos\phi_{h}}} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{h}F_{UL}^{\cos\phi_{h}}} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{h}F_{UL}^{\cos\phi_{h}}} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{h}F_{UL}^{\cos\phi_$$

Unpolarized Multiplicities of $ep_{\rightarrow}e\pi^{0}(X)$

★ Measurements of neutral pion multiplicities $\circ \pi^0$ yields normalized by number of DIS electrons

$$\sigma^{\pi^0}pprox\sigma^{DIS}\otimes f^p(x,Q^2)\otimes D^{p
ightarrow\pi^0}(z,Q^2)$$

★ Study integrates over the azimuthal ϕ_h angle

$$F_{UU,T} = \mathcal{C}[f_1 D_1] \qquad D_1^{\pi^0/q} = \frac{1}{2} \left(D_1^{\pi^+/q} + D_1^{\pi^-/q} \right)$$

- ★ Invariant mass fits over the diphoton spectrum are performed to calculate N(π^0)
- ★ Ongoing Work: Bayesian unfolding, φ_h modulation fits

M.Scott

CLAS12 pion BSAs

Phys.Rev.Lett. 128 (2022) 6, 062005

★ Observed is more Sivers-like (g[⊥]), asymmetry comes from struck u-quark

$$A_{LU}(\pi^{-}) < A_{LU}(\pi^{-}) = A_{LU}(\pi^{+})$$

Kaon Asymmetries are larger

- Reasonable Assumption
 - -u quark dominance
 - → Difference due to $D_1^{K^+/u}$, $H_{1_{19}}^{\perp K^+/u}$

Models by Mao/Lu using different models of e(x), g^{\perp} EPJC 73, 2557 (2013) and 74, 2910 (2014)

Better: Dihadron Fragmentation Functions

Additional Observable: $\vec{R} = \vec{P_1} - \vec{P_2}$: The relative momentum of the hadron pair is an additional degree of freedom:

More degrees of freedom \rightarrow More information about correlations in final state Additional FFs that do not exist in single-hadron case $G_1^{\perp} \rightarrow$ related to jet handedness

Parton polarization → Hadron Polarization ↓	Spin averaged	longitudinal	transverse
spin averaged	$D_1^{h/q}(z,M)$		$H_1^{\perp h/q}(z, p_T M, (Ph), \theta)$ 'Di-hadron Collins'
longitudinal			
Transverse		$G_1^{\perp}(z,M,P_h,\theta)=$ T-odd, chiral-even \rightarrow jet handedness QCD vaccum strucuture	H ₁ *(z,M, (P _h), θ)=. T-odd, chiral-odd Colinear
		20	

Better: di-hadrons

- First extraction of e(x)
- Further constrains from F_{UL} and F_{LL}
- First signal for G_1^{\perp}
 - Interesting resonance structure consistent with models

(e.g. Luo, Sun, Xie, Phys.Rev.D 101 (2020) 5, 054020)

Compare Partial Wave Decomposition in MC and Data

• Comparing to Polarized Lund model here (StringSpinner 3P₀ model, A. Kerbizi et al, Comput.Phys.Commun. 272 (2022))

Time

 $(\mathbf{q})\overline{\mathbf{q}}$

Color Flux Tube

<u>q</u> Distance

New Quark Pair Creation

Near-exclusive $\pi^+\pi^-$, $\pi^+\pi^0$ production

- ★ We can constrain/better understand the contribution of ρ^0 , ρ^+ decays on our single hadron asymmetries by looking at near exclusive (M_X < 1.1 GeV) channels
 - ★ Strong yet similar asymmetries observed (both productions came from struck u quark)

 \rightarrow See talk by K. Joo

 ★ Different mechanism for neutral ρ⁰ at high z (low |t|) → GPDs, gluon contributions

Dihadron Production $ep \rightarrow e\pi^{\pm}\pi^{0}(X)$

24

Kaons

- Kaon \gg Pions
 - -Assuming u -quark dominance \rightarrow FF effect?
 - -Twist3 FF relevant?
 - $-\operatorname{Or} e(x)$ for strange quarks

Asymmetries sensitive to G_1^{\perp}

- sp –interference term larger for kaons than for pions (GeV)
- Not true for all interference terms (not shown)
- $M_{KK} > m_{\phi}$ can account for p_{\perp} dependence

Lambda Program at CLAS12

- Constituent Quark Model (CQM)
 - Predicts s quark carries 100% of the Λ hyperon spin
- "Do polarized *u*-quarks from current fragmentation transfer their longitudinal spin to the lambda?" \rightarrow Test spin structure

Part of planned extensive Lambda program³/with larger statistics: Transverse, polarizing...

Longitudinal target results with RGC

• Results represent 5% proton target (Ammonia, NH_3)

- Dilution factor $\approx \frac{3}{17}$
- Polarization $\approx 85\%$

Convolution over transverse momentum space

• Rich program underway

Beyond the parton picture

- Higher Twist Contributions
- Overlap of regions that are not captured by factorized TMD picture
- VM Meson decays
- Radiative corrections
- Assumption of suppressed long photon contributions

One persons 'complication' is another person's signal...

→Need high lumi, leverarm in kinematics to disentangle various contributions

Boglione, Produkin et al

Fracture Functions to describe Target Region

- probability for the target (p/n) remnant to form a hadron given ejected quark aNo hard/soft energy scale separation
- Direct relationship to traditional PDFs by integrating over fractional longitudinal nucleon momentum ζ

$$\frac{\mathrm{d}\sigma^{\mathrm{TFR}}}{\mathrm{d}x_B\,\mathrm{d}y\,\mathrm{d}z} = \sum_a e_a^2 \left(1 - x_B\right) M_a(x_B, (1 - x_B)z) \,\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}y}$$

$$\sum_{h} \int_{0}^{1-x} d\zeta \,\zeta \,\widehat{\boldsymbol{u}}_{1}(\boldsymbol{x},\boldsymbol{\zeta}) = (1-x)\boldsymbol{f}_{1}(\boldsymbol{x})$$

 $\sum_{h} \int_{0}^{1-x} d\zeta \,\zeta \,\hat{\boldsymbol{l}}_{1L}(\boldsymbol{x},\boldsymbol{\zeta}) = (1-x)\boldsymbol{g}_{1L}(\boldsymbol{x})$

$$\sum_{h} \int_0^{1-x} d\zeta \zeta M_a(x,\zeta) = (1-x)f_a(x)$$

M. Anselmino et al., Phys. Lett. B. 699 (2011), 108, [hep-ph] 1102.4214

Preliminary Analysis: Fracture Functions

- First observation of correlations between Current and target region
- Visible separation between TFR ($x_F < 0$) and CFR ($x_F > 0$)

Integral relation holds!

t al., Phys. Lett. B. 706 (2011), 46-52, [hep-ph] 1109,1132

31

GRSV Model

0.6

12% Scale Systematic

0.2

0.3

0.4

 x_B

0.5

-0.20

0.1

CLAS future: Transverse Spin NH₃ target (RGH)

- Add "conventional" NH₃ target to CLAS
- Similar to longitudinal target, dilution 3/17, Polarization $\approx 85\%$
- Transverse Holding field: Moeller Scattering limits luminosity
- → For proposal use **very** conservative $5 \times 10^{33} cm^{-2} s^{-1}$ (about $\frac{1}{50}$ of 'regular' CLAS12)

Physics with a transverse larget: Example Transversity

SoLID provides *unique* capability combining high luminosity (10^{37-39} /cm²/s) (>100 of CLAS12; >1000 times of EIC) and large acceptance with full ϕ coverage to maximize the science return of the 12-GeV CEBAF upgrade

- Sivers: an example of TMDs
- Quantum correlations between nucleon spin and quark motion

- Tensor charge: a fundamental QCD quantity to test lattice QCD
- Probe new physics combined with EDMs

0.5

d quark 0.5 -

High x at Jlab 22

Strong Interaction Physics at the Luminosity Frontier

with 22 GeV Electrons at Jefferson Lab

t: 2306.09360 [nucl-ex]

- \approx doubling beam energy significantly increases phase space
- Pin down valence structure of the proton
- Integration in global analyses (e.g. strange distributions, CS Kernel)
- Kinematic phase space opens up for TMD analysis ($\frac{q_T}{z}$ cut), $\sigma_{L/T}$ Separation etc

Summary and Outlook

 JLAB12 provides several orders of magnitude higher luminosity than any other lepton scattering facility!

High precision data in the valence region

- Proton, deuteron, helium targets
- Beam spin, longitudinal/transverse target polarizations
- Multidimensional measurements
- Analyses beyond leading twist/CFR regime

First results from BSAs and longitudinal spin asymmetries

- Precision data to extract TMDs
- New target-current correlations
- Intriguing flavor dependencies
- Insights into spin-orbit correlations in hadronization using partial wave decomposition

Future at CLAS12 and SoLID

- Full program with data with longitudinal target(s)
- Transverse target
- Modulations of the unpolarized cross-section

- ...

- EIC Complementarity
 - Phase space
 - Depolarization factors

N/q	U	L	T
U	f^{\perp}	g^{\perp}	h,e
L	f_L^{\perp}	g_L^\perp	h_L, e_L
T	f_T, f_T^{\perp}	g_T, g_T^\perp	$h_T, e_T, h_T^{\perp}, e_T^{\perp}$

Leading Twist TMD-PDFs

N/q	U	L	Т
U	f_1	х	h_1^{\perp}
L	х	g_1	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}^{\perp}	h_1, h_{1T}^{\perp}

SoLID@12-GeV JLab: QCD at the intensity frontier

SoLID provides *unique* capability combining high luminosity (10^{37-39} /cm²/s) (>100 of CLAS12; >1000 times of EIC) and large acceptance with full ϕ coverage to maximize the science return of the 12-GeV CEBAF upgrade

SoLID with unique capability for rich physics programs

✓ Pushing the phase space in the search of new physics and of hadronic physics
 ✓ 3D momentum imaging of a relativistic strongly interacting confined system (<u>nucleon spin</u>)
 ✓ Superior sensitivity to the differential electro- and photo- production cross section of J/ψ near threshold (<u>proton mass</u>)

SoLID physics complementary and synergistic with the EIC science (proton spin and mass, two important EIC science questions) – high-luminosity SoLID unique for valence quark tomography (separation of structure from collision) and precision J/ψ production near the threshold

EIC complementarity

- Some approximations also relevant at EIC
- Valence region, statistics

Dihadron Production $ep \rightarrow e\pi^+\pi^-(X)$

C. Dilks 41 (Transversity 2022)

Dihadron Production $ep \rightarrow e\pi^+\pi^-(X)$

(Transversity 2022)

- EIC also larger, overlapping phase space for colinear and matching region
- Less correction from TMD expectations framework
 →Challenges and opportunities at JLab

Expected TMD signal $\rightarrow Q^2$ dependence

Evolution doesn't quite cancel.

- Also confirmed by STAR W results
- →TMDs might give largest signal at low y

 \rightarrow Evolution effects best measured at large x, low y, wide range of Q^2

From A Signori by way of Harut

Access to TMDs: Kinematic factors

		Polarization	Depolarization
<u>Twist 2</u>	Boer-Mulders	UU	В
	Sivers	UT	1
	Transversity	UT	B/A
	Kotzinian-Mulders	UL	B/A
	Wormgear (LT)	LT	C/A
	Helicity DiFE G $^{\perp}$	LU	C/A
		UL	1
<u>Twist 3</u>	e(x)	LU	W/A
	h _L (x)	UL	V/A
	g _T (x)	LT	W/A

Current and Target Separation

- Odd-function (sine) modulations exhibit a sign flip around the transition from target to current fragmentation. Interestingly, we observe $F_{LU} \sim F_{UL}$.
- Even-function (cosine) behavior of double-spin asymmetry does not show a sign flip; possible signs decreasing F_{LL} as $x_F \rightarrow \pm 1$ (x_B decreasing but likely not the only cause).
- Consistent beam-spin asymmetries in unpolarized H₂ and polarized NH₃ indicates minimal nuclear medium modification.

SIDIS physics at an EIC: Coverage

- Common theme on EIC impact
 - Extended kinematic coverage and precision, along with polarization and possible beam charge degrees of freedom allow multi-pronged approach → needed to extract multidimensional objects
 - -TMD factorization is valid

Coverage to low *x*: access sea and gluon distributions

Depolarization factors for some TMDs are suppressed at EIC kinematics

EIC (Athena) Fast Simulation, C.Dilks, Duke

Statistical uncertainty scaling factor for 18x275

Lambda

Depolarization Factors

		Polarization	Depolarization
<u>Twist 2</u>	Boer-Mulders	UU	В
	Sivers	UT	1
	Transversity	UT	B/A
	Kotzinian-Mulders	UL	B/A
	Wormgear (LT)	LT	C/A
	Helicity DiFF G [⊥]	LU	C/A
		UL	1
Twist 3	e(x)	LU	W/A
	h _L (x)	UL	V/A
	g _T (x)	LT	W/A

Suppressed at EIC

SIDIS X-section in the Parton Model

SIDIS cross-section

$$\begin{split} \frac{d\sigma}{dx\,dy\,d\phi_{S}\,dz\,d\phi_{h}\,dP_{h\perp}^{2}} \\ &= \frac{\alpha^{2}}{x\,y\,Q^{2}}\,\frac{y^{2}}{2\left(1-\varepsilon\right)} \left\{ F_{UU,T} + \varepsilon\,F_{UU,L} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\cos\phi_{h}\,F_{UU}^{\cos\phi_{h}} + \varepsilon\,\cos(2\phi_{h})\,F_{UU}^{\cos\,2\phi_{h}} \right. \\ &+ \lambda_{e}\,\sqrt{2\,\varepsilon(1-\varepsilon)}\,\sin\phi_{h}\,F_{LU}^{\sin\phi_{h}} + S_{L}\left[\sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_{h}\,F_{UL}^{\sin\phi_{h}} + \varepsilon\,\sin(2\phi_{h})\,F_{UL}^{\sin\,2\phi_{h}}\right] \\ &+ S_{L}\,\lambda_{e}\left[\sqrt{1-\varepsilon^{2}}\,F_{LL} + \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_{h}\,F_{LL}^{\cos\phi_{h}}\right] \\ &+ S_{T}\left[\sin(\phi_{h} - \phi_{S})\left(F_{UT,T}^{\sin(\phi_{h} - \phi_{S})} + \varepsilon\,F_{UT,L}^{\sin(\phi_{h} - \phi_{S})}\right) + \varepsilon\,\sin(\phi_{h} + \phi_{S})\,F_{UT}^{\sin(\phi_{h} + \phi_{S})} \right. \\ &+ \varepsilon\,\sin(3\phi_{h} - \phi_{S})\,F_{UT}^{\sin(3\phi_{h} - \phi_{S})} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_{S}\,F_{UT}^{\sin\phi_{S}} \\ &+ \sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin(2\phi_{h} - \phi_{S})\,F_{UT}^{\sin(2\phi_{h} - \phi_{S})}\right] + S_{T}\lambda_{e}\left[\sqrt{1-\varepsilon^{2}}\,\cos(\phi_{h} - \phi_{S})\,F_{LT}^{\cos(\phi_{h} - \phi_{S})} \right. \\ &+ \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_{S}\,F_{LT}^{\cos\phi_{S}} + \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos(2\phi_{h} - \phi_{S})\,F_{LT}^{\cos(2\phi_{h} - \phi_{S})}\right] \bigg\} \end{split}$$

- Disentangling the different contributions is not trivial
- Ratio of T to L flux – At fixed x e.g. change Q $\varepsilon = \frac{1 - y - \frac{1}{4}\gamma^2 y^2}{1 - y + \frac{1}{2}y^2 + \frac{1}{4}\gamma^2 y^2}, \qquad \gamma = \frac{2Mx}{Q}.$

Can We Separate Target and Current?

Feynman variable

$$x_F = \frac{p_h^z}{p_h^z(\max)}$$
 in CM frame $\mathbf{p} = -\mathbf{q}$, $-1 < x_F < 1$

Rapidity

$$y_h = \frac{1}{2} \log \frac{p_h^+}{p_h^-} = \frac{1}{2} \log \frac{E_h + p_h^z}{E_h - p_h^z}$$

- No clear *experimental* definition of what constitutes current production versus target production.
- Odd structure functions, with different production mechanisms in both regions, give a possible clue.
- Protons (as opposed to mesons) at CLAS12 kinematics give a unique opportunity because they have extensive coverage in both regions.

Analog to PDFs; Momentum Sum Rules

• A direct relationship exists to the eight leading twist PDFs after the fracture functions are integrated over the fractional longitudinal nucleon momentum, ζ .

