

Global analysis of v mass-mixing parameters: What next?

Eligio Lisi (INFN, Bari, Italy)

International Symposium on Neutrino Physics and Beyond (NPB 2024)

HKUST Jockey Club Institute for Advanced Study, Lee Shau Kee Campus, Hong Kong, China, 19-20 Feb. 2024

Introduction

No ν equivalent (yet) of CERN EWWG for combinations of all precision EW data: Global ν analyses reported by PDG review still performed by theor. groups

Bari group	Capozzi+	2107.00532
Valencia group	de Salas+	2006.11237
Nu-Fit group	Esteban+	2007.14792 + NuFit 2022

[Next relevant global updates presumably after Neutrino 2024]

Although approximate wrt full-fledged analyses of each dataset by their expt collaboration...

... global fits useful to discuss relations among different data in terms of combined parameter estimates, hints, tensions, synergies, correlations, degeneracies \rightarrow

Notable example: Overall $\sim 3\sigma$ hint for NO from osc.+nonosc. data...

LBL acc. slightly prefer IO, but adding SBL reactor data tilts preference to NO despite SBL react. being not sensitive to NO/IO by themselves.
Also called "synergy" of |∆m²| data from different oscillation channels

Already now: accel/reac/atm $|\Delta m^2|$'s agree better in one ordering wrt other one

[with side effects also on the other two unknowns: CPV and octant]

Further attention to accel/atm %-level errors on $|\Delta m^2|$ (e.g., from nuclear syst.?) as JUNO will achieve sub-% accuracy for $|\Delta m^2|$ (& not only!) with few months data

A plea for public release of JUNO data/flux/syst ... in musical language

All oscillation instruments have played only one note so far (at low or high pitch) JUNO will be the first one playing two notes at the same time: a dyad, with one note blending two close pitches: a chord...

...Please let all v musicians reproduce this amazing new tune!

CPV and θ_{23} octant resolution via acc/atm: difficult, may take longer than NO/IO Increasing role of collaboration-based joint data analyses wrt external groups Increasing attention to nuclear interaction effects on disapp/appear v param.

Concerning absolute v mass: signals likely to appear in cosmology in a decade. Presumably, variety of analyses by both collaborations and external groups **Scrutiny of underlying** Λ **CDM model + data variants in cosmo analyses**

I'll just touch two issues of interest for near-future (<10y) combined analyses, concerning the role of (1) nuclear and (2) cosmolog. syst's on v parameters

(1) Correlated impact of v interaction models

In the context of accel/atmos expt: increasing attention to nuclear model inputs

E_{reco} uncertainty affects parameter **p**= Δ **m**² in disappearance, via Δ m²/E Cross-section ratio (ν/ν̄, μ/e) uncertainties affect **p**=θ₂₃, θ₁₃, δ in appearance

So far, systs often separately included in each acc/atm expt. A, B, ... for p-estimation:

(1)
$$\chi^2_{A+B}(p) = \chi^2_A(p) + \chi^2_B(p)$$

In the context of accel/atmos expt: increasing attention to nuclear model inputs

E_{reco} uncertainty affects parameter **p**= Δ **m**² in disappearance, via Δ m²/E Cross-section ratio (ν/ν̄, μ/e) uncertainties affect **p**=θ₂₃, θ₁₃, δ in appearance

So far, systs often separately included in each acc/atm expt. A, B, ... for p-estimation:

(1)
$$\chi^2_{A+B}(p) = \chi^2_A(p) + \chi^2_B(p)$$

New aspect: include correlated nuclear systs

(as it occurred, e.g. for solar expt. + SSM input)

(2)
$$\chi^2_{A+B}(p) = \chi^2_A(p) + \chi^2_B(p) + \Delta_{AB}(p)$$

Role of $\Delta_{AB}(p)$ being quantified by A+B = T2K+NOvA and T2K+SKatm. collaborations

Q: If effect significant, how to include it in (larger) fits, e.g. T2K+NOVA+SK?
A: Not obvious... Compare results from approx. (1) and full-fledged fit (2)?
Isolate (un)correlated errors on parameter p? Worth discussing in detail!

Another A+B example that deserves attention: SK + IC-DC (atmos.)

Latest constraints on leading osc. parameters (Δm^2 , θ_{23}) are comparable:

SK 2023, results for **NO & IO** 2311.05105 Public χ^2 maps

IC 2023, results for NO only 2304.12236 No public χ^2 map yet

Q: If both χ^2 maps are available, can one add them up (as if ~independent)?

Another A+B example that deserves attention: SK + IC-DC (atmos.)

Latest constraints on leading osc. parameters (Δm^2 , θ_{23}) are comparable: SK 2023, results for NO & IO 2311.05105 Public χ^2 maps IC 2023, results for NO only 2304.12236 No public χ^2 map yet Q: If both χ^2 maps are available, can one add them up (as if ~independent)?

Not obvious. SK & IC share input atmos. flux Φ and cross sec. σ , with correlated $\Phi\sigma$ normaliz. error (20-30%). Effects on joint **p** estimates?

+ Potential issue: $\Phi\sigma$ pulls seem to be opposite in SK and IC (~40% relative norm.?)

Pulls should be the same in a joint SK+IC analysis (after local corrections)...

Not just normalization (y-axis) but also energy scale (x-axis) correlations:

SK-atm current error on **E-scale** $\simeq 1.8\% \rightarrow$ approximately transfers to Δm^2 Assume it's mainly due to nuclear interaction model of v on water target. Then it would systematically apply also to IC, ORCA, and their combination:

→ Single/combined SK+IC+ORCA E-scale error on Δm^2 would reach same % floor

Combined fits of atm(+acc) experiments might need to account for common 1-2% effects (if any).

Well known, but worth emphasizing:

(A,B)-correlated syst are not reduced in joint A+B fit (irreducible "floor") → limitation to different data "synergy"

Sizeable example: floor to NME and effective Majorana mass error in $0\nu\beta\beta$ decay \rightarrow

Nuclear Matrix Elements errors: large and correlated in $0\nu\beta\beta$ decay

Correlated NME error components degenerate with $m_{\beta\beta}$ in multi-isotope fits

Nuclear Matrix Elements errors: large and correlated in $0\nu\beta\beta$ decay

Correlated NME error components degenerate with $m_{\beta\beta}$ in multi-isotope fits + current NME range (~3x) accidentally similar to $m_{\beta\beta}$ min-max range (~3x)...

Reduction of NME errors and correlations is mandatory. Ab initio approach?

(2) Improving models: from the nucleus to the universe...

Total ν mass Σ from cosmology vs m_β and $m_{\beta\beta}$:

$$m_{\beta} = \left[c_{13}^{2}c_{12}^{2}m_{1}^{2} + c_{13}^{2}s_{12}^{2}m_{2}^{2} + s_{13}^{2}m_{3}^{2}\right]^{\frac{1}{2}}$$

$$m_{\beta\beta} = \left|c_{13}^{2}c_{12}^{2}m_{1} + c_{13}^{2}s_{12}^{2}m_{2}e^{i\phi_{2}} + s_{13}^{2}m_{3}e^{i\phi_{3}}\right|$$

$$m_{\beta\beta} = \left|c_{13}^{2}c_{12}^{2}m_{1} + c_{13}^{2}s_{12}^{2}m_{2}e^{i\phi_{3}} + s_{13}^{2}m_{3}e^{i\phi_{3}}\right|$$

Σ signal is guaranteed:	$\min \Sigma \simeq \begin{cases} 60 \text{ meV} (\text{NO}) \\ 100 \text{ meV} (\text{IO}) \end{cases}$
It might emerge in <10y, with prospective error:	$\sigma \simeq 20 \text{ meV} \text{ (goal)}$

Assuming σ =20 meV, implications of a Σ signal strongly depend on its **central value**, e.g.:

However, central value depends on multi-param data fits assuming a cosmo model

ACDM model variants already considered in many analyses \rightarrow **spread of** Σ **upper bounds** From bounds to **signals**: likely to see a **saga of** Σ **central values**, for various reasons

- Old tensions (e.g., H₀) might not be solved by new data; new tensions may appear
- Λ CDM might evolve into a richer model (more dof) as DE and DM get "understood"
- Some model dof (e.g., w \neq -1, curvature...) may be correlated with Σ (see below)
- "Abuse" of statistical priors might enhance claims about Σ signal significance

ACDM model variants already considered in many analyses \rightarrow **spread of** Σ **upper bounds** From bounds to **signals**: likely to see a **saga of** Σ **central values**, for various reasons

- Old tensions (e.g., H₀) might not be solved by new data; new tensions may appear
- ACDM might evolve into a richer model (more dof) as DE and DM get "understood"
- Some model dof (e.g., w \neq -1, curvature...) may be correlated with Σ (see below)
- "Abuse" of statistical priors might enhance claims about Σ signal significance

What will it take to get a convincing signal $\Sigma \simeq \Sigma_0 \pm \sigma$? A possible option:

As for osc.(NO/IO): **convergence of ≥2** quasi-independent **lines of evidence** may help

 Σ_1 from dataset₁ (e.g., mostly CMB or high-z data or else ...) Σ_2 from dataset₂ (e.g., mostly LSS or low-z data or else ...)

especially if robust w.r.t. some model variants: demanding requirements...

In any case: for settled NO/IO, any estimate for Σ will be in one-to-one correspondence with a m_{β} estimate

Viceversa, a m_{β} measurement can (dis)confirm Σ and (de)stabilize this corner of the cosmological model.

Find guaranteed \mathbf{m}_{β} signal at any cost!

Weaker correspondence of Σ with m_{$\beta\beta$}, due to x3 variations of both NME and interfer. of unknown Majorana phases.

Viceversa: $m_{\beta\beta} > 0$ signal with less than x3 tot error may constrain cases of max constructive vs max destructive interf.

Major. phase as far-future fit param.?

Conclusions

Completion of the 3v framework (or NPB 3v?) will require **integration** of old and new (non)oscill. **data plus refined model inputs** \rightarrow global/joint data fits will prove useful. **JUNO** will soon play an important role in this context, **by itself and in combination**.

At increasing level of accuracy, some issues may arise from input model uncertainties (e.g. nuclear, cosmological) common to two or more experiments in combined analyses. **Correlated effects** of model variants: **to be further explored** on (non)oscill. parameters

Conclusions

Completion of the 3v framework (or NPB 3v?) will require **integration** of old and new (non)oscill. **data plus refined model inputs** \rightarrow global/joint data fits will prove useful. **JUNO** will soon play an important role in this context, **by itself and in combination**.

At increasing level of accuracy, some issues may arise from input model uncertainties (e.g. nuclear, cosmological) common to two or more experiments in combined analyses. **Correlated effects** of model variants: **to be further explored** on (non)oscill. parameters

...Let me end with 1st public announcement of NOW 2024, 2-8 Sept. (Otranto, Italy) www.ba.infn.it/now (basic webpage, to be updates soon). Save the dates and...

Thank you for your attention!

Extra slides

Known and unknown 3v oscillation parameters - from 2107.00532

Known and unknown 3v oscillation parameters - from 2107.00532

Focus on the three oscillation unknowns: NO/IO, δ , θ_{23} octant degen.

LBL Acc + Solar + KamLAND

IO favored (~1 σ) δ ~1.5 π (IO), ~ π (NO) θ_{23} octants ~degenerate [confusing T2K-NOvA tension] Focus on the three oscillation unknowns: NO/IO, δ , θ_{23} octant degen.

2.0

0.7

 θ_{23} octants ~degenerate

 $δ \sim \pi$ (NO), ~1.5π (IO) $\theta_{23} \sim 0.57$ favored (~1 σ) Focus on the three oscillation unknowns: NO/IO, δ , θ_{23} octant degen.

 θ_{23} octants ~degenerate

 θ_{23} ~0.57 favored (~1 σ)

 $\theta_{23} \sim 0.46$ favored (~1.6 σ)

Integrated info on v and \overline{v} , stat. errors only. [Not used in fits] 2107.00532

→ T2K and NOVA, separately: NO preferred; CP and octant ambiguous

The same info can be reorganized in terms of T2K vs NOvA:

→ T2K and NOVA, jointly: IO and CPV preferred; octant ambiguous

"Strong interaction" effects on "weak interaction" physics are ubiquitous...

Need hadron production data, e.g. $pA \rightarrow \pi X$, +theory models to improve estimates of atmos. and acceler. v fluxes and errors

Current understanding of v cross sections at O(GeV) does not match the needs of (next-generation) v expts

CEVNS CEVNS CCVNS CCC (d) int coh

Control of nuclear EW response (e.g., form factors) relevant to interpret many low-energy data: coherent scatt., reactor spect., 2β Improved PDFs at low-x via ~forward charm production at LHCb essential to constrain prompt component in UHE v

mightest [eV]

Progress requires further integration of (astro)particle+nuclear expertise: \rightarrow (re)emerging field of theo+expt "Electroweak Nuclear Physics"

Possible NME roadmap: Ab-initio nuclear theory + calibration with benchmark data?

Snowmass Roadmap 2203.12169. E.g., recent NME pdf for ⁷⁶Ge, Belley+ 2308.15634

Emerging improvements w.r.t. usual x3 spread in each isotope. *Different benchmark data for different isotopes might break correlations.*

Realistic hope to reduce NME (co)variances, in view of ton-scale expt efforts

Prospective $0\nu\beta\beta$ signals with 10 ton-yr exposures

\mathbf{m}_{β} signal is guaranteed: min $\mathbf{m}_{\beta} \simeq \begin{cases} 9 \text{ meV} (\text{NO}) \\ 50 \text{ meV} (\text{IO}) \end{cases}$

While Σ requires to model the whole universe, \mathbf{m}_{β} requires to model source + detector \rightarrow Instrinsically robust and pivotal role of β decay.

One must find the \mathbf{m}_{β} signal at any cost!

\mathbf{m}_{β} signal is guaranteed: min $\mathbf{m}_{\beta} \simeq \begin{cases} 9 \text{ meV} (\text{NO}) \\ 50 \text{ meV} (\text{IO}) \end{cases}$

While Σ requires to model the whole universe, m_{β} requires to model source + detector \rightarrow Instrinsically robust and pivotal role of β decay.

One must find the \mathbf{m}_{β} signal at any cost!

Realistic path to go from ~ 200 meV (KATRIN) to ~ 50 meV (PROJECT 8) in ~ 10 yrs

If lucky, in NPB 203X we might see **two absolute mass signals** and investigate them in detail: **a new frontier of global analyses**

If not: **path** $m_{\beta} \sim 50 \rightarrow \sim 9 \text{ meV}$ needs to be envisaged. Very hard, but absolutely necessary!

