Contribution ID: 247 Contribution code: NAT-7 ## Type: Oral Presentation ## Further Development of Manganese-53 AMS Nuclear Science Laboratory at the University of Notre Dame Monday, 21 October 2024 14:10 (20 minutes) 53 Mn is a rare, radioactive isotope with a half-life of 3.74 million years which has astrophysical applications as an early solar system chronometer and as a test of nucleosynthesis models of supernovae and asymptotic giant branch (AGB) stars. In addition, 53 Mn has geological applications in determining the exposure and burial age of ferromanganese minerals. To fully exploit the capabilities of 53 Mn as a chronometer, a sensitivity to the 53 Mn/ 55 Mn ratio of 1 \times 10 $^{-13}$ is necessary. Due to this low ratio, and interference from the naturally abundant 53 Cr isobar, Accelerator Mass Spectrometry (AMS) is the only technique sensitive enough to make these isotopic ratio measurements. However, 3 \times 10 $^{-13}$ is the detection limit among active facilities 1 . At the University of Notre Dame's Nuclear Science Laboratory (NSL), work is ongoing to develop 53 Mn AMS capability using a 10 MV FN tandem accelerator and a Browne–Buechner Spectrograph operated as a gasfilled magnet. During previous experiments, meteoric samples with 53 Mn/ 55 Mn ratios between 10 $^{-10}$ and 10 $^{-8}$ were measured. This presentation discusses the results of varying the experimental parameters on the detection limit. This work is supported by the National Science Foundation Grant No. NSF PHY-2310059. 1) Wallner, A., Fifield, L. K., Froehlich, M. B., Koll, D., Leckenby, G., Martschini, M., Pavetich, S., Tims, S. G., Schumann, D., & Slavkovská, Z. (2023). Accelerator mass spectrometry with ANU's 14 million Volt Accelerator. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 534, 48–53. https://doi.org/10.1016/j.nimb.2022.10.021 ## **Student Submission** Yes **Primary author:** MULCAHY, Griffin (University of Notre Dame) **Co-authors:** BAILEY, Thomas (University of Notre Dame); LUND, David (University of Notre Dame); PEELER, William (University of Notre Dame); BACALL, Calvin (University of Notre Dame); VON SEEGER, William (University of Notre Dame); COLLON, Philippe (University of Notre Dame) Presenter: MULCAHY, Griffin (University of Notre Dame) Session Classification: New and Advanced AMS Techniques Track Classification: New and Advanced AMS Techniques