Searching for nucleon decays with JUNO JUNO实验寻找核子衰变的潜力

Wanlei Guo (郭万磊)

IHEP, 2023.09.25

第三届"江门中微子实验相关的理论与唯象学"研讨会——大统一专题

- 1. GUTs and Nucleon Decays
- 2. Nucleon decay experiments
- 3. JUNO potential to Nucleon decays
- 4. Search for other new physics

(1) Grand United Theories (GUT) and Nucleon Decays

Grand United Theories (GUTs):

- 1. A larger symmetry group, e.g. SU(5) ,SO(10), SUSY SU(5)...
- 2. Spontaneously breaks into the SM group: $SU(3) \otimes SU(2) \otimes U(1)$.
- 3. Unify the strong, weak and electromagnetic interactions.

Consequences:

- Single (unified) coupling
- Charge quantization
- \succ New gauge bosons \rightarrow Baryon number violation
- \blacktriangleright \rightarrow Proton decay, B-violation neutron decay
- B-violation is one of three Sakharov basic ingredients
- ➤ Massive neutrinos from SO(10)...
- > Other predictions: Magnetic Monopoles ...

Theoretic predictions and current limits

How many Nucleon decay channels have been measured?

Mode	Partial mean life Scale (10 ³⁰ years) Conf Level	P(MeV/c)	$ au_{22} N o u K^*(892)$	> 78 (n),	CL=90%	45 🗸	Antilepton + single massless			ΔB = 2 dinucleon modes			
Antilonton + moson	(10) 1000 1000, 1000			> 51 (<i>p</i>)			$ au_{47} \hspace{.1in} p ightarrow e^+ X$	> 790	CL=90% ✓	$ au_{ m 67} p \; p o \pi^+ \pi^+$	> 72.2	CL=90%	
Anthepton + meson			Antilepton + mesons				$ au_{48} \hspace{0.2cm} p ightarrow \mu^{+} X$	> 410	CL=90% ✓	$ au_{68} \hspace{0.2cm} p \hspace{0.2cm} n ightarrow \pi^{+} \pi^{0}$	> 170	CL=90%	
$ au_1 \hspace{.1in} N \! ightarrow e^+ \pi$	B > 5300 (n), CL=90%	459 🗸	$ au_{23}$ $p ightarrow e^+\pi^+\pi^-$	> 82	CL=90%	448 🗸	Three (or more) leptons			$ au_{09}$ $n~n ightarrow\pi^+\pi^-$	> 0.7	CL=90%	
	> 10000 (p)		$ au_{24} \hspace{.1in} p ightarrow e^+ \pi^0 \pi^0$	> 147	CL=90%	449 🗸	$ au_{49} \hspace{0.2cm} p ightarrow e^+ e^+ e^-$	> 793	CL=90% 469 ∨	$ au_{70}$ $n~n ightarrow\pi^0\pi^0$	> 404	CL=90%	
$ au_2 \hspace{0.2cm} N \! ightarrow \! \mu^+ \! \pi$	$B > \frac{3500 (n)}{7700 (n)}$ CL=90%	453 🗸	$ au_{25}$ $n ightarrow e^+\pi^-\pi^0$	> 52	CL=90%	449 🗸	$ au_{50} \hspace{0.2cm} p ightarrow e^{+} \mu^{+} \mu^{-}$	> 359	CL=90% 457 ∨	$ au_{71} \hspace{0.2cm} p \hspace{0.2cm} p ightarrow K^+K^+$	> 170	CL=90%	
	> 1100 (m)		$ au_{26}$ $p ightarrow \mu^+ \pi^+ \pi^-$	> 133	CL=90%	425 🗸	$ au_{51} \hspace{.1in} p ightarrow e^+ u u$	> 170	CL=90% 469 ✓	$ au_{72} \hspace{0.2cm} p \hspace{0.2cm} p ightarrow e^+ e^+$	> 5.8	CL=90%	
$ au_3 N o u \pi$	> 390 (p)	459 🗸	$ au_{27} \hspace{0.2cm} p ightarrow \mu^{+} \pi^{0} \pi^{0}$	> 101	CL=90%	427 🗸	$ au_{52}$ $n ightarrow e^+ e^- u$	> 257	CL=90% 470 ✓	$ au_{73} \hspace{0.2cm} p \hspace{0.2cm} p ightarrow e^+ \mu^+$	> 3.6	CL=90%	
$ au_4 \hspace{.1in} p ightarrow e^+ \eta$	> 10000 CL=90%	309 🗸	$ au_{28}$ $n ightarrow \mu^+ \pi^- \pi^0$	> 74	CL=90%	427 🗸	$ au_{53}$ $n ightarrow \mu^+ e^- u$	> 83	CL=90% 464 ✓	$ au_{74} \hspace{0.4cm} p \hspace{0.4cm} p ightarrow \mu^+ \mu^+$	> 1.7	CL=90%	
$\tau_5 p \to \mu^+ n$	> 4700 CL=90%	297 🗸	τ_{20} $n \rightarrow e^+ K^0 \pi^-$	> 18	CI=90%	319 🗸	$\tau_{54} n \to \mu^+ \mu^- \nu$	> 79	CL=90% 458 ♥	$ au_{75} \hspace{0.2cm} p \hspace{0.2cm} n ightarrow e^{+} \overline{ u}$	> 260	CL=90%	
$T_{\rm E} n \to \nu n$	> 158 CI=90%	310 ¥		/ 10			$\tau_{55} p \to \mu^- e^+ e^+$	> 529	CL=90% 463 ♥	$ au_{76} \hspace{0.4cm} p \hspace{0.4cm} n ightarrow \mu^+ \overline{ u}$	> 200	CL=90%	
10 10 10 1	> 217 (m)	0.00	Lepton + meson				$750 p \rightarrow \mu \ e \ e$	> 675	CI-90% 439	$ au_{77} p \; n o au^+ \overline{ u}_ au$	> 29	CL=90%	
$ au_7 N ightarrow e^+ ho$	> 720 (p) CL=90%	149 🗸	$ au_{30}$ $n ightarrow e^-\pi^+$	> 65	CL=90%	459 🗸	$\tau_{5l} p \rightarrow \mu^+ \nu \nu$	> 220	CL=90% 463 ∨	$ au_{78}$ $n~n ightarrow$ invisible	> 1.4	CL=90%	
	> 228 (n),		$ au_{31}$ $n ightarrow \mu^- \pi^+$	> 49	CL=90%	453 🗸	$\tau_{50} p \to e^- \mu^+ \mu^+$	> 6	CL=90% 457 ∨	$ au_{79} \qquad n \; n o u_e \overline{ u}_e$	> 1.4	CL=90%	
$ au_8 N o \mu^+ ho$	> 570 (p) CL=90%	113 🗸	$ au_{32}$ $n ightarrow e^- ho^+$	> 62	CL=90%	150 🗸	$ au_{00} \ n ightarrow 3 u$	$>5 imes10^{-1}$	⁴ CL=90% 470 ✓	$ au_{80} \qquad n \; n o u_\mu \overline{ u}_\mu$	> 1.4	CL=90%	
N7	> 19 (<i>n</i>), CL 000%	140	$ au_{33}$ $n ightarrow \mu^- ho^+$	> 7	CL=90%	115 🗸	$ au_{61}$ $n \rightarrow 5 \nu$		470 🗸	$ au_{81} p \; n o { m invisible}$	> 0.06	CL=90%	_
$79 N \to \nu p$	> 162 (p)	147 👻	$ au_{34}$ $n ightarrow e^- K^+$	> 32	CL=90%	340 🗸	Inclusive modes			$ au_{82} \hspace{0.2cm} p \hspace{0.2cm} p ightarrow { ext{invisible}}$	> 0.11	CL=90%	
$ au_{10} \hspace{.1in} p ightarrow e^+ \omega$	> 1600 CL=90%	143 🗸	$ au_{35}$ $n ightarrow \mu^- K^+$	> 57	CL=90%	330 🗸	$ au_{02} \hspace{0.2cm} N ightarrow e^+$ anything	> 0.6 (n	, p) CL=90% 🗸				
$ au_{11} \hspace{0.2cm} p ightarrow \mu^+ \omega$	> 2800 CL=90%	105 🗸	Lepton + mesons				$ au_{03} N \! ightarrow \mu^+$ anything	> 12 (n,	p) CL=90% ~				
$ au_{12}$ $n ightarrow u \omega$	> 108 CL=90%	144 🗸	$ au_{36} \hspace{0.2cm} p ightarrow e^{-} \pi^{+} \pi^{+}$	> 30	CL=90%	448 ~	$ au_{64} \qquad N { o} u$ anything		~	Erom DDG	202	2	
$\pi_{in} N \rightarrow e^+ K$	B > 17 (n), CI-90%	330 🗸	$ au_{37}$ $n ightarrow e^- \pi^+ \pi^0$	> 29	CL=90%	449 🗸	$ au_{65} N ightarrow e^+ \pi^0$ anything	> 0.6 (n	, p) CL=90% 🗸	FIUITFDG	202	.5	
/13 H - C K	> 1000 (p)	007 -	$\tau_{38} p \to \mu^- \pi^+ \pi^+$	> 17	CI=90%	425 🗸	$ au_{00} \qquad N \! ightarrow \! 2 ext{ bodies, } u ext{-free}$		~				
$ au_{14} \qquad p o e^+ K^0_S$		337 🗸	$T_{20} n \to \mu^- \pi^+ \pi^0$	> 34	CI-90%	427 ×							
$ au_{15} \qquad p o e^+ K^0_L$		337 🗸	$T_{40} \xrightarrow{n} e^{-\pi^{+}K^{+}}$	> 75	CI-90%	320 ×	Total Cha	nne	als: 82				
$\tau_{16} N \rightarrow \mu^+ K$	B > 26 (n), CI=90%	329 🗸	$r_{\rm H0} p \to u^- + K^+$	> 945	CL_90%	270							
10	> 1600 (p)		$741 p \rightarrow \mu \pi \mathbf{R}$	> 245	CL=70/6	2/7 •	Mesons:	π^{\pm}	$\pi^0 K^{\pm}$	$K^0 n \rho \omega$	K* (E	(92)	
$ au_{17} \qquad p o \mu^+ K^0_S$		326 🗸	Antilepton + photon(s)					10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, m , <i>n</i> , <i>p</i> , <i>w</i> , <i>n</i>		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
$ au_{18} \qquad p o \mu^+ K^0_L$		326 🗸	$ au_{42} \hspace{.1in} p ightarrow e^+ \gamma$	> 670	CL=90%	469 🗸	Leptons:	e^{\pm}	μ^{\pm} 12	Photon: ν			
$ au_{19}$ $N \rightarrow u K$	> 86 (n), CL=90%	339 🗸	$ au_{43} \hspace{0.2cm} p ightarrow \mu^+ \gamma$	> 478	CL=90%	463 🗸		ς,	pc , v	,			
	> 5900 (p)		$ au_{44}$ $n ightarrow oldsymbol{ u} \gamma$	> 550	CL=90%	470 🗸			h a n i m t	anasting above) –	
$ au_{20} \qquad n o u K_S^0$	> 260 CL=90%	338	$ au_{ m 45} \hspace{0.2cm} p ightarrow e^+ \gamma \gamma$	> 100	CL=90%	469	Are there	3 O T	ner int	eresting chan	neis	5	
$ au_{21} \hspace{0.2cm} p ightarrow e^{+} K^{*} (892)^{0}$	> 84 CL=90%	45 🧹	$\tau_{\rm MC}$ $n \rightarrow \nu \gamma \gamma$	> 210	CI=90%	470							

Are there other nucleon decay channels ?

Proton 3	B-body	:	Neutro	n <mark>3-bo</mark> o	dy:	Dinucleo	n decay:	4-body decay:
Channel	$ \Delta(B-L) $	$\frac{\Gamma^{-1}}{10^{30} \text{ yr}}$	Channel	$ \Delta(B-L) $	$\frac{\Gamma^{-1}}{10^{30} \text{ yr}}$	Channel	$ \Delta(B-L) $	$\frac{\Gamma^{-1}}{10^{8} \text{ vr}}$
$p \rightarrow e^- + e^+ + e^+$	0	793 [46]	$n \rightarrow \nu + e^- + e^+$	0,2	257 [46]	$nn \rightarrow \pi^0 \pm \phi$	2	
$p \rightarrow e^- + e^+ + \mu^+$	0	529 [46]	$n \rightarrow \nu + e^- + \mu^+$	0,2	83 [46]	$nn \rightarrow n + \varphi$	2	
$p \rightarrow e^+ + e^+ + \mu^-$	0	529* [46]	$n \rightarrow \nu + e^+ + \mu^-$	0,2	83* [46]	$nn \rightarrow 2\eta$	2	
$p \rightarrow e^- + \mu^+ + \mu^+$	0	6 [73] (359* [46])	$n \rightarrow \nu + \mu^- + \mu^+$	0,2	79 [46]	$nn \rightarrow \eta + \rho^*$	2	s
$p \rightarrow e^+ + \mu^- + \mu^+$	0	359 [46]	$n \rightarrow 3\nu$	0,2,4	0.58 [83]	$nn \rightarrow \eta + \omega$	2	
$p \rightarrow \mu^- + \mu^+ + \mu^+$	0	675 [46]	$n \rightarrow e^- + \pi^+ + \pi^0$	2	29 [52] (52* [46])	$nn \rightarrow \eta + \eta'$	2	
$p \rightarrow e^+ + 2\nu$	0,2	170 [81]	$n \rightarrow e^- + \pi^+ + \eta$	2		$nn \rightarrow \eta + K^0$	2	S_1 e
$p \rightarrow \mu^+ + 2\nu$	0,2	220 [81]	$n \rightarrow e^- + \pi^+ + \rho^0$	2		$nn \rightarrow \eta + K^{*,0}$	2	z. >
$p \rightarrow e^- + 2\pi^+$	2	30 [52] (82* [46])	$n \rightarrow e^- + \pi^+ + \omega$	2		$nn \rightarrow \eta + \phi$	2	$S_1^* \neq \delta$
$p \rightarrow e^- + \pi^+ + \rho^+$	2		$n \rightarrow e^- + \pi^+ + K^0$	2		$nn \rightarrow 2\rho^0$	2	d
$p \rightarrow e^- + K^+ + \pi^+$	2	75 [46]	$n \rightarrow e^- + \rho^+ + \pi^0$	2		$nn \rightarrow \rho^0 + \omega$	2	
$p \rightarrow e^+ + 2\gamma$	0	100 [82] (793* [46])	$n \rightarrow e^- + K^+ + \pi^0$	2		$nn \rightarrow n' + a^0$	2	
$p \rightarrow e^+ + \pi^- + \pi^+$	0	82 [46]	$n \rightarrow e^+ + \pi^- + \pi^0$	0	52 [46]	$nn \rightarrow q + p$	2	
$p \rightarrow e^+ + \rho^- + \pi^+$	0		$n \rightarrow e^+ + \pi^- + \eta$	0		$nn \rightarrow K^{\circ} + \rho^{\circ}$	2	From DDD 101 01E00E (202)
$p \rightarrow e^+ + K^- + \pi^+$	0	75* [46]	$n \rightarrow e^+ + \pi^- + \rho^0$	0		$nn \rightarrow K^{*,0} + \rho^0$	2	FIUIII PRD 101, 015005 (202
$p \rightarrow e^+ + \pi^- + \rho^+$	0		$n \rightarrow e^+ + \pi^- + \omega$	0		$nn \rightarrow \rho^0 + \phi$	2	
$p \rightarrow e^+ + \pi^- + K^+$	0	75* [46]	$n \rightarrow e^+ + \pi^- + K^0$	0	18 [82]	$nn \rightarrow \rho^- + \rho^+$	2	
$p \rightarrow e^+ + 2\pi^0$	0	147 [46]	$n \rightarrow e^+ + \rho^- + \pi^0$	0		$nn \rightarrow K^+ + \rho^-$	2	
$p \rightarrow e^+ + \pi^0 + \eta$	0		$n \rightarrow e^+ + K^- + \pi^0$	0		$nn \rightarrow K^{*,+} + \rho^-$	2	
$p \rightarrow e^+ + \pi^0 + \rho^0$	0		$n \rightarrow \mu^- + \pi^+ + \pi^0$	2	34 [52] (74* [46])	$nn \rightarrow K^- + \rho^+$	2	
$p \rightarrow e^+ + \pi^0 + \omega$	0		$n \rightarrow \mu^- + \pi^+ + \eta$	2		$nn \rightarrow K^{*,-} + a^+$	2	
$p \rightarrow e^+ + \pi^0 + K^0$	0		$n \rightarrow \mu^- + \pi^+ + K^0$	2		$nn \rightarrow 2\omega$	2	
$p \rightarrow \mu^- + 2\pi^+$	2	17 [52] (133* [46])	$n \rightarrow \mu^- + K^+ + \pi^0$	2		$nn \rightarrow 2\omega$	2	
$p \rightarrow \mu^- + K^+ + \pi^+$	2	245 [46]	$n \rightarrow \mu^+ + \pi^- + \pi^0$	0	74 [46]	$nn \rightarrow \eta + \omega$	2	
$p \rightarrow \mu^+ + 2\gamma$	0	529* [46]	$n \rightarrow \mu^+ + \pi^- + \eta$	0		$nn \rightarrow K^{\circ} + \omega$	2	Others?
$p \rightarrow \mu^+ + \pi^- + \pi^+$	0	133 [46]	$n \rightarrow \mu^+ + \pi^- + K^0$	0		$nn \rightarrow K^{*,0} + \omega$	2	Others.
$p \rightarrow \mu^+ + K^- + \pi^+$	0	245* [46]	$n \rightarrow \mu^+ + K^- + \pi^0$	0		$nn \rightarrow \omega + \phi$	2	
$p \rightarrow \mu^+ + \pi^- + K^+$	0	245* [46]	$n \rightarrow \nu + 2\gamma$	0,2	219 [46]	$nn \rightarrow \eta' + K^0$	2	
$p \rightarrow \mu^+ + 2\pi^0$	0	101 [46]	$n \rightarrow \nu + \pi^- + \pi^+$	0,2		$nn \rightarrow \eta' + K^{*,0}$	2	
$p \rightarrow \mu^+ + \pi^0 + \eta$	0		$n \rightarrow \nu + \rho^- + \pi^+$	0,2		$nn \rightarrow K^- + K^+$	2	170* [116]
$p \rightarrow \mu^+ + \pi^0 + K^0$	0		$n \rightarrow \nu + K^- + \pi^+$	0,2		$nn \rightarrow K^+ + K^{*,-}$	2	
$p \rightarrow \nu + \pi^+ + \pi^0$	0,2		$n \rightarrow \nu + \pi^- + \rho^+$	0,2		$nn \rightarrow K^- + K^{*,+}$	2	
$p \rightarrow \nu + \pi^+ + \eta$	0,2		$n \rightarrow \nu + \pi^- + K^+$	0,2		$nn \rightarrow 2F^0$	2	
$p \rightarrow \nu + \pi^+ + \rho^0$	0,2		$n \rightarrow \nu + 2\pi^0$	0,2			2	
$p \rightarrow \nu + \pi^+ + \omega$	0,2		$n \rightarrow \nu + \pi^0 + \eta$	0,2		$nn \rightarrow K^{*,*} + K^{\circ}$	2	
$p \rightarrow \nu + \pi^+ + K^0$	0,2		$n \rightarrow \nu + \pi^0 + \rho^0$	0,2		$nn \rightarrow K^0 + \phi$	2	
$p \rightarrow \nu + \rho^+ + \pi^0$	0,2		$n \rightarrow \nu + \pi^0 + \omega$	0,2		$nn \rightarrow 2K^{*,0}$	2	
$p \rightarrow \nu + K^+ + \pi^0$	0,2		$n \rightarrow \nu + \pi^0 + K^0$	0,2		$nn \rightarrow K^{*,-} + K^{*,+}$	2	

(2) Nucleon decay experiments

In 1954, Reines, Cowan and Goldhaber give the first limit: \mathbf{\tau}(p) > 10^{22} yrs
 Before the discovery of \$\bar{v}_e\$ in 1956.
 Phys. Rev.96, 1157 (1954)

Authors	Experiment	Decay mode	Depth (mwe)	τ _{min} (yrs)
Reines, Cowan, and Goldhaber 1954 [4]	300 £ liquid scint.	A11 (E _{ch} > 100 MeV)	200	10 ²²
Reines, Cowan and Kruse 1958 [49]	As above, with delayed neutron pulse	A11 ·	200	4 . 10 ²³
Backenstoss <u>et al.</u> 1960 [8]	50 & liquid Cerenkov, upward rel. sec.	At least one secondary of > 250 MeV	2400	3.10 ²⁶
Giamati and Reines 1962 [50] Kropp and Reines 1965 [51]	200 & liquid scint.	A11	1760	6 . 10 ²⁷ ~ 10 ²⁸
Gurr <u>et al.</u> 1967 [52]	Scint. hodoscope	A11	8000	2.10 ²⁸

D.H Perkins, 1984

In 1974, Georgi and Glashow give SU(5) GUT, → proton lifetime ~ 10²⁹ yrs → Detector with about 1000 ton mass can test the SU(5) GUT → The first generation of experiments are proposed and constructed

They do not find the evidence for proton decay, excluding minimal SU(5)! 9

Second generation of proton decay experiments

10

Super-Kamiokande: Water Cerenkov, 50 kton → 22.5 kton

Gd concentration at SK-VI:

0.011% in weight.

After 2000, some neutrino experiments, such as KamLAND, SNO and Borexino, have also give several limits on nucleon decays.

Super-K results on nucleon decays

Super-K searching for $\,p o e^+ \pi^0$

Signal features:

- Momentum of e^+ and π^0 is 460 MeV
- Kinetic energy :459 MeV and 344 MeV

Event selection:

- A. Two or three rings
- B. e-like rings
- C. Invariant mass of π^0 (135MeV) : 85-185MeV
- D. No Michel electron
- *E.* \vec{P}_{tot} (<250MeV) and M_{invar} (800-1050 MeV)

Results:

450 kton years Efficiency: ~20% Background: ~0.6

$$\Rightarrow \tau/B(p \rightarrow e^+\pi^0) > 2.4 \times 10^{34} \text{ yrs}$$

PRD 102, 112011 (2020)

Cherenkov light

Positron

 $\nu N \to \ell N' \pi^0$ $\nu N \to \nu N' \pi(\tau)$

Super-K searching for $p ightarrow \overline{v} K^+$

Signal features:

- > Momentum of \overline{v} and K^+ is 339 MeV (105 MeV)
- ➢ 89% K⁺ decay at rest (12.38ns):

 $K^+ \rightarrow \mu^+ \nu_{\mu}(63.43\%), K^+ \rightarrow \pi^+ \pi^0(21.13\%),$ Event selection:

1: $K^+ \rightarrow \mu^+ \nu_{\mu} \rightarrow \gamma$ (6.3MeV, 41%) from ¹⁶0 + μ^+ + Michel e^+

2: $K^+ \rightarrow \mu^+ v_\mu \rightarrow$ Monoenergetic μ^+ (*p* = 236MeV)

3: $K^+ \rightarrow \pi^+ \pi^0 \rightarrow \text{ two rings from } \pi^0$ (*M*_{inv}, *p*)+ π^+ (direction , *e*⁺)

Results:

260 kton years Efficiency: ~8.4%, 9% Background:~ 0.24, 0.45 $\tau/B(p \rightarrow \overline{\nu} K^+) > 5.9 \times 10^{33} \text{ yrs}$

PRD 90, 072005 (2014)

 $m{v}~m{p}
ightarrow m{K}^+ \Lambda$ (48%), $m{v}_\mu$ CCQE (25%),

```
CC 1\pi^0 with \mu (38%),
kaon production (37%),
NC multi-\pi(11%)
```


Future Nucleon Decay Experiments

	Hyper-K	DUNE	JUNO	
Mass (kton)	258 (186)	4*17 (4*10)	20	
Target Nucleus	H2O	Ar40	12% H, 88% C12	
Technology	Water Cerenkov	LAr TPC	Liquid Scintillator	
Start Time	2027	2030	2024	14

Similar analysis methods with Super-K:

10 years sensitivity with 1 TANK:

Mode	Sensitivity (90% CL) [years]	Current limit [years]
$p \to e^+ \pi^0$	7.8×10^{34}	1.6×10^{34}
$p\to \overline{\nu}K^+$	3.2×10^{34}	0.7×10^{34}
$p \to \mu^+ \pi^0$	7.7×10^{34}	0.77×10^{34}
$p \to e^+ \eta^0$	4.3×10^{34}	1.0×10^{34}
$p \to \mu^+ \eta^0$	4.9×10^{34}	0.47×10^{34}
$p \to e^+ \rho^0$	0.63×10^{34}	0.07×10^{34}
$p \to \mu^+ \rho^0$	0.22×10^{34}	0.06×10^{34}
$p \to e^+ \omega^0$	0.86×10^{34}	0.16×10^{34}
$p \to \mu^+ \omega^0$	1.3×10^{34}	0.28×10^{34}
$n \rightarrow e^+ \pi^-$	2.0×10^{34}	0.53×10^{34}
$n \rightarrow \mu^+ \pi^-$	1.8×10^{34}	0.35×10^{34}

Hyper-Kamiokande Design Report: 1805.04163

Liquid Argon TPC: DUNE

16

Jiangmen Underground Neutrino Observatory

THE OWNER

How to measure a physical signal:

Charged particles propagate in LS

~ 10000 photons/MeV
 → Ionize LAB molecule → fluor from de-excitation → Propagate in LS

Waveform Reconstruct PEs ~1345/MeV PMT collects PE and amplification ← Photon electron via photoelectric effect ← on PMT photocathode

PPO shift wavelength

Excellent energy resolution: $\sigma_E \approx \sqrt{1345}/1345 \approx 3.0\%@1MeV$ Excellent energy threshold: 0.7 MeV

If a new physics process can produce the ionization signal in LS, JUNO has the potential to test this new physics!!!

Nucleon decay, Dark Matter, Monopole, neutron-antineutron oscillation...

Future sensitives of 10yrs on two favor channels

	Hyper-K	DUNE	JUNO
Mass (kton)	258 (186)	4*17 (4*10)	20
Target Nucleus	H2O	Ar40	12% H, 88% C12
Technology	Water Cerenkov	LAr TPC	Liquid Scintillator
Start Time	2027	2030	2024
Advantages	Large mass and cheap Good particle Identification Good direction resolution	Excellent track reconstruction Excellent particle Identification Good energy resolution	Excellent energy resolution 3% Excellent <i>E</i> threshold 0.7MeV
Shortcomings	Cerenkov threshold	Complex FSI for Ar40	Direction information lost

(3) JUNO potential to Nucleon decays

Search for $p ightarrow \overline{ u} \ K^+$ in JUNO

proton

20 kton LS: Free proton: 1.45×10^{33} Bound proton: 5.30×10^{33}

Kinetic energy of *K*⁺

Nuclear Effects:

- 1. Binding Effect
- 2. Fermi Motion
- 3. NN correlation

- neutron
 K+
 neutrino
 4. Final State
- Interaction (FSI) $K^+ + n \rightarrow K^0 + p$ (1.7%)
- 5. De-excitation of remaining nuclear: could emit γ/p/n.
- > Modify GENIE generator
- Implement de-excitation with TALYS
 - H. Hu, W.L. Guo et al, PLB 831, 137183(2022)

Triple coincident signals :

Decay mode	Branching ratio (%)	Kinetic energy sum (MeV)
$\overline{K^+ \rightarrow \mu^+ \nu_\mu}$	63.55 ± 0.11	152
$K^+ \rightarrow \pi^+ \pi^0$	20.66 ± 0.08	354
$K^+ ightarrow \pi^+ \pi^+ \pi^-$	5.59 ± 0.04	75
$K^+ \rightarrow \pi^0 e^+ \nu_e$	5.07 ± 0.04	265-493
$K^+ \rightarrow \pi^0 \mu^+ \nu_\mu$	3.353 ± 0.034	200-388
$K^+ \rightarrow \pi^+ \pi^0 \pi^0$	1.761 ± 0.022	354

First pulse: K^+ kinetic energy of ~105 MeV, decay at rest $K^+ \rightarrow \upsilon_{\mu} + \mu^+$ 15 cm, 1.2ns $\xrightarrow{\text{Second}} \mu^+ \to e^+ + \upsilon_e + \overline{\upsilon}_{\mu}$ 152 MeV (μ^+) or 354 MeV(π^+, π^0) $K^+ \rightarrow \pi^+ + \pi^0$ $\xrightarrow{-\pi^{0}} \pi^{0} \xrightarrow{8.4 \times 10^{-8} \text{ ns}} 2\gamma$ $\xrightarrow{} \pi^{+} \rightarrow \upsilon_{\mu} + \mu^{+} \qquad \text{Third pulse: Michel } e^{+}$ $\xrightarrow{} \mu^{+} \rightarrow e^{+} + \upsilon_{e} + \overline{\upsilon}_{\mu}$ Second pulse

AN and PD candidates Evis Distribution

1MeV	10MeV	100	MeV	1GeV	
IBD			Proton Decay		
	Atmosp	heric neutr	inos ~30k in 10 years.		
	Со	osmic Muon			
	Туре	Ratio (%)	Ratio with E_{vis} in [100 MeV, 600 MeV](%)	Interaction	Signal characteristics
	NCES	20.2	15.8	$ \begin{array}{c} \nu + n \rightarrow \nu + n \\ \nu + p \rightarrow \nu + p \end{array} $	Single Pulse
	CCQE	45.2	64.2	$\begin{array}{c} \nu_l + p \to n + l^+ \\ \nu_l + n \to p + l^- \end{array}$	Single Pulse
Pior	n Production	33.5	19.8	$\nu_l + p \rightarrow l^- + p + \pi^+$ $\nu + p \rightarrow \nu + n + \pi^+$	Approximate Single Pulse (Second pulse too low)
Kaoi	n Production	1.1	0.2	$ \begin{array}{l} \nu_l + n \rightarrow l^- + \Lambda + K^+ \\ \nu_l + p \rightarrow l^- + p + K^+ \end{array} $	Double Pulse

- If energetic neutrons do not lost most of the energy within ~10ns
- Kaon Production has a negligible contribution!

Event Selection

TABLE II. Detection efficiencies of $p \to \bar{\nu} K^+$ and the number of atmospheric ν background after each selection criterion. The total amount of atmospheric ν background simulated is 160 k, which corresponds to an exposure of 890 kton-years.

		a			<i>a</i> .				
Criteria		Survival i	rate of $p-$	$\rightarrow \overline{\nu}K^{+}$ (%)	Survival count (fraction) of atmospheric ν				
Orneria		Sample 1	Sample 2	Sample 3	Sample 1	Sample 2	Sample 3		
basic coloction	$E_{\rm vis}$		94.6			51299 ((32.1%)		
Dasic selection	R_V		93.7			47849 ((29.9%)		
Delaved	N_M	74	.4	4.4	20739	(13.0%)	1143~(0.7%)		
signal	ΔL_M	67.0		4.4	$13796\ (8.6\%)$		994~(0.6%)		
selection	N_n	48.4	17.9		5403(3.4%)	6857 (4.3%)	_		
selection	ΔL_n	—	16.6	—	—	4472 (2.8%)	_		
Time	R_{χ}	45.9	9.0	3.8	4326 (2.7%)	581 (0.4%)	716~(0.4%)		
character	ΔT	28.3	7.7	2.4	121 (0.07%)	18 (0.01%)	30~(0.02%)		
selection	E_1, E_2	27.4	7.3	2.2	1 (0.0006%)	0	0		
Total			36.9			-	l		

Efficiency uncertainties:

Source	Uncertainty
Statistic	1.6%
Position reconstruction	1.7%
Nuclear model	6.8%
Energy deposition model	11.1%
Total	13.2%

Sensitivity to $p \to \overline{v} K^+$

Signal Characteristics in LS

Distributions of signal and background after event selection

	Summ	ary of event sel	ection	
	n -	→ inv	nn	ı → inv
Muonveto				
Fiducial volume	r <	16.7 m	r <	: 16.7 m
Selection criteria	$\begin{array}{c} \Delta T_{12} \\ \Delta T_{23} \in [0] \\ \Delta R_{12} \\ \Delta R_{23} \\ \Delta R_{13} \\ E_1 \in [0] \\ E_2 \in [1] \\ E_3 \in [1] \end{array}$	< 1 ms 0.002, 100] s < 1.5 m < 1.5 m < 1.0 m 7, 12] MeV 9, 2.5] MeV 5, 3.5] MeV	$\begin{array}{c} \Delta T_1;\\ \Delta T_{23} \in \\ \Delta R_{12}\\ \Delta R_{23}\\ \Delta R_{13}\\ E_1 \in [0]\\ E_2 \in [1]\\ E_3 \in [3]\end{array}$	2 < 1 ms [0.002, 3.0] s 2 < 1.5 m 3 < 1.5 m 4 < 1.0 m 7,30] MeV .9,2.5] MeV 8.0,16] MeV
Multiplicity cut				
Total efficiency (%)	$^{11}\text{C}^* \rightarrow n + ^{10}\text{C}$	$^{11}C^* \rightarrow n + \gamma + ^{10}C$	$^{10}C^* \rightarrow n + {}^{9}C$	$^{10}C^* \rightarrow n + p + {}^{8}B$
	35.6 ± 0.2	43.6±0.2	53.9 ± 0.3	49.1±0.3

Background Source:

- 1. IBD (Inverse Beta decay),
- 2. Isotope from cosmic muons,
- 3. Radioactivity,
- 4. Fast neutrons,
- 5. Atm-v NC

Preliminary Sensitivity: up to 10^{31} yr for $n \rightarrow inv$, improve results in 10^{32} yr range for $nn \rightarrow inv$ 29

Search for $p ightarrow e^+ + \pi^0$ in JUNO

31

 N_{S_i} : Signal number

N₀: Nucleon umber = 6.75×10^{33}

 ϵ_i : Signal Efficiency = 50.9% t: Running Time = 10 years N_{90} : 90% CL upper limit = 17.7 N_B : Expected BG number = 97.8

Event Selection: 860 MeV < Evis < 940 MeV; no Michel; no neutron capture</p>
Signal Efficiency: 50.9%; Background: 97.8/10years

 $au/B(p
ightarrow e^+\pi^0)>0.19 imes10^{34}$ yrs ($\ll2.4 imes10^{34}$ yrs from Super-K)

How to estimate sensitivity?

$$N_{S_i} = N_{decay} \cdot B_i \cdot \epsilon_i = B_i \cdot \epsilon_i \cdot N_0 \frac{t}{\tau} \rightarrow \frac{\tau}{B_i} = \frac{N_0 \cdot \epsilon_i}{N_{90}} t$$

90% CL upper limit *N*₉₀:

$$L(N_{obs}, N_{S}) = \frac{(N_{S} + N_{B})^{N_{obs}}}{N_{obs}!} e^{-(N_{S} + N_{B})} \rightarrow 90\% = \frac{\int_{0}^{N_{90}} L(N_{obs}, N_{S}) dN_{S}}{\int_{0}^{\infty} L(N_{obs}, N_{S}) dN_{S}}$$

$N_{obs} = N_B$	0.0	1.0	2.0	5.0	10	20	50	100	200	1000
N ₉₀	2.3	3.3	3.9	5.2	6.6	8.8	13.0	17.8	24.6	53.3

BKG number is the key quantity!!! \rightarrow How to suppress BKG?

50

0

θ_{ν, rec} - θ_{ν, true} (°)

-50

100

How to suppress BKG ? \rightarrow Momentum information

E_v (GeV)

E_v (GeV)

Simply estimate JUNO sensitivities to other channels (1)

		Antilepton+ Meson										V I. Niu et al				
	ID	Channels		n_b		n_{90}	$\epsilon(\%)$	$ au_{10}(10^{33}$	yrs)	$ au_3(10^{33}yr_3)$	s)	$\tau_{exp}(10^{33}yrs)$	TECN	Rank	i.J. Niu et al	
	1	$p \rightarrow e^+ \pi^0$		97.8		17.7	50.9	1.9		1		24	SKAM(20)	E		
	*1	$n \rightarrow e^+ \pi^-$		1943.0)	73.9	83.44	0.57	8	0.312		5.3	SKAM(17D)	E	Only use:	
	2	$p \rightarrow \mu^+ \pi^0$		152.6		21.7	54.68	1.6		0.9		16	SKAM(20)	E	,	
	*2	$n \rightarrow \mu^+ \pi^-$		2101.3	3	76.8	85.14	0.568		0.306		3.5	SKAM(17D)	E	1	Energy
	3	$p \rightarrow \overline{\nu} \pi^+$		7172.09,34	05.55	162.8	91.24	0.366		0.199		0.39	SKAM(14E)	D	- .	
	*3	$n \rightarrow \nu \pi^0$		2668.9	,	80.3	59.06	0.351		0.189		1.1	SKAM(14E)	E	2	Michel e^{\pm}
	4	$p \rightarrow e^+ \eta$		97.8		11.1	30.02	1.1		0.56		10	$\begin{array}{c cccc} 10 & SKAM(17D) & E \\ 4.7 & SKAM(17D) & E \end{array}$			
	0	$p \rightarrow \mu \cdot \eta$		134.1		20.4	30.02	0.52	0	0.0		4.7	MP2(00)		3.	n capture
	7	$n \rightarrow \nu \eta$		/308.0		110 4	01 11	0.535	24	0.2057		0.79	SKAM(17D)	D	•••	
	*7	$p \rightarrow e^{-} \rho^{-}$ $n \rightarrow e^{+} \rho^{-}$		2067.5	5	76.1	83.75	0.56	4	0.2918		0.217	IMB3(99)	B	4.	Some
	8	$p ightarrow \mu^+ ho^0$		3067.4	1	92.4	93.48	0.660	00	0.3566		0.57	SKAM(17D)	C		
	*8	$n ightarrow \mu^+ ho^-$		2323.6	5	80.6	87.71	0.557		0.301		0.228	IMB3(99)	B		assumptions
	9	$p \rightarrow \overline{\nu} \rho^+$	16	657.6,1394.	7,102.8	81.8	70.17	0.559		0.300		0.162	IMB3(99)	B		
	*9	$n ightarrow \overline{ u} ho^0$		214.1		25.5	41	0.823	37	0.432		0.019	IMB(88)	A		about FSI
	10	$p \rightarrow e^+ \omega$	1:1	024.2,97.8	2:4398.9	106.1	30.61	0.194	17	0.1052		1.6	SKAM(17D)	E		
	11	$p ightarrow \mu^+ \omega$	1:11	16.2, 118.7	2:3067.4	45.5	30.44	0.442	25	0.2303		2.8	SKAM(17D)	E		
	12 $n \to \overline{\nu}\omega$		1: 640 2:4398.9		92.2	28.23	0.162	23	0.087		0.108	IMB3(99)	C			
[Three and more leptons						ons								
ĺ	ID	Channels	s	n_{bkg}	n_{90}	$\epsilon(\%)$	$\tau_{10}(10$	$)^{33}yrs)$	$\tau_3($	$10^{33}yrs$)	$ au_{ex}$	$_{rp}(10^{33}yrs)$	TECN	Rank		
1	49	$p \rightarrow e^+ e^+ e^+ e^+ e^+ e^+ e^+ e^+ e^+ e^+$	e^-	97.8	17.7	77.78	2	.9		1.5		34	SKAM(20)	E		VS Super-K?
	50	$p \rightarrow e^+ \mu^+$	μ^{-}	24.5	9.6	79.24	5.	.38		2.58		9.2	SKAM(20)	D		
	51	$p \rightarrow e^+ \overline{\nu} i$	ν	2460.1	83	90.83	0.	714		0.386		0.17	SKAM(14)	B		
	52	$n \rightarrow e^+e^-$	$\overline{\nu}$	1255.7	59.7	88.39	0.	758		0.408		0.257	IMB3(99)	B		
	53	$n \rightarrow \mu^+ e^-$	$\overline{\nu}$	1256.7	59.7	90.75	0.	779		0.419		0.083	IMB3(99)	A		
	54	$n \rightarrow \mu^+ \mu^-$	$\overline{\nu}$	115.4	19.1	89.37	2.3	397		1.237		0.079	IMB3(99)	A		
	55	$n \rightarrow \mu^+ e^+$	e^{-}	133.9	20.4	83.3	2	.1		1.1		23	SKAM(20)	E		
	56	$n \rightarrow \mu^+ \mu^+$	μ^{-}	0.0	2.4	83.15	1	7.7		5.3		10	SKAM(20)	A		
	57	$n \rightarrow \mu^+ \overline{\nu}$	ν	983.1	52.9	82.33	1	015		0.544		0.22	SKAM(20)	B		20
	58	$p \rightarrow e^- \mu^+$	μ+	23.1	9.29	68.43	4	.8		2.3		11	SKAM(20)	D		33

Simply estimate JUNO sensitivities to other channels (2)

	Antilepton+Mesons								
ID	Channels	n_{bkg}	n_90	$\epsilon(\%)$	$ au_{10}(10^{33}yrs)$	$ au_3(10^{33}yrs)$	$\tau_{exp}(10^{33}yrs)$	TECN	Rank
23	$p \rightarrow e^+ \pi^+ \pi^-$	4398.9	110.4	91.11	0.5384	0.2918	0.082	IMB3(99)	A
24	$p \rightarrow e^+ \pi^0 \pi^0$	214.1	25.5	41	1.049	0.550	0.147	IMB3(99)	A
25	$n \rightarrow e^+ \pi^- \pi^0$	2067.5	76.1	83.75	0.564	0.304	0.052	IMB3(99)	A
26	$p \rightarrow \mu^+ \pi^+ \pi^-$	3067.4	92.4	93.48	0.6600	0.3566	0.133	IMB3(99)	B
27	$p \rightarrow \mu^+ \pi^0 \pi^0$	3591.5	99.9	93.84	0.613	0.332	0.101	IMB3(99)	A
28	$n ightarrow \mu^+ \pi^- \pi^0$	2323.6	80.6	87.71	0.557	0.301	0.074	IMB3(99)	A
29	$n \to e^+ \pi^- K^0$ 2932.3,460.2		96	96.71	0.516	0.279	0.018	IMB3(91)	A
				Lept	ton+Meson				· · · · · · · · · · · · · · · · · · ·
ID	Channels	n_{bkg}	n_{90}	$\epsilon(\%)$	$ au_{10}(10^{33}yrs)$	$ au_3(10^{33}yrs)$	$\tau_{exp}(10^{33}yrs)$	TECN	Rank
30	$n \rightarrow e^{-}\pi^{+}$	1070.4, 818.8, 163.2	66	80.13	0.622	0.333	0.065	FREJ(88)	A
31	$n ightarrow \mu^- \pi^+$	1308.9,118,219	40	79.98	1.024	0.534	0.049	IMB(88)	A
32	$n \rightarrow e^- \rho^+$	1657.6,1394.7,102.8	81.8	70.17	0.439	0.236	0.062	IMB(88)	A
33	$n ightarrow \mu^- ho^+$	1899.5,192.398,197.6	42.6	74.56	0.897	0.472	0.007	IMB(88)	A
34	$n \rightarrow \mu^- K^+$	257.7,132.0	33	59.54	0.924	0.583	0.032	FREJ(91B)	A
35	$n \rightarrow \mu^- K^+$	42.6,27.7	14.5	58.95	2.083	1.053	0.057	FREJ(91B)	A
	Lepton+Mesons								
ID	Channels	n_{bkg}	n_{90}	$\epsilon(\%)$	$ au_{10}(10^{33}yrs)$	$ au_3(10^{33}yrs)$	$ au_{exp}(10^{33}yrs)$	TECN	Rank
36	$p \rightarrow e^- \pi^+ \pi^+$	534.7,46.6,76.6	27.2	41.06	0.985	0.502	0.03	FREJ(91B)	A
37	$n \rightarrow e^- \pi^+ \pi^0$	1657.6,1394.7,102.8	81.8	70.17	0.439	0.236	0.029	FREJ(91B)	A
38	$p \rightarrow \mu^- \pi^+ \pi^+$	79.4,0.6,53.6	7.5	54.06	4.702	1.763	0.017	FREJ(91B)	A
39	$n ightarrow \mu^- \pi^+ \pi^0$	1899.5,192.398,197.6	42.6	74.56	0.897	0.472	0.034	FREJ(91B)	A
40	$p \rightarrow e^- \pi^+ K^+$	32.9,314.8,581.3	19.2	57.54	1.955	0.963	0.075	IMB3(99)	A
41	$p \rightarrow \mu^- \pi^+ K^+$	0.1,89.3,0.5	3.2	63.48	12.942	4.284	0.245	IMB3(99)	A
	Antilepton+Photon(s)								
ID	Channels	n_{bkg}	n_{90}	$\epsilon(\%)$	$ au_{10}(10^{33}yrs)$	$ au_3(10^{33}yrs)$	$\tau_{exp}(10^{33}yrs)$	TECN	Rank
42	$p \rightarrow e^+ \gamma$	97.8	17.7	75.88	2.8	1.442	0.67	IMB3(99)	A
43	$p ightarrow \mu^+ \gamma$	100.1	17.9	77.83	2.8366	1.4647	0.478	IMB3(99)	A
44	$n ightarrow \overline{ u} \gamma$	1011.0	53.7	86.69	0.827	0.444	0.55	SKAM(15)	C
45	$p \rightarrow e^+ \gamma \gamma$	97.8	17.7	76.04	2.8	1.44	0.1	FREJ(91)	A
46	$n ightarrow \overline{ u} \gamma \gamma$	1552.3	66.2	88.83	0.987	0.370	0.219	IMB3(99)	B

A: Its result is much better than the best limit so far, if we get 3 years' events, we can come out on top. In this rank, τ_3 is at least 3 times bigger than τ_{exp} .

B: In this rank, τ_3 is bigger than τ_{exp} . And this channel is worthwhile studying more.

C: We have a better result than before for 10 years' data, but $\tau_3 < \tau_{exp}$.

D: $\tau_{10} < \tau_{exp}$, The disparity between our outcome and theirs is a little big. We can do more but may do in vain.

E:There is a big tap comparing to current limit τ_{exp} , we would better give up it.

OPEN: There is a better method to take event selection or the result is not very reliable.

(4) Search for other new physics

DM annihilation in the Milk Way and Sun...:

- ✓ Monoenergetic neutrinos: $E_{\nu} = m_{DM}$;
- ✓ Produce both **coincident** and **single signals**;
- \checkmark Singles is complementary to \bar{v}_{e} analysis

Usual Dark Matter (WIMP) scatters in JUNO:

DM Velocity:
$$v_{\chi} \approx 10^{-3}c = 300 \ km/s$$

Recoil energy: $T_N = m_N v^2 * 2 \cos^2 \theta * \frac{m_D^2}{(m_D + m_N)^2} \approx m_N v^2 = \begin{cases} 12 \text{keV} \ (^{12}C) \\ 1 \ \text{keV} \ (p) \\ 1 \ \text{eV} \ (e^-) \\ \ll 0.7 \ \text{MeV} \end{cases}$

Two possible mechanisms $\rightarrow E_{vis} > 1 \text{ MeV}$:

There are many new physics models, can produce the relativistic DM. Please refer to 2207.02882 (Snowmass 2021) for more references.

Predicted JUNO sensitivities from theoretical papers

Strange Quark Matter (SQM):

- SQM is a hypothetical strongly interacting matter composed of roughly equal numbers of u, d, s quarks and a small amount of electrons; Absolutely stable; $\rho_N = 3.6 \times 10^{14}$ g/cm³
- \rightarrow A > 10⁷ Nuclearites (奇异核素), typical $\beta \sim 10^{-3}$ (galaxy velocity)

GUT magnetic monopoles:

GUTs predict existence of monopoles, which can be produced in the very early Universe

> Mass: $M_M \sim 10^{16} - 10^{18}$ GeV; Velocity: $\beta \sim 10^{-3}$; Charge : $g = n g_D$

Continuous trigger events in a line with the same energy for long time in JUNO LS!!!

Monopole catalyze proton decays:

- **Rubakov-Callen effect,** GUT model dependent
- > Catalysis cross section σ_R is the order of strong interaction

Monopole propagate in LS:

Discrete trigger events in a line with the same energy for long time in JUNO LS!!!

Detect neutrinos from Monopole-catalyzed proton decay in Sun:

 $M + p \rightarrow M + \mu^{+} + K^{0}, K^{0} + p \rightarrow K^{+} + n, K^{+} \rightarrow \mu^{+} + \nu_{\mu} (236 \text{ MeV})$ H.Hu, W.L. Guo et al, JCAP 06 (2022) 003

\overline{n} + nucleon annihilation in nucleus:

ID	Channel	ID	Channel
1	$p + \bar{n} \to \pi^+ + \pi^0$	9	$n + \bar{n} \to 2\pi^0$
2	$p + \bar{n} \to \pi^+ + 2\pi^0$	10	$n + \bar{n} \to \pi^+ + \pi^- + \pi^0$
3	$p + \bar{n} \to \pi^+ + 3\pi^0$	11	$n+\bar{n}\to\pi^++\pi^-+2\pi^0$
4	$p + \bar{n} \rightarrow 2\pi^+ + \pi^- + \pi^0$	12	$n + \bar{n} \rightarrow \pi^+ + \pi^- + 3\pi^0$
5	$p + \bar{n} \to 2\pi^+ + \pi^- + 2\pi^0$	13	$n + \bar{n} \to 2\pi^+ + 2\pi^-$
6	$p + \bar{n} \to 2\pi^+ + \pi^- + 2\omega$	14	$n + \bar{n} \to 2\pi^+ + 2\pi^- + \pi^0$
$\overline{7}$	$p + \bar{n} \rightarrow 3\pi^+ + 2\pi^- + \pi^0$	15	$n + \bar{n} \to \pi^+ + \pi^- + \omega$
8	$n + \bar{n} \to \pi^+ + \pi^-$	16	$n + \bar{n} \to 2\pi^+ + 2\pi^- + 2\pi^0$

Similar with Nucleon decays, ~ 2 GeV, more FSI

Will be analyzed in future

- > JUNO is one of future three influential nucleon decay experiments.
- > JUNO has competitive sensitivities for some nucleon decay channels!
- > JUNO can search some other new physical processes.

Thanks for your attention!