Weekly Report

Shudong Wang

Institute of High Energy Physics
Chinese Academy of Sciences

Decorrelate W Tagger

Adversarial Method

Figure 4: Adversarial neural network architecture. The classifier network is tasked with predicting jet labels (y) based on jet substructure variable inputs (x), outputting a tagger variable (z). The adversary network is tasked with inferring the value(s) of the variables from which the classifier is to be decorrelated (d); here the jet mass (a); optionally aided by auxiliary features (a); here (a); here (a); by parametrising a posterior p.d.f. as a Gaussian mixture model (GMM). The adversarial training is implemented using a gradient reversal layer, the trade-off between (a); and (a) controlled by the parameter (a).

Decorrelate W Tagger

Gaussian Mixing Model

$$\min_{\theta_{\rm clf}} \max_{\theta_{\rm adv}} L_{\rm clf}(\theta_{\rm clf}) - \lambda L_{\rm adv}(\theta_{\rm clf}, \theta_{\rm adv})$$

Decorrelate W Tagger

Only tested one lambda (GPU cluster is super busy...)

Higgs-V CP OO calculation using MG5

Finished code implementation, but obvious have bugs inside...