

Contribution ID: 111 Contribution code: RTA-1

Type: Oral Presentation

Improvement of CI-36 measurements at the Tsukuba 6 MV AMS facility

Wednesday, 23 October 2024 13:30 (20 minutes)

Long-lived nuclides ¹⁰Be, ¹⁴C, ²⁶Al, ³⁶Cl, ⁴¹Ca, ⁹⁰Sr, and ¹²⁹I have been successfully detected with the 6 MV accelerator mass spectrometer at the University of Tsukuba [1]. ³⁶Cl is one of the most difficult radionuclides to measure due to contamination with the interfering isobaric ³⁶S. Sulfur itself is easily present in the environment, making its removal difficult. In order to separate and discriminate ³⁶S, we have studied acceleration conditions, methods to reduce ³⁶S in the beam itself emitted from the Cs sputtering ion source, and to separate and identify the spectrum between ³⁶Cl and ³⁶S incident on the detector [2]. To reduce ³⁶S, we compared the material of the cathode in which the sample is loaded, a copper cathode filled with AgBr powder and a cathode with Ta metal attached. The sample cathode made of Cu, filled with AgBr, and with a 1 mm diameter hole had the lowest contamination of ³⁶S. When the sample volume is large, AgCl is placed on the entire surface. In addition, we attempted to suppress ³⁶S contamination by covering the surface of the wheel disk with a 0.5 mm Ta plate. As a result, the contribution of 36 S was reduced by a factor of 50. 36 Cl detection performances of Cl^{5+} (30.0 MeV), Cl^{7+} (48.0 MeV), and Cl^{8+} (54.0 MeV) were compared by acceleration at 6 MV. We also compared how the spectrum separation changes with the gas pressure in the gas ionization chamber. As a result, background values were 3×10^{-15} for all charge numbers q=5+, 7+, and 8+. Cl⁷⁺ (48.0 MeV) is commonly used for ³⁶Cl AMS at the University of Tsukuba because the beam transmittance is as high as about 14% and the effect of interfering nuclides on the spectrum is small. In this presentation, we will report on progress in ³⁶Cl AMS detection techniques and applied researches with the 6 MV tandem accelerator. References

[1] K. Sasa et al., Nucl. Instrum. Methods Phys. Res. B, 437 (2018) 98.

[2] S. Hosoya, K. Sasa et al., Nucl. Instrum. Methods Phys. Res. B, 438 (2018) 131.

Student Submission

No

Primary authors: Dr SASA, Kimikazu (University of Tsukuba); Mrs MATSUMURA, Masumi (University of Tsukuba); Mr YOSHIDA, Tetsuro (University of Tsukuba); Mr TAKAHASHI, Tsutomu (University of Tsukuba)

Presenter: Dr SASA, Kimikazu (University of Tsukuba)

Session Classification: Radiohalide Techniques and Applications

Track Classification: Radiohalide Techniques and Applications