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a phase-convention invariant measure of CP violation. In the standard parametrization
of the PMNS matrix
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cij ≡ cos θij (1.1.31)

sij ≡ sin θij (1.1.32)

this is proportional to sin δCP (and sines and cosines of the three mixing angles θ12, θ23,
θ13). Since this CP violation term is just the last term in the oscillation formula (1.1.22),
it is in principle possible to constrain δCP without preparing an anti-neutrino beam, by
measuring the energy-dependency of the appearance probability.

CP violation in neutrino oscillation demands three neutrino flavors as can be shown
by counting the number of CP violating complex phases (evidently J = 0 if U is real).
The PMNS matrix U is an element of U(N), which has N2 degrees of freedom (N2 − 1
from the traceless hermitian generators and one overall U(1) phase). U(N) contains the
(real) orthogonal matrices O(N) with N(N − 1)/2 degrees of freedom. This leaves us
with N(N + 1)/2 complex phases. We can now try to write U as a sandwich product of
2N diagonal phases and an O(N) core:

Uαi
?
= exp(iφα)Rαi exp(iψi) (R ∈ O(N)) (1.1.33)

where the equality holds if the number of independent degrees of freedom is N2. Such
diagonal phases are CP conserving (in fact have no effect on neutrino oscillation at all):

U∗
αiUβiUαjU

∗
βj = RαiRβiRαjRβj ∈ R. (1.1.34)

So we may think the number of CP violating phases for U(N) is max{N(N + 1)/2− 2N, 0}
(0, 0, 2, 5, . . . for N = 2, 3, 4, 5, . . .), requiring N ≥ 4 generations for CP violation. How-
ever, one overall phase of φα and ψi commutes with R (it’s just a c-number) and is thus
degenerate. The number of independent complex diagonal phases is therefore reduced by
1. This means the number of CP violating phases really is

#CPV = max

{
N(N − 3)

2
+ 1, 0

}
(1.1.35)

(#CPV = 0, 1, 3, 6, . . . for N = 2, 3, 4, 5, . . .) and CP violation in neutrino oscillation
becomes possible with N ≥ 3 generations. The diagonal phases that we were able to
ignore for neutrino oscillation (called Majorana phases), can still have a physical meaning
if the neutrino is Majorana, and play a role in neutrino-less double-beta decay.

The discussion above was given by Kobayashi and Maskawa [12] to explain the already
observed CP violation in the quark sector by introducing a third generation of quarks.
The mixing matrix is called the Cabibbo-Kobayashi-Maskawa (CKM) matrix and has
very small mixing angles unlike the PMNS matrix. This causes a very small value of the
Jarlskog constant J = (3.18± 0.15)× 10−5 [13]. When studying the impact on the size of
the baryon asymmetry of the universe (BAU) we get additional factors of squared mass
differences (m2
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Table III summarizes the fractional error on the ex-
pected number of SK events using a 1� variation of the
flux, cross-section, and far detector uncertainties.

E. Oscillation analysis

The analysis method here follows from what was pre-
sented in [1]. As described in Sec. I the three flavor
neutrino oscillation formalism is extended to include in-
dependent parameters sin2(✓23) and �m2

32 which only
a↵ect antineutrino oscillations. Any di↵erence between
sin2(✓23) and sin2(✓23) or �m2

32 and �m2
32 could be in-

terpreted as new physics.
With the number of events predicted in the antineu-

trino sample, the uncertainties on the background mod-
els have a non-negligible impact on the measurement of
sin2(✓23) and �m2

32. The largest is the contribution
from the uncertainty on sin2(✓23) and �m2

32 due to the
significant neutrino background in the antineutrino sam-
ple. This provides the motivation for a simultaneous fit
of the neutrino and antineutrino data sets.

The oscillation parameters of interest, sin2(✓23),�m2
32,

sin2(✓23) and�m2
32, are estimated using a maximum like-

lihood fit to the measured reconstructed energy spectra
in the far detector, for neutrino mode and antineutrino
mode µ-like samples. In each case, fits are performed
by maximizing the marginal likelihood in the two dimen-
sional parameter space for each pair of parameters. The
marginal likelihood is obtained by integrating over the
nuisance parameters f with prior probability densities
⇡(f), giving a likelihood as a function of only the rele-
vant oscillation parameters o:

L(o) =
Z binsY

i

Li(o, f)⇥ ⇡(f) df , (1)

where bins denotes the number of analysis bins. All other
oscillation parameters, except �CP , are treated as nui-
sance parameters along with systematic parameters and
are marginalized in the construction of the likelihood.
�CP is fixed to 0 in each fit as it has a negligible impact
on the disappearance spectra at T2K. Oscillation prob-
abilities are calculated using the full three-flavor oscilla-
tion framework [38], with sin2(✓23) and �m2

32 for ⌫, and
sin2(✓23) and �m2

32 for ⌫. Matter e↵ects, almost negli-
gible in this analysis, are included with a matter density
of ⇢ = 2.6 g/cm3 [39].

Confidence regions are constructed for the oscillation
parameters using the constant ��2 method [37]. We
define ��2 = �2 ln(L(o)/max(L)) as the logarithm of
the ratio of the marginal likelihood at a point o in the
sin2(

(

✓
)

23) – �(m)2
32 oscillation parameter space and the

maximum marginal likelihood. The confidence region
is then defined as the area of the oscillation parameter
space for which ��2 is less than a standard critical value.
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FIG. 1. Top: Reconstructed energy distribution of the 135 far
detector ⌫µ-CCQE candidate events (left) and 66 ⌫µ-CCQE
candidate events (right), with predicted spectra for best fit
and no oscillation cases. Bottom: Ratio to unoscillated pre-
dictions.

This method was used as the di↵erence between the con-
fidence regions produced by it and those obtained using
the Feldman-Cousins [40] method was found to be small.
For the Feldman-Cousins method, the critical chi-square
values were calculated for a coarse set of points in the
oscillation parameter space.

IV. RESULTS AND DISCUSSION

The reconstructed energy spectra of the events ob-
served during neutrino and antineutrino running modes
are shown in Figure 1. These are overlaid with the predic-
tions for the best fit values of the oscillation parameters
assuming normal hierarchy, and in the case of no oscilla-
tions. The lower plots in Fig. 1 show the ratio of data
to the unoscillated spectrum.
Assuming normal hierarchy, the best fit values ob-

tained for the parameters describing neutrino oscillations
are sin2(✓23) = 0.51 and �m2

32 = 2.53 ⇥ 10�3eV2/c4

with 68% confidence intervals of 0.44 – 0.59 and 2.40 –
2.68 (⇥10�3eV2/c4) respectively. For the antineutrino
parameters, the best fit values are sin2(✓23) = 0.42 and
�m2

32 = 2.55 ⇥ 10�3eV2/c4 with 68% confidence inter-
vals of 0.35 – 0.67 and 2.28 – 2.88 (⇥10�3eV2/c4) re-
spectively. The values for the inverted hierarchy can
be obtained by replacing �(m)2

32 by ��(m)2
31, e↵ectively

changing the sign of �(m)2
32 and shifting its absolute value

by ��m2
12 = �7.53 ⇥ 10�5 eV2/c4. Those results were

cross-checked using a second, independent, analysis.
A goodness-of-fit test was performed by comparing the

best fit value of the �2 to the values obtained for an
ensemble of toy experiments generated with systematic
variations and statistical fluctuations, giving a p-value of
96%.
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space for which ��2 is less than a standard critical value.
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FIG. 1. Top: Reconstructed energy distribution of the 135 far
detector ⌫µ-CCQE candidate events (left) and 66 ⌫µ-CCQE
candidate events (right), with predicted spectra for best fit
and no oscillation cases. Bottom: Ratio to unoscillated pre-
dictions.

This method was used as the di↵erence between the con-
fidence regions produced by it and those obtained using
the Feldman-Cousins [40] method was found to be small.
For the Feldman-Cousins method, the critical chi-square
values were calculated for a coarse set of points in the
oscillation parameter space.

IV. RESULTS AND DISCUSSION

The reconstructed energy spectra of the events ob-
served during neutrino and antineutrino running modes
are shown in Figure 1. These are overlaid with the predic-
tions for the best fit values of the oscillation parameters
assuming normal hierarchy, and in the case of no oscilla-
tions. The lower plots in Fig. 1 show the ratio of data
to the unoscillated spectrum.
Assuming normal hierarchy, the best fit values ob-

tained for the parameters describing neutrino oscillations
are sin2(✓23) = 0.51 and �m2

32 = 2.53 ⇥ 10�3eV2/c4

with 68% confidence intervals of 0.44 – 0.59 and 2.40 –
2.68 (⇥10�3eV2/c4) respectively. For the antineutrino
parameters, the best fit values are sin2(✓23) = 0.42 and
�m2

32 = 2.55 ⇥ 10�3eV2/c4 with 68% confidence inter-
vals of 0.35 – 0.67 and 2.28 – 2.88 (⇥10�3eV2/c4) re-
spectively. The values for the inverted hierarchy can
be obtained by replacing �(m)2

32 by ��(m)2
31, e↵ectively

changing the sign of �(m)2
32 and shifting its absolute value

by ��m2
12 = �7.53 ⇥ 10�5 eV2/c4. Those results were

cross-checked using a second, independent, analysis.
A goodness-of-fit test was performed by comparing the

best fit value of the �2 to the values obtained for an
ensemble of toy experiments generated with systematic
variations and statistical fluctuations, giving a p-value of
96%.
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Table III summarizes the fractional error on the ex-
pected number of SK events using a 1� variation of the
flux, cross-section, and far detector uncertainties.

E. Oscillation analysis

The analysis method here follows from what was pre-
sented in [1]. As described in Sec. I the three flavor
neutrino oscillation formalism is extended to include in-
dependent parameters sin2(✓23) and �m2

32 which only
a↵ect antineutrino oscillations. Any di↵erence between
sin2(✓23) and sin2(✓23) or �m2

32 and �m2
32 could be in-

terpreted as new physics.
With the number of events predicted in the antineu-

trino sample, the uncertainties on the background mod-
els have a non-negligible impact on the measurement of
sin2(✓23) and �m2

32. The largest is the contribution
from the uncertainty on sin2(✓23) and �m2

32 due to the
significant neutrino background in the antineutrino sam-
ple. This provides the motivation for a simultaneous fit
of the neutrino and antineutrino data sets.

The oscillation parameters of interest, sin2(✓23),�m2
32,

sin2(✓23) and�m2
32, are estimated using a maximum like-

lihood fit to the measured reconstructed energy spectra
in the far detector, for neutrino mode and antineutrino
mode µ-like samples. In each case, fits are performed
by maximizing the marginal likelihood in the two dimen-
sional parameter space for each pair of parameters. The
marginal likelihood is obtained by integrating over the
nuisance parameters f with prior probability densities
⇡(f), giving a likelihood as a function of only the rele-
vant oscillation parameters o:

L(o) =
Z binsY

i

Li(o, f)⇥ ⇡(f) df , (1)

where bins denotes the number of analysis bins. All other
oscillation parameters, except �CP , are treated as nui-
sance parameters along with systematic parameters and
are marginalized in the construction of the likelihood.
�CP is fixed to 0 in each fit as it has a negligible impact
on the disappearance spectra at T2K. Oscillation prob-
abilities are calculated using the full three-flavor oscilla-
tion framework [38], with sin2(✓23) and �m2

32 for ⌫, and
sin2(✓23) and �m2

32 for ⌫. Matter e↵ects, almost negli-
gible in this analysis, are included with a matter density
of ⇢ = 2.6 g/cm3 [39].

Confidence regions are constructed for the oscillation
parameters using the constant ��2 method [37]. We
define ��2 = �2 ln(L(o)/max(L)) as the logarithm of
the ratio of the marginal likelihood at a point o in the
sin2(

(

✓
)

23) – �(m)2
32 oscillation parameter space and the

maximum marginal likelihood. The confidence region
is then defined as the area of the oscillation parameter
space for which ��2 is less than a standard critical value.
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FIG. 1. Top: Reconstructed energy distribution of the 135 far
detector ⌫µ-CCQE candidate events (left) and 66 ⌫µ-CCQE
candidate events (right), with predicted spectra for best fit
and no oscillation cases. Bottom: Ratio to unoscillated pre-
dictions.

This method was used as the di↵erence between the con-
fidence regions produced by it and those obtained using
the Feldman-Cousins [40] method was found to be small.
For the Feldman-Cousins method, the critical chi-square
values were calculated for a coarse set of points in the
oscillation parameter space.

IV. RESULTS AND DISCUSSION

The reconstructed energy spectra of the events ob-
served during neutrino and antineutrino running modes
are shown in Figure 1. These are overlaid with the predic-
tions for the best fit values of the oscillation parameters
assuming normal hierarchy, and in the case of no oscilla-
tions. The lower plots in Fig. 1 show the ratio of data
to the unoscillated spectrum.
Assuming normal hierarchy, the best fit values ob-

tained for the parameters describing neutrino oscillations
are sin2(✓23) = 0.51 and �m2

32 = 2.53 ⇥ 10�3eV2/c4

with 68% confidence intervals of 0.44 – 0.59 and 2.40 –
2.68 (⇥10�3eV2/c4) respectively. For the antineutrino
parameters, the best fit values are sin2(✓23) = 0.42 and
�m2

32 = 2.55 ⇥ 10�3eV2/c4 with 68% confidence inter-
vals of 0.35 – 0.67 and 2.28 – 2.88 (⇥10�3eV2/c4) re-
spectively. The values for the inverted hierarchy can
be obtained by replacing �(m)2

32 by ��(m)2
31, e↵ectively

changing the sign of �(m)2
32 and shifting its absolute value

by ��m2
12 = �7.53 ⇥ 10�5 eV2/c4. Those results were

cross-checked using a second, independent, analysis.
A goodness-of-fit test was performed by comparing the

best fit value of the �2 to the values obtained for an
ensemble of toy experiments generated with systematic
variations and statistical fluctuations, giving a p-value of
96%.
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FIG. 1. Top: Reconstructed energy distribution of the 135 far
detector ⌫µ-CCQE candidate events (left) and 66 ⌫µ-CCQE
candidate events (right), with predicted spectra for best fit
and no oscillation cases. Bottom: Ratio to unoscillated pre-
dictions.

This method was used as the di↵erence between the con-
fidence regions produced by it and those obtained using
the Feldman-Cousins [40] method was found to be small.
For the Feldman-Cousins method, the critical chi-square
values were calculated for a coarse set of points in the
oscillation parameter space.

IV. RESULTS AND DISCUSSION

The reconstructed energy spectra of the events ob-
served during neutrino and antineutrino running modes
are shown in Figure 1. These are overlaid with the predic-
tions for the best fit values of the oscillation parameters
assuming normal hierarchy, and in the case of no oscilla-
tions. The lower plots in Fig. 1 show the ratio of data
to the unoscillated spectrum.
Assuming normal hierarchy, the best fit values ob-

tained for the parameters describing neutrino oscillations
are sin2(✓23) = 0.51 and �m2

32 = 2.53 ⇥ 10�3eV2/c4

with 68% confidence intervals of 0.44 – 0.59 and 2.40 –
2.68 (⇥10�3eV2/c4) respectively. For the antineutrino
parameters, the best fit values are sin2(✓23) = 0.42 and
�m2

32 = 2.55 ⇥ 10�3eV2/c4 with 68% confidence inter-
vals of 0.35 – 0.67 and 2.28 – 2.88 (⇥10�3eV2/c4) re-
spectively. The values for the inverted hierarchy can
be obtained by replacing �(m)2

32 by ��(m)2
31, e↵ectively

changing the sign of �(m)2
32 and shifting its absolute value

by ��m2
12 = �7.53 ⇥ 10�5 eV2/c4. Those results were

cross-checked using a second, independent, analysis.
A goodness-of-fit test was performed by comparing the

best fit value of the �2 to the values obtained for an
ensemble of toy experiments generated with systematic
variations and statistical fluctuations, giving a p-value of
96%.

Predicted	counts	for	
no	oscilla=on	

Observed	counts	
N
um

be
r	o

f	ν
μ	 PhysRevD.96.011102	

295 km

海抜 0 m 1700 m
池の山
1360 m

野口五郎岳
2924 m

スーパーカミオカンデ 前置検出器 J-PARC

ニュートリノビーム

T2K	Experiment	
2015	Nobel	price	in	physics	(Super-K,	SNO)	
Takaaki	Kajita,	Arthur	B.	McDonald	

J-PARC	proton	accelerator	

^ƵƉĞƌͲ<ĂŵŝŽŬĂŶĚĞ :ͲW�Z�EĞĂƌ��ĞƚĞĐƚŽƌƐ

EĞƵƚƌŝŶŽ��ĞĂŵ

Ϯϵϱ�Ŭŵ

Dƚ͘�EŽŐƵĐŚŝͲ'ŽƌŽ
Ϯ͕ϵϮϰ�ŵ

Dƚ͘�/ŬĞŶŽͲzĂŵĂ
ϭ͕ϯϲϬ�ŵ

ϭ͕ϳϬϬ�ŵ�ďĞůŽǁ�ƐĞĂ�ůĞǀĞů

Accelerator ν

Developments of neutrino oscillation analysis 
techniques toward a combined analysis of 

accelerator and atmospheric neutrinos 

Colloquium for Physics, 2021-01-15

Lukas Berns, Kuze Group

Constraining osc. params

• Precision oscillation study  
with accelerator  


• First observation of  
appearance in 2014


• Constraint on  through  
 vs.  

appearance probability 
 
but degenerate with mass ord. 
through weak matter effect

ν

νμ → νe

δCP
νμ → νe νμ → νe

, , , , , , νμ νμ νμ νμ νμ νμ νμ, , , , , , ντ ντ ντ νe νe νμ νμ

, , , , , , ν̄μ ν̄μ ν̄μ ν̄μ ν̄μ ν̄μ ν̄μ, , , , , , ν̄τ ν̄τ ν̄τ ν̄τ ν̄e ν̄μ ν̄μ

Neutrino mode

Anti-neutrino mode
14

~570 members, 78 institutes, 
14 countries(incl. CERN)

July 2023 Collaboration meeting at J-PARC

295km



Open questions about neutrino oscillation

•CP violation ?

•What is the neutrino mass ordering ?

•θ23 = π/4 ? 

Matter-antimatter 
asymmetry 

impacts to 0νββ 
→origin of ν mass

Flavor symmetry 
model

PoS(ICHEP2012)033
New physics from flavour Sheldon Stone

1. Introduction: Reasons for physics beyond the Standard Model

Although the Standard Model (SM) of particle physics provides an excellent description of
electroweak and strong interactions, there are many reasons that we expect to observe new forces
giving rise to new particles at larger masses than the known fermions or bosons. One oft noted
source of this belief is the observation of dark matter in the cosmos as evidenced by galactic angular
velocity distributions [1], gravitational lensing [2], and galactic collisions [3]. The existence of dark
energy, believed to cause the accelerating expansion of the Universe, is another source of mystery
[4]. The fine tuning of quantum corrections needed to keep, for example, the Higgs boson mass at
the electroweak scale rather than near the Planck scale is another reason habitually mentioned for
new physics (NP) and is usually called “the hierarchy problem” [5].

It is interesting to note that the above cited reasons are all tied in one way or another to
gravity. Dark matter may or may not have purely gravitational interactions, dark energy may be
explained by a cosmological constant or at least be a purely general relativistic phenomena, and the
Planck scale is defined by gravity; other scales may exist at much lower energies, so the quantum
corrections could be much smaller. There are, however, many observations that are not explained
by the SM, and have nothing to do with gravity, as far as we know. Consider the size of the quark
mixing matrix (CKM) elements [6] and also the neutrino mixing matrix (PMNS) elements [7].
These are shown pictorially in Fig. 1. We do not understand the relative sizes of these values or nor
the relationship between quarks and neutrinos.
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Figure 1: (left) Sizes of the the CKM matrix elements for quark mixing, and (right) the PMNS matrix
elements for neutrino mixing. The area of the squares represents the square of the matrix elements.

We also do not understand the masses of the fundamental matter constituents, the quarks and
leptons. Not only are they not predicted, but also the relationships among them are not understood.
These masses, shown in Fig. 2, span 12 orders of magnitude [7]. There may be a connections
between the mass values and the values of the mixing matrix elements, but thus far no connection
besides simple numerology exists.

What we are seeking is a new theoretical explanation of the above mentioned facts. Of course,
any new model must explain all the data, so that any one measurement could confound a model.
It is not a good plan, however, to try and find only one discrepancy; experiment must determine a
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δCP ≠ 0  and π ?

or θ23 > π/4 or θ23 < π/4 ? 
(octant)

m2 < m3 or m2 > m3 ?
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�Good performance for sub-GeV � detection
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FIG. 1. Observed ⌫e and ⌫̄e candidate events at SK.
Subfigure a (b) shows the reconstructed neutrino energy spec-
tra for the SK samples containing electron-like events in
neutrino(antineutrino)-mode beam running. The uncertainty
shown around the data points accounts for statistical uncer-
tainty. The uncertainty range is chosen to include all points
for which the measured number of data events is inside the
68% confidence interval of a Poisson distribution centred at
that point. The solid stacked chart shows the predicted num-
ber of events for the CP -conserving point �CP = 0 sepa-
rated according to whether the event was from an oscillated
neutrino or antineutrino or from a background process. The
dashed lines show the total predicted number of events for
the two most extreme CP -violating cases. Subfigure c shows
the predicted number of events for �CP = �⇡

2 and the mea-
sured number of events in the three electron-like samples at
SK. The predicted number of events is broken down into the
same categories as subfigures a and b and the systematic un-
certainty shown is after the near-detector fit. In both a and
b for all predictions, normal ordering is assumed, and sin2 ✓23
and �m2

32 are at their best-fit values. sin2 ✓13, sin
2 ✓12 and

�m2
21 take the values indicated by external world average

measurements [2]. The parameters accounting for systematic
uncertainties take their best-fit values after the near-detector
fit.
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FIG. 2. Particle identification in the SK detector. Dis-
tribution of the particle identification (PID) parameter used
to classify Cherenkov rings as electron-like and muon-like.
Events to the left of the blue line are classified as electron-
like and those to the right as muon-like. The filled histograms
show the expected number of single ring events after neutrino
oscillations, with the first and last bins of the distribution
containing events with discriminator values above and below
the displayed range respectively. The vertical error bars on
the data points are the standard deviation due to statistical
uncertainty. The PID algorithm uses properties of the light
distribution such as the blurriness of the Cherenkov ring to
classify events. The insets show examples of an electron-like
(left) and muon-like (right) Cherenkov ring.

We form five independent samples of SK events. For both
neutrino- and antineutrino-beam mode there is a sam-
ple of events that contain a single muon-like ring (de-
noted 1µ), and a sample of events that contain only a
single electron-like ring (denoted 1e0de). These single-
lepton samples are dominated by CCQE interactions. In
neutrino-mode there is a sample containing an electron-
like ring as well as the signature of an additional delayed
electron from the decay of a charged pion and subsequent
muon (denoted 1e1de). We do not use this sample in
antineutrino-mode because charged pions from antineu-
trino interactions are mostly absorbed by a nucleus before
they decay. Identifying both muon and electron neutrino
interactions in both the neutrino- and antineutrino-mode
beams allows us to measure the probabilities for four os-
cillation channels: ⌫µ ! ⌫µ and ⌫̄µ ! ⌫̄µ, ⌫µ ! ⌫e and
⌫̄µ ! ⌫̄e.
We define a model of the expected number of neutrino
events as a function of kinematic variables measured in
our detectors with degrees of freedom for each of the os-

• 50kton water 
Cherenkov detector 

• 4π acceptance 
• Recently, 0.03% 

Gd loaded  
→ enable use of 
neutron tagging

• Good e-like/μ-like 
separation (less than 
1% mis-PID@1GeV, 
single ring)

Far detector 
(FD)

Near detector (ND)

ND280 
(2.5° off-axis)

WAGASCI 
(1.5° off-axis)

INGRID 
(on-axis)

• ND280 det. in 0.2T UA1 
magnet 

• Various ν-N interaction 
measurements 

• ND280 upgrade is in 
progress

6



Latest oscillation analysis results
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energy,  

ε:efficiency
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NFD(Erec) =
X

Et

�FD(Et)Posc(Et)�(Et)✏FD(Et, Erec)

New FD samples 
(5→6 samples):  
Added multi-ring 
muon-like events 

Further improvements (more 
additional event samples etc..) 
are under preparation

What are the improvements ? 

New modeling of flux based 
on horn water, NA61/SHINE 
2010 replica target data

New ND samples (18→22): 
Separated events by π, p, γ 
multiplicity to constrain ν-N 
int. model

25.10.23 Tom Holvey | T2K Recent Results and Perspectives

New to 2022 - new ND280 samples
• 22 ND280 samples based on reconstructed 

topology

• New ND280  samples with  tagging

- : better able to constrain CCQE and 
2p2h models

- : filter out DIS and resonant  
background to increase purity in  
and  samples

•  samples unchanged

ν γ/p
p

γ CCπ0

CC0π
CC1π

ν̄

24

Figure by Lukas Berns

Neutrino interaction with 
nucleon bounded on nucleus
• Target nucleons are actually bounded on nucleus.
• Complication of multi-body

effect and clear binding.

Nuclear effect in neutrino interaction

Neutrino-nucleon 
interaction

Initial state of 
nucleon

Nucleon-nucleon 
interaction

Intra-nuclear 
hadronic interaction

Nucleon-nucleon correlation 

21• Beam monitors + hadron 
production experiments 
→ neutrino flux


• ND280 measurements  
+ interaction model 
+ external constraints 
→ unoscillated flux × xsec


• 6 samples at SK 
→  disappearance + 
      appearance
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Analysis 
strategy

μ+

μ+

μ−

μ−

22 samples = (5×1+3×2)×2 
separated by 

1. π,p,γ multiplicity 
→ interaction mode


2. lepton charge 
→ wrong-sign bkg 
(in antineutrino mode) 

3. C / C+O target  
→ ν+O xsec

Doubled amount of ND280 data since last analysis 
1.15e21 (0.834e21) POT in -mode ( -mode)ν ν̄ 15

Finer sample separa-
tion in this analysis
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CC Photon

Photon tag w/ECal 

for first time in 

oscillation analysis

data before 2020 + analysis improvements 
(shown at Neutrino2022)

Analysis 
strategy

• Beam monitors + hadron 
production experiments 
→ neutrino flux


• ND280 measurements  
+ interaction model 
+ external constraints 
→ unoscillated flux × xsec


• 6 samples at SK 
→  disappearance + 
      appearance
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μ-like ring e-like ring

Thu Jun 25 09:45:18 2020
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Figure 1: Schematic illustration of a νµ CC1π+ event in SK.

Part I

Development of νµ CC1π+ event selection

Increasing data statistics is crucial to improve the oscillation measurements. In the T2K beam
energy region, CC resonant 1π production is the second dominant charged current interaction
following CCQE. Adding the CC1π-dominant data samples to the oscillation analyses has po-
tential to increase T2K constraints on oscillation parameters. The samples including charged
pion can be constructed only for events accumulated with forward horn current operation pe-
riod, since identifying π− generated by anti-neutrino interaction is difficult because they are
easily captured by oxygen nuclei and have small probability to create a detectable signal in SK.
Recently, the νe CC1π sample with invisible π+ was developed and successfully implemented
into the oscillation analysis [1][2].

A schematic image of a νµ CC1π+ event is shown in Figure 1. A muon creates one solid
Cherenkov ring and a delayed decay-electron ring. A charged pion creates zero to two rings
depending on its FSI and SI. The muon generated by pion decay-at-rest has momentum below
Cherenkov threshold, thus cannot be observed in SK. A decay-electron is created if the pion is
not captured by an oxygen nucleus.

This part describes a study to construct T2K-SK event samples dominated by νµ CC1π+

events. Firstly, the selection optimization strategy and software setup are introduced in Section
2. Section 3 focuses on the set of pre-selections. The best set of selection cuts are searched in
Section 4. Neutrino energy reconstruction is discussed in Section 5, and its quality is checked in
Section 6.

1 Optimization strategy

1.1 Strategy

The ideal way to optimize event selections is to study sensitivities to oscillation parameters as
presented in [3]. To do that, we need to estimate systematic uncertainty beforehand. For νµ

4

18Far detector samples
New sample

➢ New analysis adds a far detector sample targeting 
νμ CC1π+ interactions in ν-mode

➢ Combination of 1Rµ + 2 M.e and 2 rings events
➢ Increase ν-mode µ-like statistics by ~30%
➢ Sensitive to oscillations, but higher energy than 

nominal µ-like sample
➢ Dominated by different interaction mode

First use of multi-ring events in T2K 1Rµ sample

New sample
ν-mode

T2K preliminary

fluctuated MC 
(not data)

7

constraint using Near Detector (ND) data 



Results - Jarlskog Invariant, JCP

• Introduced  as a measurable parameter 
to search for CP violation as it is PMNS 
parametrization independent.

• Although  results depend on the choice of 
using flat prior in , we still 
exclude  (implying CP conservation) 
at 90% credible interval.

• Preference for maximal CP violation still valid.

JCP

JCP
δCP/sin δCP

JCP = 0

δsin23c23s12c12s13
2c13 s≡J 

0.04− 0.03− 0.02− 0.01− 0 0.01 0.02 0.03 0.04
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 10, 2022 Preliminary−T2K Run 1

CPδprior flat in 

)CPδprior flat in sin(

 credible intervalσ1

 credible intervalσ2

 credible intervalσ3

Jarlskog Invariant, Both Hierarchies

• Note:  reactor constraint is applied ( )θ13 sin2 2θ13 = 0.0861 ± 0.0027
27

Jarlskog Invariant, JCP ≡ sin θ13 cos2 θ13 sin θ12 cos θ12 sin θ23 cos θ23 sin δCP

Large region of δCP  excluded at 3σ.  
CP conservation is excluded at 90% C.L.

Results on neutrino CP violation

Very digest of what we are seeing
vs. ଶଷ

ଶ allowed region

9

Size of CP violation in the 
three-generation mixing 
framework.

Size of CP violation in the 
three-generation mixing 
framework.

Theoretically possible

In these regions, CPV is large enough to produce matter-antimatter 
asymmetry in the universe in some general Leptogenesis models

T2K data prefers largest 
(negative) CP violation.
T2K data prefers largest 
(negative) CP violation.

Not trivial which prior 
is more ‘natural’
Not trivial which prior 
is more ‘natural’

Jarlskog invariant

NuFact Aug 1-6, 2022 Dr Laura Kormos, Lancaster University 21/31

More oscillation results

Bayesian posterior probabilities (with reactor constraint)

Jarlskog Invariant: J
CP

= sinθ
13

cos2θ
13

sinθ
12

cosθ
12

sinθ
23

cosθ
23

sinδ
CP

Jarlskog invariant  is
independent of PMNS
parameterization.
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Weak preference of normal ordering



Joint oscillation analysis

37

Ongoing 
joint fits NOνA + T2K  

810 km / 295 kmThe NOvA Experiment
• Long-baseline	neutrino	
oscillation	experiment

• NuMI beam:	νμ or	ν̅μ
• 2	functionally	identical,	tracking	
calorimeter	detectors
– Near:	300	T	underground
– Far:	14	kT on	the	surface
– Placed	off-axis	to	produce	a	
narrow-band	spectrum

• 810	km	baseline
– Longest	baseline	of	current	
experiments.

Take a tour 
in VR!

• Difference in baseline and peak energy 
→ different degeneracy between , MO,  octant constraints


• Many differences in analysis methods: interaction generators, use of ND observations, …


• First joint fit with unified statistical treatment, studies on impacts of potential correlations

δCP θ23

Slide from A. Himmel, Neutrino 2020
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SuperK (Far) Detector
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2011/3/11KEK Physics Seminar 15

Far Detector: SK-IV
�50kt Water Cherenkov detector (Fiducial 22.5kt)

@ underground (2700 m water equivalent)
�20’ ID PMT�11,129: 40% Photo coverage

+ 8’ OD PMT�1885 :
�Dead-time less DAQ system (2008~)
�Good performance for sub-GeV � detection

�1st oscillation maximum : E� ~0.6GeV at SK position.
�Charged current quasi-elastic (CC QE) interaction is 

dominant process.
• Good e / � separation
• Energy reconstruction: �E/E ~10% (�2-body kinematics)

��ICRR, Univ. of Tokyo

�e
neutron proton

e
�l

��
neutron proton

�
�l

Un-oscillated ��

Signal �e

MC

MC

3

Super-Kamiokande
� 50kton water
� 32kt ID viewed by 

20-inch PMTs
� ~2m OD viewed 

by 8-inch PMTs
� 22.5kt fid. vol. 

(2m from wall)
� Etotal=~4.5MeV 

energy threshold
� SK-I: April 1996~
� SK-IV is running

Electronics hutLINAC

Control room

Water and air 
purification system

SK

2km3km

1km
(2700mwe)

39.3m

41.4m

Atotsu
entrance

AtotsuMozumi

Ikeno-yama
Kamioka-cho, Gifu
Japan

Inner Detector (ID) PMT:   ~11100 (SK-I,III,IV),  ~5200 (SK-II)
Outer Detector (OD) PMT: 1885

ID

OD

http://www-sk.icrr.u-tokyo.ac.jp/sk/

See J. Wilkesʼ talk
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L = 10~30km

L=13000km

p, He ...

p, He ...

p, He ...

ν

ν

ν
L = 10~30km

L=13000km

p, He ...

p, He ...

p, He ...

ν

ν

ν

• Different energies, baselines can resolve the degeneracies between 
mass ordering and δCP  and/or  θ23 octant and δCP 

• It is important to study possible correlations in the systematics errors 
between the experiments

14

Disentangling neutrino oscillation through combinations

Combinations of experiments resolve 
degeneracies between unknown 
parameters

- Experiments have different L, E; 
different oscillation 
probabilities break degeneracies

- T2K is combining analyses with 
SK (released result) and NOvA 
(coming soon) 

T2K NOvA

Baseline 295km 810km

Peak neutrino energy 0.6 GeV 2 GeV

CP effect 32% 22%

Matter effect 9% 29%

18 Feb. 19, 2024 Alexander Booth | NPB 2024: NOvA 

Combining Long-baseline Experiments

Joint Fit Results                               Zoya Vallari, Caltech                       Feb 16, 2024

Far Detector

nµ, n e, 
n t

Fermilab Far Detector

Near Detector 810 km

13

Japan

295 km
Tokai
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USA Fermilab

Ash River, MN

810 km
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• Neutrinos generated from primary cosmic rays in 
atmosphere: 


• Many  samples over large energy range


• Zenith angle ~ propagation length L

p + X → π± + ⋯ → μ+ + ν(−)
μ + ⋯

e/μ/π0

32

FHC mode (mostly ⌫) RHC mode (mostly ⌫ )
Single Ring e-like 0 decay e� Single Ring e-like 0 decay e�

Single Ring µ-like 1 decay e� Single Ring µ-like 1 decay e�

Single Ring e-like 1 decay e�

Table 2: List of T2K samples

3.2 True energy distribution173

The SK atmospheric samples cover a wide range of neutrino energies. Figure 2 shows the true174

neutrino energy distributions of the di↵erent atmospheric samples. Neutrino oscillations are175

taken into account with true values set to the Asimov set A (described in table 3) commonly176

used in T2K analysis.177
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Figure 2: Neutrino energy distribution of the atmospheric samples, normalized to the 3244.4
days of SK-IV livetime.

The atmospheric samples cover a larger range of energies and more topologies than the T2K178

beam samples, but some of the sub-GeV samples (table 1) look similar in terms selections to the179

T2K ones (table 2). Figure 3 shows the area-normalized neutrino energy distributions of the 3180

beam FHC single-ring events and their atmospheric counterparts. It can be seen that although181

they correspond to similar neutrino energies, the corresponding samples from the 2 experiments182

do not have the same spectra. This is due partly to flux di↵erences, but also to the fact that183

the event selection criteria are similar but not identical between the 2 experiments as discussed184

in [3].185

3.3 Breakdown of the di↵erent samples by interaction modes (Dan)186

Mainly plots. That’s a number of them, but seems relevant for discussion of interaction model.187

Probably one plot per sample, as a function of variable of interest (Erec for T2K and p for SK188

atm). Could alternatively put only plots for representative atm samples here, and the remaining189

8

SK+T2K work in progress

Accordingly, an antineutrino enriched subsample is
extracted from the single-ring multi-GeV e-like sample
by additionally requiring there are no decay electrons
present. This cut defines the single-ring multi-GeV ν̄e-like

sample and its rejected events form the single-ring
multi-GeV νe-like sample. After this selection the fractions
of charged-current electron neutrino and antineutrino
events in the νe-like sample are 62.1% and 9.0%,
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FIG. 5. Data and MC comparisons for the entire Super-K data divided into 19 analysis samples. Samples with more than one zenith
angle bin (cf. Table II) are shown as zenith angle distributions (second through fifth column) and other samples are shown as
reconstructed momentum distributions (first column). Lines denote the best fit MC assuming the normal hierarchy. Narrow panels below
each distribution show the ratio of the data to this MC. In all panels the error bars represent the statistical uncertainty. In this projection
each bin contains events of all energies, which obscures the difference between the hierarchies. If the inverted hierarchy MC were also
drawn it would lie on top of the normal hierarchy line and for this reason it is not shown here. Figure 10 provides a better projection for
comparing the hierarchies.
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ATMOSPHERIC NEUTRINO OSCILLATION ANALYSIS … PHYS. REV. D 97, 072001 (2018)

072001-9

From PRD 97, 072001 (2018) 

oscillation

𝒪(10 km)13,000 km 𝒪(100 km)

SuperK experiment 
atmospheric neutrinos

T2K, SK, NOvA can provide 
complementary information

atmospheric 
+ accelerator



SK+T2K combined results

A. Eguchi      SK+T2K joint analysis        NNN23 @ Procida      Wednesday, 11th October, 2023
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Data Fit SK+T2K/T2K/SK Comparison
•To understand the contributions of each sample, T2K-only and SK-only (with T2K near detector 

constraint) fits are also performed. 
•The  and  constraints are dominated by T2K, but SK also contributed.δCP Δm2

32

Comparison of the  and  posterior distribution for the fit with different sets of samplesδCP Δm2
32

SK+T2K preliminary, Analysis 1 SK+T2K preliminary, Analysis 1

A. Eguchi      SK+T2K joint analysis        NNN23 @ Procida      Wednesday, 11th October, 2023
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Data Fit SK+T2K/T2K/SK Comparison
•There is some tension between SK and T2K for , and the joint fit therefore has a very 

similar likelihood in both lower and upper octant.
sin2 θ23

Comparison of the  posterior distribution for the fit with different sets of samplessin2 θ23
SK+T2K preliminary, Analysis 1

• CP conservation (δCP=0, π) is excluded around 2σ.  SK provides 
additional rejection of δCP=0 

• Weak preference for normal ordering with 90% posterior probability 

• Joint fit has no strong octant preference 
10



Slide by Ed Atkins (ICL) at KEK seminar 16 Feb 2024 
(also FNAL Wine&Cheese seminar by Zoya Vallari)

NOvA+T2K combined results

11
Ed Atkin, Imperial College London

41

Comparison with
NOvA-only & T2K-only fits

● The joint analysis relieves differences in 

the Normal Ordering where the individual 

experiments prefer slight different parameter 

regions.

● Joint-fit gains sensitivity in the Inverted 

Ordering where there was significant 

overlap in the posterior probability for the 

individual experiments.

With reactor constraint

With reactor constraint



T2K enters a new phase
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Expected Performance  

•Improved kinematic range 
•Better efficiency for the entire phase space (similar to the far-detector) 
•3D tracking for both lepton and hadrons. 

- Allow access to transverse variables. 
- Better understanding of nucleon FSI and other nuclear effects. 
- Reduce neutrino energy bias. 

•Better separation of electron/photon.
Neutron detection using ToF

Muon detection efficiency vs angle Electron/photon separationEfficiencies as a function of momentum
BDTG response

Electron
Photon

ND280 upgrade

Replace P0D with 
3D scintillation detector + 
high-angle TPCs +  
TOF enclosure

→ 4π acceptance like SK

→ lower (proton) mom. threshold

Reduce xsec systematics and better 
understanding of nuclear effects.

46

Beam line upgrade

14

High-Angle atmospheric pressure TPCs. These three detectors form approximately a cube

with 2m-long sides (Fig. 1.1). It is positioned in the upstream part of the ND280 magnet and is

surrounded by six thin Time-of-Flight scintillator layers. In the most upstream part of ND280,

we will keep the P0D Upstream Calorimeter, with 4.9 radiation lengths, as a veto and to detect

neutrals. The downstream part of ND280, namely three TPCs, two scintillator detectors FGD

and the full calorimeter system will remain unchanged, as well as the muon-range detector

SMRD. Figure 1.3 presents a general view of the B1 floor of the ND280 pit, with the magnet

in the open position. The reference system shown in the same figure has the z axis along

the neutrino beam direction (longest axis of the ND280 detector), the y axis in the vertical

direction. The magnetic field is parallel to the x axis.

This configuration achieves a full polar angle acceptance for muons produced in charged-

current interactions. The tracking of charged particles in the Super-FGD is also very efficient.

Figure 1.1: CAD 3D Model of the ND280 upgrade detector. In the upstream part (on the left in the
drawing) two High-Angle TPCs (brown) with the scintillator detector Super-FGD (gray) in the middle
will be installed. In the downstream part, the tracker system composed by three TPCs (orange) and the
two FGDs (green) will remain unchanged. The TOF detectors are not shown in this plot. The detector
is mechanically mounted on the basket, a steel beam structure (light gray), supported at both ends.
The beam is approximately parallel to the z axis, the magnetic field is parallel to the x axis.

An example of the level of information provided by the current ND280 is shown by the

event display of a neutrino interaction shown in Fig. 1.2.

new

CERN-SPSC-2019-001 
arXiv:1901.03750 [physics.ins-det]

• Increase beam power from ~500 kW to 
1.3 MW via upgrades to main ring power 
supply and RF (mostly increased rep rate)


• Many upgrades to neutrino beam line 
(target, beam monitors, …) ongoing to 
accept 1.3 MW beam


• Increase horn current 250 kA → 320 kA 
for ~10% more neutrinos/beam-power 
and reduced wrong-sign background

TDR: arXiv:1908.05141 [physics.ins-det]
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T2K Target POT (Protons-On-Target)

Target MR beam power and accumulated POT 
as a function of Japanese Fiscal Year (2)

• Red solid line : target MR beam power 
• Blue solid line : target accumulated POT

Target MR beam power and accumulated POT 
as a function of Japanese Fiscal Year (2)

• Red solid line : target MR beam power 
• Blue solid line : target accumulated POT

New POT plot assuming 4 month/year

2021 2022 2023 2024 2025 2026 20272020

T2K Projected POT (Protons-On-Target)

T2K Work in Progress

Aiming for 320 kA operation in next run!

Super-FGD MC 
Work in Progress

Tuesday afternoon, Session II parallel, 
Jaafar Chakrani, 

“The T2K near detector Upgrade”

Muons in TPC or 
stopping in SuperFGD

Muons in 
TPC only

Current efficiency

13

J-PARC accelerator/beamline upgrade
❖ Magnet power supply of accelerator was 

upgraded for faster cycle (2.48s → 1.36s) 

❖ New electromagnetic horn with improved 
cooling capacity was installed.  Horn power 
supply was also upgraded. 

❖ Successfully achieved 710kW stable 
operation with 320kA of horn current  

❖ Also, 760kW continuous operation  
for 40mins on 2023/Dec/25

x ~1.5 more neutrinos/second 
compared to before the upgrade !! 

(beam power & horn ) 
Still in progress toward 1.3MW

Improved electromagnetic horn



T2K ND280 upgrade

加速器だから見える世界。

ND280: On-site Detector Facility
• T2K ND-upgrade:
• New sub-detectors (SuperFGD, HA-TPC, TOF) are partially installed into UA1-magnet, and 

its commissioning with neutrino beam has been started.
• Power Supply for UA1 magnet: (International contribution to T2K)
• Original manufacturer abroad is no longer in existence.

à KEK arranged for inspection work to be performed by a Japanese domestic contractor 
before the beam period from Nov. 2023. à Magnet is in operation from Nov. 2024!

• Independent experimental programs are approve in J-PARC PAC.
• E71/NIJNA (Running). E83/SUBMET (Data taking from 2024)

ND280 magnet power supplyTOF

SFGD

HA-TPC

Features of the upgraded detector 
・Replacing P0D keeping downstream FGDs/TPCs 
・Two TPCs to cover high angle from scintillator target 
・New scintillator detector, SuperFGD, is adopted 
・Total target mass：2.2t → 4.3t 
→ Large target mass & improved detectors in the dipole magnet 

Magnet 
yoke 
& coils 

FGDsTPCs
P0D

ν beam

ECAL
TPCs

ToF detectors 

Upgraded ND280Current ND280
High-Angle TPCs

SuperFGD

7.6 m

ND280 upgrade

 /3023

今後の挑戦 ①：T2K-II実験

2026年まで実験を延長 
・陽子ビーム強度を1.3 MWに 
・ν生成施設の大強度化対応

2022年に前置検出器を増強 
・新しい検出器レイアウト 
・キューブ積層型検出器

SuperFGD

• New detectors (SuperFGD, High-Angle 
TPC, TOF) are partially installed into 
UA1-magnet

Proton reco efficiency Muon acceptance Proton reco efficiency Muon acceptance 
New capability to deeply 
understand neutrino 

interactions 

High-Angle TPC

2x106 of 1cm3 
scintillator cubes

Upgraded
Original ND280
ν-N model 



An event display of SFGD (3 directions)

An event display of upgraded ND280

Commissioning with 
neutrino beam has 
been started ! 

x-z view

x-y view z-y view



Prospects

• With 10 x 1021 POT, T2K will have world leading CPV sensitivity  
• It is crucial to reduce systematic errors, and this will be achieved with 

the upgraded ND280 data

δCP = -π/2

1609.04111 [hep-ex]

16

https://arxiv.org/abs/1609.04111


Summary
๏ Conservation of CP symmetry excluded at 90% C.L. (latest T2K results 

with several improvements) 

๏ New results from two joint analyses : SK+T2K and NOvA+T2K 

๏ T2K enters a new phase with significantly improved sensitivity for 
neutrino oscillation  

- Started data taking with upgraded accelerator neutrino beam and 
new detectors  

- Stay tuned for exciting results in future ! 

17
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Δm232 and θ23

• World-leading measurement of atmospheric parameters  
(|Δm232| precision is ~3% level) 

• Still compatible with both θ23 octants 19



Jaafar Chakrani (LLR) NOW 2022 - Sep 6th, 2022

Neutrino mode

Antineutrino mode

Reconstructed transverse 
momentum imbalance δpT

Phys. Rev. D 105,032010

35

● Need the reconstruction of both muons and nucleons

● Probe nuclear effects (Fermi motion, FSI, ...)

X.-G. Lu

Nucleon bound within nuclear target

The bulk probes 
Fermi motion

New observables: transverse kinematic imbalance
For more details, see:
* Phys Rev C 94, 015503
* Talk by X.-G. Lu at NEUTRINO2022



Longer term analysis plans

• Data with ND upgrade


• Model developments for 
C/O xsec correlations 

34

Jaafar Chakrani (LLR) NOW 2022 - Sep 6th, 2022

Future Oscillation Analysis? 46

● We can use T2K projections of POT 
assuming a scenario where     and     beam 
modes are alternated yearly to evaluate the 
impact of adding such samples on the 
neutrino interaction model uncertainties

● Significant improvement is expected on 
constraining uncertainties at the ND with the 
Upgrade

● The use of nucleon information with 
(Evis, 𝛿p𝖳) allows larger constraints especially 
on the Fermi motion uncertainties

: Current ND280 (no Upgrade)
     : ND280 Upgrade using muon kinematics only
   : ND280 Upgrade using (Evis, 𝛿p𝖳) (when reconstructing a nucleon)

Carbon Spectral Function uncertainties
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Now 2027

from J. Chakrani, NOW 2022

• WAGASCI-BabyMIND

• different neutrino flux

• water target
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J-PARC neutrino beamline
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