The Hyper-Kamiokande Experiment

Francesca Di Lodovico King's College London

for the Hyper-Kamiokande Collaboration

International Symposium on **Neutrino Physics and Beyond**

HKUST - 19-21 February 2024

NIKKEN SEKKEI

Three generations of Kamiokande

Kamiokande (1983 - 1995)

SN1997A

Super-Kamiokande

(1996-)

20x

Discovery of neutrino oscillations

Data

Takayama (1998)

Hyper-Kamiokande (2027-)

CP, astrophysics, rare decays

Collaboration

•22 countries, 104 institutes, ~580 people as of February 2024, and growing ~25% Japanese/~75% non-Japanese.

Europe	344 members	Asia	155 members
Armenia	3	India	10
Czech	8	Korea	16
France	43	Japan	129
Germany	1		
Greece	4	Oceania	7 members
Italy	58	Australia	7
Poland	45	Americas	62 members
Russia	22	Brazil	3
Spain	46	Canada	42
Sweden	5	Mexico	9
Switzerland	14	USA	8
Ukraine	3	Africa	II members
UK	92	Morocco	

November 2023 Collaboration Meeting at Kamioka

Hyper-Kamiokande Experimental Configuration

650 metres (2,130 ft) under the peak of Nijuugo Mountain

Hyper-Kamiokande "far" detector is L=295km away from the beam source.

J-PARC Neutrino Beam

Off-axis at 2.5° neutrino beam to achieve maximum neutrino flux at oscillation maximum of 0.6 GeV.

- Unknown mass ${\color{black}\bullet}$ ordering (solid vs dashed) complicates δ_{CP} measurement
- Hyper-K can use atmospheric data to exclude incorrect MO

Neutrino Oscillation Open Questions

- Is there a CP violation? Does $\sin \delta_{CP} = 0$? • Is θ_{23} maximal (= 45°)?
 - If not, which octant ($< \text{ or } > 45^\circ$)?
- Which mass ordering? $\Delta m_{23}^2 < \text{or} > 0$?

Atmospheric	Solar
Ο	X
Ο	X
\checkmark	X
\checkmark	X
\checkmark	X
X	\checkmark
X	\checkmark

Drives sensitivity Enhances sensitivity Negligible sensitivity

power and running 1:3 with ν : $\overline{\nu}$ (best current estimate)

 $\sin \delta_{CP} = 0$ exclusion as a function of true δ_{CP} for **10 HK-years**

Hyper-K preliminary True normal ordering (known), 10 years $(2.7 \times 10^{22} \text{ POT } 1:3 \text{ v}:\overline{v})$ $\sin^2\theta_{13}=0.0218\pm0.0007$, $\sin^2\theta_{23}=0.528$, $\Delta m^2_{32}=2.509\times10^{-3} eV^2/c^4$

CP Violation Measurement Prospects with Beam Sensitivities to exclude sin $\delta_{CP} = 0$ for different systematic models. obtained for a 1.3MW beam power and running 1:3 with ν : $\overline{\nu}$ (best current estimate) Proportion of true δ_{CP} values excluding $\sin \delta_{CP} = 0$ $\sin \delta_{CP} = 0$ exclusion as a function of true δ_{CP} for at 3σ and 5σ C.L. as a function of HK-years. for HK-years for improved syst. error at 3σ Statistics only Improved syst. (v_e / \overline{v}_e xsec. error 2.7%) HK 10 years sin $\delta_{\text{CP}}=0$ exclusion $\sqrt{\Delta\chi^2}$ 78.48 % T2K 2020 syst. (v_e/\overline{v}_e xsec. error 4.9%) values excluding sin δ_{CP} =0 [%] HK 7.5 years 3σ **90**E 75.98 % 80 5σ HK 5 years 71.57 % 6 60 50 HK 2.5 years 60.46 % 40 30 HK 1 year 20 30.93 % -2 3 True δ_{CP} СР Hyper-K preliminary \mathbf{S} HK years $(2.7 \times 10^{21} \text{ POT/year } 1:3 \text{ v}:\overline{v})$ True normal ordering (known), Improved systematics Hyper-K preliminary $\sin^2\theta_{13}=0.0218\pm0.0007$, $\sin^2\theta_{23}=0.528$, $\Delta m_{32}^2=2.509\times10^{-3} \text{eV}^2/\text{c}^4$ True normal ordering (known) $\sin^2\theta_{13}=0.0218\pm0.0007$, $\sin^2\theta_{23}=0.528$, $\Delta m_{32}^2=2.509\times10^{-3}eV^2/c^4$

δ_{CP} resolution sensitivity

- How accurately can we measure the value of δ_{CP} , as a function of true δ_{CP} ?

$sin^2(\theta_{23}) = 0.5$ exclusion sensitivity

• For a true value of $\sin^2(\theta_{23})$, how much can we exclude $\sin^2(\theta_{23}) = 0.5$?

- With "Improved systematics $(\nu_e/\overline{\nu}_e \text{ xsec. error } 2.7\%)$ "
 - 3σ exclusion outside the range of true $\sin^2(\theta_{23})$ [0.475, 0.545]

Adding Atmospheric Neutrinos

- Measurement of atmospheric neutrino flux direction [and energy] is sensitive to MO
- Propagation of atmospheric neutrinos through varying matter density profile of Earth. Enhancement of $P(\nu_{\mu} \rightarrow \nu_{e})$ for NO and $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$ for IO
- Adding atmospherics can resolve mass ordering degeneraces.

Di Lodovico - NPB, February 2023

 $P(\nu_{\mu} \rightarrow \nu_{e})$ for NO Matter effect -0.5 $\sin \delta_{CP} = 0$ exclusion as a function of true δ_{CP} for 10 HK-years and true IO 2-10 GeV HK 10 years (2.70E22 POT 1:3 $v:\overline{v}$) $P(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$ for NO Beam (Known MO) Beam (Unknown MO) 0.5 Atmospherics (Unknown MO) Combined (Known MO) Combined (Unknown MO) -0.5 7σ 5σ 3σ Super-K, Phys. Rev. D 97, 072001 -2 2 -1 3 True δ_{CP} True inverted ordering, improved syst. (v_e/\overline{v}_e xsec. error 2.7%) Matter effects appear in the $\sin^{2}(\theta_{13})=0.0218 \sin^{2}(\theta_{23})=0.528 |\Delta m_{32}^{2}|=2.509 \times 10^{-3} \text{ eV}^{2}/\text{c}^{4}$

antineutrino figure for IO.

Astrophysical Neutrinos: Supernova Neutrinos

- Hyper-Kamiokande is sensitive to neutrinos from core-collapse supernova bursts and from integrated relic supernova neutrino background.
- Dominant signal: $\overline{\nu}_{e} + p \rightarrow e^{+} + n$
- seconds. SN direction accuracy 1°
- Study explosion mechanism and black hole/neutron star formation, model discrimination.
- and the history of the universe.

• For a supernova at 10 kpc, many neutrino events above 7 MeV would be detected within a few

• Studying Supernova Relic neutrinos (SRN) provides information on stellar collapse, nucleosynthesis

Solar Neutrinos

- Solar neutrino survival probability strong function of energy
- and day-night asymmetry

Di Lodovico - NPB, February 2023 OSCILLATIONS

Hyper-K Physics Summary

 "Multi-purpose experiment" sensitive to different neutrino physics. • Wide energy span.

Timeline

Cavern excavation

 Access tunnel excavation completed. Approach & circular tunnel excavation completed. Main cavern excavation has started on-time!

• October 3, 2023: The excavation of the dom section was completed. •69m diameter, 21m height. • Barrel section is ongoing (71m). • One of the largest human-made underground space.

Plug Manhol

Mt. Ikeno-yama 1000 m **Rock transportation** road (~13km) Above ground Excavated roo disposal site Route 41 Entrance vard (1ha

> **Electricity line for** nstruction

Cavern excavation

 Access tunnel excavation completed. Approach & circular tunnel excavation completed. Main cavern excavation has started on-time!

• October 3, 2023: The excavation of the dom section was completed. • 69m diameter, 21m height. Barrel section is ongoing (71m). • One of the largest human-made underground space.

Water System

View from this direction.

図画本理

医半时

Same and the

Completed room excavation on May 18, 2023.
Basic design ready of the initial 155m³/h system.

The layout for the initial 155m³/h system

Tank size	Φ68 m × H 72 m	
Water height	71 m	
ID volume	216.9 kt	
Fiducial volume	188.4 kt	
ID surface	19991.1 m ²	

Tank Frame

Di Lodovico - INFD, TEDIUAIY 2024

Mockup (Kashiwa,

50cm PMTs

Full OD system includes 3" PMTs, WLS plate and high reflective Tyvek.

nner Detector

 Production started in Dec 2020, halted in March April 2022.

- Year 2022: Improved design and quality check Production resumed in May 2023.
- The completion of the delivery date is unchanged.
- Collaboration's shift for mass test
- Constant quality inspections at Kamioka are ongoing. >6,000 PMT delivers so far.

Hyper-Kamiokande Electronics

- Front-end electronics placed in underwater vessels
- Two types of underwater electronics vessels
 - ID vessels: 24 ID channels read out by two PCBs
 - Hybrid ID + OD vessels: 20 ID + 12 OD channels
- Custom design of Digitizers, DPB, OD HV/signal splitter, timing boards will be finalised
- Module assembly planned at CERN (~2025-2026)

ID 12-channel front-end board.

OD 6-channel FE board.

Di Lodovico - NPB, February 2024

2 OD front-end boards

Hyper-Kamiokande Calibration

- An extensive program of calibration sources to determine detector parameters and measure systematics.
- Pre-calibration of photosensors.
- Photogrammetry.
- Light injection.
 - Diffusers and collimators.
 - mPMT system.
 - OD injections.
- Electron LINAC.
 - 3-24 MeV electrons.
- Radioactive sources
 - DT source $-^{16}N$
 - AmBe + BGO tagged neutrons.
 - Ni/Cf 9 MeV γ cascade.

Near Detectors

Critical components to precisely understand J-PARC beam and neutrino interactions.

At 280m:

- On-axis detector: measure beam direction, monitor event rate.
- Off-axis magnetised tracker: charge separation (measurement of wrong-sign background), study of the recoil system.
- sFDG, High-Angle TPCs and TOF. Improved:
 - low-energy particles and neutrons reconstruction
 - angular acceptance

IWCD (~900m):

- Due to pion decay properties, neutrino spectrum varies with offaxis angle
- change off-axis angle $\sim 1^{\circ} \sim 4^{\circ}$ to change mean neutrino energy and constrain: $(\sigma(\nu_e)/\sigma(\nu_\mu))/(\sigma(\overline{\nu}_e)/\sigma(\overline{\nu}_\mu))$
- ~400 mPMTs (high-granularity and time resolution)

Improved performance on ND280 upgrade.

FGDs

ECal

UAI Magnet

ECal

Conclusions

 Hyper-Kamiokande is a next-generation neutrino detector. Aiming to measure CP violation. • Wide physics reach. The experiment is currently being built, aiming to take data in 2027. It's an exciting time to work on the exp

