

THE NOVA EXPERIMENT: LATEST RESULTS

Alexander Booth, for the NOvA Collaboration International Symposium on Neutrino Physics & Beyond, Hong Kong February 19, 2024

Open Questions

Sandbox Studio, Chicago

What is the neutrino mass ordering? Do neutrinos violate CP symmetry?

Sandbox Studio, Chicago

How are nuclear effects changing the interaction probability of neutrinos?

Are 3-flavour oscillations the full

picture?

Sandbox Studio, Chicago

In This Talk...

3 flavour oscillations via a new, alternative statistical treatment.

New ν_{μ} CC cross section measurement with a focus on nuclear effects - e.g. 2p2h/ MEC interactions.

Phys.Rev.Lett. 127 (2021) 20, 201801

NOvA Overview

- Long-baseline neutrino oscillation experiment.
 - NuMI **neutrino beam** at Fermilab.
 - **Near detector** to measure beam before oscillations.
 - **Far detector** measures the oscillated spectrum.
- Primary goals are to study 3-flavour oscillations via:

$$\begin{array}{c} \nu_{\mu} \rightarrow \nu_{\mu} , \nu_{\mu} \rightarrow \nu_{e} \\ - \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu} , \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e} \end{array}$$

and measure neutrino cross sections.

The NOvA Detectors

- Both are large, (FD 60 m long).
- Functionally identical: consist of extruded PVC cells filled with 11 million litres of liquid scintillator.
- Arranged in alternating directions for 3D reconstruction.

The NOvA Detectors

- Light produced when charged particle passes through cells.
- The light is picked up by wavelength shifting fibre. Transported to an Avalanche PhotoDiode - light collected and amplified.
- Image hadronic recoil system to ~ 5 MeV / cell sensitivity and ~ cm-scale tracking resolution.

Neutrino Interaction Types

Neutrino Interaction Types

Cross Section Result

<u>k</u>

(Both) double differential.

(Both) focus on sensitivity to 2p2h / MEC events.

Muon System

- **Exclusive**: events must have exactly one reconstructed track:
 - Low hadronic energy.
 - Boost MEC, reduces DIS and RES.
- Cross section reported at 115 kinematic points:
 - Typically 12 15% uncertainty.
 - Dominated by flux systematic.

MEC events

Muon System

- **Exclusive**: events must have exactly one reconstructed track:
 - Low hadronic energy.

12

- Boost MEC, reduces DIS and RES.
- Cross section reported at 115 kinematic points:
 - Typically 12 15% uncertainty.
 - Dominated by flux systematic.

3 Flavour Oscillation Results

Alternative Statistical Treatment

- Markov Chain Monte Carlo Bayesian analysis.
- Allows the data to be examined in new ways.
- Conclusions are the same as frequentist results, preference for the Normal Ordering and Upper Octant of $\sin^2 \theta_{23}$.

Exclude IO
$$\delta_{CP} = \frac{\pi}{2}$$
 at > 3σ
Disfavour NO $\delta_{CP} = \frac{3\pi}{2}$ at ~ 2σ

NOvA-only θ_{13} & θ_{23}

Both Orderings

- NOvA usually uses reactor θ_{13} constraint in the fit, here θ_{13} is measured by NOvA.
- Larger θ_{13} would favour the lower octant for θ_{23} and vice-versa.

•
$$\sin^2 2\theta_{13} = 0.085^{+0.020}_{-0.016}$$

Consistent with reactor experiments.

T2K-NOvA Joint Fit

Combining Long-baseline Experiments

Combining Long-baseline Experiments

Why Combine T2K & NOvA?

- Complementarity between the two experiments provides the power to break degeneracies.
 - Joint Analysis probes different oscillation environments, lifting degeneracies of individual experiments.
- In-depth review of:
 - Models, systematic uncertainties and possible correlations.
 - Different analysis approaches driven by contrasting detector design.
- Full implementation of:
 - Energy reconstruction and detector response of both experiments.
 - Combined detailed likelihood of both experiments.
 - Consistent statical inference across full dimensions of phase space.

2.477±0.035 1.4%

2.44 ±0.05 2.0%

2.571±0.060 2.3%

 $2.79 \pm 0.12 \quad 4.3\%$

 $2.58 \ ^{+0.28}_{-0.32} \ 11.6\%$

2.0%

3.1%

2.4%

2.9%

3.8%

 2.53 ± 0.05

 $2.45 \ ^{+0.07}_{-0.08}$

 $2.484_{-0.060}^{+0.057}$

 2.41 ± 0.07

 $2.40 \ ^{+0.06}_{-0.12}$

Smallest uncertainty on $|\Delta m_{32}^2|$ as compared to other previous measurements.

2.9

NOvA + T2K

T2K

NOvA

MINOS+

IceCube

SuperK

RENO

RENO

20

Daya Bay

nGd

nGd

 nH

2.2

2.3

2.4

2.5

 $|\Delta m^2_{32}|, 10^{-3} \text{ eV}^2$

2.6

2.7

2.8

SuperK+T2K

Preliminat

2.6

CP Violation

- Jarlskog-invariant is parameterisationindependent* way to measure CP violation.
- $J = \sin \theta_{13} \cos^2 \theta_{13} \sin \theta_{12} \cos \theta_{12} \sin \theta_{23} \cos \theta_{23} \sin \delta_{CP}$ $J = 0 : CP \text{ conversed}, J \neq 0 : CP \text{ Violation}$
- J = 0 lies outside of the 3σ credible interval for the Inverted Ordering.
- For Normal Ordering, a considerably wider range of probable values for *J*.

<u>*Phys. Rev. D 100, 053004 (2019)</u>

- NOvA has performed two new cross section measurements sensitive to MEC interactions.
 - ▶ Papers for both currently in internal review (targeting PRD).
- NOvA now has a second statistical treatment to probe 3 flavour oscillations.
 - Used it to reanalyse the "2020" dataset.
 - \blacktriangleright Enabled an independent measurement of θ_{13} , consistent with reactor experiments.
- NOvA and T2K have performed a joint fit of their neutrino data.
 - Smallest uncertainty on $|\Delta m^2_{32}|$ as compared to previous measurements.
 - A small preference for the Inverted Ordering shown.
 - Normal Ordering permits a wide range of permissible J, while the CP conserving value for the Inverted Ordering falls outside of the 3σ credible interval.
- NOvA and T2K are actively exploring the scope and timeline for the next steps to take this work forward!
- Neutrino beam returns this month!

NOvA In London, Summer 2023

NuMI Off-axis Narrow Band Beam

• Peak flux around 2 GeV.

• High ν_{μ} ($\bar{\nu}_{\mu}$) purity.

POT Collected Against Time

Selecting & Identifying Neutrinos

- Each type of neutrino event leaves a unique signature.
- Deep learning is used to aid with classification:
 - Cross section analyses use it to identify **single particles**.
 - Oscillation analyses use a convolution visual network to identify whole events.

Systematic Uncertainties with p_t Extrapolation Σ

• Overall systematic reduction is 5-10%.

- 30% reduction in cross-section uncertainties.
 - Reduces the size of systematics most likely to contain "unknown unknowns."
 - Slight increase in systematics on lepton reconstruction.

ν_{μ} and $\bar{\nu}_{\mu}$ Data at the Far Detector

ν_e and $\bar{\nu}_e$ Data at the Far Detector

 $>4\sigma$ of $\bar{\nu}_e$ appearance

 δ_{CP}

• No strong asymmetry in the rates of appearance of ν_e and $\bar{\nu}_e$.

 δ_{CP}

- No strong asymmetry in the rates of appearance of ν_e and $\bar{\nu}_e$.
- \bullet Disfavour hierarchy- δ_{CP} combinations which would produce asymmetry.

Exclude IH
$$\delta_{CP} = \frac{\pi}{2}$$
 at > 3σ
Disfavour NH $\delta_{CP} = \frac{3\pi}{2}$ at ~ 2σ

- No strong asymmetry in the rates of appearance of ν_{ρ} and $\bar{\nu}_{\rho}$.
- Disfavour hierarchy- δ_{CP} combinations which would produce asymmetry.

Prefer:

Normal Hierarchy at 1σ Upper Octant at 1.2σ

VOvA Preliminar

Future Prospects

- Increasing sensitivity to the mass ordering to come, will more than double the dataset in both beam modes.
- Greater than 3 σ mass ordering sensitivity for 30 40% of δ_{CP} values.

Future Prospects

Models & Systematics

Challenge: Decide what common physics parameters the two experiments have, should they be correlated and by how much.

Z. Vallari

Studying Correlations

- Strategy: evaluate a range of artificial scenarios to asses the impact of possible correlations:
 - E.g, fabricate parameters for each experiment which should have significant bias on Δm_{32}^2 and $\sin^2 \theta_{23}$ (size of uncertainty comparable to the statistical uncertainty).
 - Study the impact of fully correlating, uncorrelating and fully anti-correlating these parameters.
 - Uncorrelated and correctly correlated (full correlation) credible intervals agree very well while incorrectly correlating systematics shows a bias -> leaving systematics like these uncorrelated wouldn't have a significant impact in the analysis.

Studying Alternate Models

- Ensure analysis is robust to **alternate neutrino interaction models**.
 - Generate **mock data** by changing part of simulation to use an alternative model.
 - Fit these mock datasets and check impact on oscillation results.
- Pre-decided thresholds for bias:
 - Change in width of 1D intervals should be no larger than 10%.
 - Change in central value should be no larger than 50% of systemic uncertainty.
- Investigated a range of alternative models at different oscillation points.
 - Example: suppression in single pion channel seen in MINERvA results*.
 - No alternative model test failed the preset threshold for bias.

*Phys. Rev. D 100, 072005 (2019)

Mixing Angles: θ_{23}

CP Violation

- For both mass orderings: $\delta_{--} = \frac{\pi}{-}$ lies outside of the 3σ credible
- $\delta_{CP} = \frac{\pi}{2}$ lies outside of the 3σ credible interval.
- In the Normal Ordering:
 - Broad range of permissible δ_{CP} values.
- In the Inverted Ordering:
 - CP conserving values $\delta_{CP}=0$ and $\delta_{CP}=\pi$ lie outside the 3σ credible interval.

An Overview

