

Measurement of CP properties of the Higgs boson couplings to weak bosons at the ATLAS experiment

Fangyi Guo on behalf of ATLAS collaboration

fangyi.guo@cern.ch

Higgs 2023

27 Nov - 2 Dec 2023, Beijing

Introduction

• CP violation: one of key conditions in baryon asymmetry.

- Existing CPV in SM: CKM, PMNS matrices, but NOT sufficient.
- Where is the other CP-violation source?
- 11 years after Higgs discovery:
 - Significant achievements from ATLAS & CMS: Higgs mass, width, coupling strength...
 - A (new) yield for CPV search: in Higgs coupling.
- In this talk: anomalous Higgs couplings in H-V interaction
 - Through production: *VBF*, *VH*.

2023/11/29

- Independent with decay mode: $H \rightarrow \tau \tau / \gamma \gamma / ZZ / WW$.
- Through decay: $H \rightarrow ZZ, H \rightarrow WW$.

Introduction

• Dimension-6 effective field theory: SMEFT framework

- $\mathcal{L}_{Eff} = \mathcal{L}_{SM} + \sum_k \frac{c_k}{\Lambda^2} \mathcal{O}_k$
- Focus on CP-odd H-V operators: 3 independent c_i

	Warsaw basis		_		Higgs basis	
Operator	Structure	Coupling		Operator	Structure	Coupling
${\cal O}_{\Phi \widetilde{W}}$	$\Phi^{\dagger}\Phi\widetilde{W}^{\mathrm{I}}_{\mu u}W^{\mu uI}$	$c_{H\widetilde{W}}$	Linear combination	${\cal O}_{hZ ilde{Z}}$	$h Z_{\mu u} ilde{Z}^{\mu u}$	\tilde{c}_{ZZ}
${\cal O}_{\Phi \widetilde{W} B}$	$\Phi^{\dagger} au^{I} \Phi \widetilde{W}^{I}_{\mu u} B^{\mu u}$	C _{HWB}		${\cal O}_{hZ ilde{A}}$	$h Z_{\mu u} ilde{A}^{\mu u}$	${ ilde {\cal C}}_{Z\gamma}$
${\cal O}_{\Phi ilde B}$	$\Phi^{\dagger}\Phi \tilde{B}_{\mu u}B^{\mu u}$	C _H Ĩ		${\cal O}_{hA ilde{A}}$	$h A_{\mu u} ilde{A}^{\mu u}$	$ ilde{c}_{\gamma\gamma}$

- Experimental assumption: different contributions can not be distinguished
 - HISZ base: $c_{H\tilde{W}} = c_{H\tilde{B}} = \frac{\Lambda^2}{\nu^2} \tilde{d}$, $c_{H\tilde{W}B} = 0$. \tilde{d} is the only CPV parameter.
 - Used in VBF Higgs analyses.

3 sets of parameters to represent the H-V CP violation effects.

CP sensitive observables

- Signed $\Delta \phi_{ii}$
 - Angular information in production process.
 - Used in early spin/CP and differential fiducial cross section analysis.
- Optimal observable
 - Matrix element based observable: $\mathcal{OO} = \frac{2Re(\mathcal{M}_{SM}^*\mathcal{M}_{CP-odd})}{|\mathcal{M}_{SM}|^2}$. More sensitive than $\Delta \phi_{jj}^{signed}$.
 - CP-odd effects introduce asymmetry shape in OO. *Phys.Rev.D* 74 (2006) 095001

Fiducial differential XS in $H \rightarrow \gamma \gamma / WW^*$

• EFT interpretation in SMEFT Warsaw basis $(c_{H\widetilde{W}}, c_{H\widetilde{W}B}, c_{H\widetilde{B}})$

- $H \rightarrow \gamma \gamma$: simultaneous fit to 5 observables & correlations: $(p_T^{\gamma \gamma}, N_{jets}, m_{jj}, \Delta \phi_{jj}, p_T^{J_1})$.
- $H \rightarrow WW^* \rightarrow e\nu\mu\nu$: constrain with $\Delta\phi_{ij}$.
- Interference only and interference + quadratic constraints from shape + yield info.

JHEP 08 (2022) 027

Phys. Rev. D 108, 072003

H-V CP property in VBF H ightarrow au au

- Probe HVV interaction in VBF enriched region
 - Dedicated pure CP analysis in HISZ basis (\tilde{d}) .
 - Shape-only fit on CP-sensitive observable: optimal observable \mathcal{OO}
 - 4 analysis channels depending on τ decay: $\tau_{lep}\tau_{lep}$ SF, $\tau_{lep}\tau_{lep}$ DF, $\tau_{lep}\tau_{had}$ and $\tau_{had}\tau_{had}$
 - BDT-based classification + $m_{\tau\tau}^{MMC}$ background estimation.

Phys. Lett. B 805 (2020) 135426

H-V CP property in VBF $H \rightarrow \tau \tau$

• Maximum likelihood fit in binned OO

Phys. Lett. B 805 (2020) 135426

• A template fit with \tilde{d} hypotheses. Result: $\tilde{d} \in [-0.090, 0.035]$ @ 68% C.L.

H-V CP property in VBF $H \rightarrow \gamma \gamma$

• Similar strategy with H ightarrow au au

Phys. Rev. Lett. 131 (2023) 061802

- 2 EFT basis: \tilde{d} in HISZ basis and $c_{H\tilde{W}}$ in Warsaw basis.
- Shape-only fit on CP-sensitive observable: optimal observable \mathcal{OO} .
- 2 BDTs for pure VBF events: *BDT_{VBF/ggF}*, *BDT_{VBF/Continuum}*.
- Extract signal and background yield from $m_{\gamma\gamma}$ distribution: **better background estimation.**

H-V CP property in VBF $H \rightarrow \gamma \gamma$

• Fit in 3 categories and 6 OO bins

Phys. Rev. Lett. 131 (2023) 061802

- Float the VBF normalization for shape-only fit.
- Results are combined with $H \rightarrow \tau \tau$.
- Most stringent pure CPV constraint on $c_{H\widetilde{W}}$: [-0.55, 1.07] @ 95% C.L. (inter + quad.)

H-V CP properties in VBF+VH $H \rightarrow ZZ^* \rightarrow 4l$

Constrain H-V CP-odd effects from both production and decay.

- In all 3 representations: \tilde{d} in HISZ basis, Warsaw basis and Higgs basis.
- \mathcal{OO} for each coefficients and vertices: $\mathcal{OO}_{ii}^{c_i}$ and $\mathcal{OO}_{4l}^{c_i}$

 $H
ightarrow ZZ^*$ decay ${\cal O}{\cal O}_{4I}$

arXiv:2304.09612

 $OO_{4l}^{c_{H\tilde{B}}}$

H-V CP properties in VBF+VH $H \rightarrow ZZ^* \rightarrow 4l$

• Analysis strategy: for 2 targets

- 3-class NN classification to distinguish VBF, VH and ggF.
- 4 VBF SRs for VBF production, 1 VBF-depleted region for $H \rightarrow ZZ$ decay (ggF dominant).

arXiv:2304.09612

H-V CP properties in VBF+VH $H \rightarrow ZZ^* \rightarrow 4l$

• Results: 1D and 2D constraints

• Full set of H-V CP-odd coefficients. Compatible with SM.

arXiv:2304.09612

Summary

• We are looking for new CP-violation sources beyond SM

- Is well-motivated by the baryon asymmetry puzzle.
- H-V interaction is a precious window to study EW and search the new physics.
- A series of analyses targeting H-V CP properties are performed
 - From both production mode and decay mode, covers many possibilities.
 - Provide stringent limits on CP-violation, with Warsaw and Higgs basis.
 - Optimal observable is commonly used and shows great sensitivity.
 - All results are compatible with the SM.

More results are on the way, please stay tuned!

- $H \rightarrow \tau \tau, H \rightarrow WW$ channels with full Run 2 data.
- Combination between channels.
- New round analyses in Run 3.