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Measuring neutrino masses with cosmology...

Cosmological neutrino mass bounds go back a long way.
* Cowsik & McClelland (1972): ), m,, < 24 eV

* Hinges on prediction of a thermal background of neutrinos.
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sion of the universe not be too severe, their mass should be less than 8 eV/c?,

In order that the effect of graviation of the thermal background neutrinos on the expan-




The cosmic neutrino background...

Standard model predictions

Thermal background produced 1s 1|

after the big bang.
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Modern cosmological neutrino mass bounds...

... are based on how the properties of the CvB affect the events that take

place after its formation.

Light element abundances CMB anisotropies
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Large-scale matter distribution
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Large-scale matter power spectrum...

From linear perturbation theory

Large-scale matter power spectrum, P(k)
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Who can measure it?

Large-scale power spectrum measurements circa 2018
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Who can measure it?
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Linear vs nonlinear...

Calculable to 0(1)% using

linear perturbatia

@ z=0

Large-scale matter power spectrum, P(k
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There are nonlinearities and nonlinearities...

Nonlinear Dark matter Baryonic astrophysics | Empirical tracers or proxies
(collisionless) @k~ 1/Mpc

CMB

BAO

Cosmic shear

Galaxy power spectrum

Cluster abundance

Lyman alpha

Calculable from first Yes No No
principles (i.e., described
by a Lagrangian)?




Two different high-£

likelihood functions

Constraints on the neutrino mass sum...

ACDM+neutrino mass 7-parameter fit; 95% C.L. on }m_ in [eV].

+CMB lensing +BAO (non-CMB) +CMB lensing+BAO
Planck2018 0.54 0.44 0.16 0.13
TT+lowE
2015 number 0.72 0.68 0.21 n/a
Planck2018 TT 0.26 0.24 0.13 0.12
+lowE+TE+EE
Planck2018 TT 0.38 0.27 n/a 0.13
+lowE+TE+EE
[CamSpec]
2015 number 0.49 0.59 0.17 n/a

Aghanim et al. [Planck] 2018

Planck2015 TT+IowP+Ly0L va < 0.13 eV Ade et al. [Planck] 2015

Palanque-Delabrouille et al. 2015
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Do you need to believe any of it?

Or to what extent should you trust these bounds?



There are certainly assumptions...

To even constrain neutrino mass cosmologically, there must be a
cosmic neutrino background to begin with.

* There is no reason to think that this is not the case:
* Cosmological data is consistent with there being 3 neutrino families.

* Also consistent with them not interacting much amongst themselves or with
other constituents.

* But even then there are caveats and some (small) room for play.
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Caveat 1: which mass ordering...

Bounds on the mass sum do depend to an extent on the neutrino mass
ordering assumed in the fit.

* Using different mass ordering can change the bounds by up to ~40%.
« ACDM+neutrino mass 7-parameter fit; 95% C.L. on Y m,, in [eV].

Planck 2018 TT+TE+EE+ z my <0.121eV Degenerate
lowE+lensing+BAO
Z m, < 0.146 eV Normal hierarchy
Official Planck benchmark:
Lmy < 0.12eV z m, < 0.172 eV Inverted hierarchy

Roy Choudhury & Hannestad 2019
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Caveat 2: model dependence...

Official Planck benchmark:
Ym, <0.12 eV

All bounds so far come from a ACDM+neutrino 7-parameter fit.

* Can test for how adding more fit parameters change the bound.

Model Degenerate | Normal Inverted
Baseline ACDM+zm, | 0.121 0.146 0.172
Primordial +r 0.115 0.142 0.167
tensors +w 0.186 0.215 0.230
Dynamical +wow, 0.249 0.256 0.276
dark energy +wow,, w(z)>-1 0.096 0.129 0.157
Spatial Roy Choudhury
curvature +Q 0.150 0.173 0.198 2 Hannestad 2019

* This sort of game can buy you a factor ~2 relaxation, but typically no more.

e But it does not always work in the desired direction - blame it on Bayesian stats.
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Blame it on Bayesian statistics...

These X% credible intervals correspond to the fractional area under
the 1D marginalised posterior.

* They depend on what degeneracy directions the additional
parameters bring into the game.

New parameter New parameter

2my

g va Marginalise (i.e.,

‘ integrate) over ‘

new parameter .
Relaxed bound on Y m,, Tighter bound on ) m,,
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Caveat 3: more data # improved bounds...

* Sometimes the extra data do bring in genuinely new physics info.
* The resulting improvements are noticeably big.
* You need to pay attention to these.
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Two different high-£

likelihood functions

Constraints on the neutrino mass sum...

ACDM+neutrino mass 7-parameter fit; 95% C.L. on }m_ in [eV].
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Two different high-£

likelihood functions

Constraints on the neutrino mass sum...
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+CMB lensing +BAO (non-CMB) +CMB lensing+BAO
Planck2018 0.54 0.44 0.16 0.13
TT+lowE
2015 number 0.72 0.68 0.21 n/a
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Caveat 3: more data # improved bounds...

* Marginally improved bounds (~*20%) are sometimes just accidents of
marginal incompatibility of the different data sets

* The inference process (and even how we define X% bounds) can end up
translating the incompatibility into an “improved measurement”.

— It could easily have gone the other way to become a “worse measurement”.
* You really shouldn’t read too much into these.
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Two different high-£

likelihood functions

Constraints on the neutrino mass sum...

ACDM+neutrino mass 7-parameter fit; 95% C.L. on }m_ in [eV].

+CMB lensing +BAO (non-CMB) +CMB lensing+BAO
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Caveat 4: non-standard neutrino physics...

You can also alter the physics and properties of the CvB to physically
relax cosmological constraints.

Official Planck benchmark:
Ym, <0.12eV

* Neutrino decay: Y m,, < 0.42 eV Abelién, Chacko, Dey, Du, Poulin & Tsai 2022

. . . . Oldengott, Barenboim, Kahlen, Salvado &
* Neutrino spectral distortion: }m,, < 0.37 eV Schwarz 2019; Alvey, Escudero & Sabti 2022

* Late-time neutrino mass generation: ym, < 1.46 eV~ P2l 8 funcke2076; forenz,

These “physics” games can usually buy you more room for play, if you
will accept the non-standard neutrino physics.*

* IMHO, these are no less palatable than the large 7, Q, or dynamical DE of Caveat 2.
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Take-home message...

Probably the best you can do now re cosmological neutrino mass
bounds is to treat them as ballpark figures.

* You can evade the tightest constraints to a good extent, but it’s not
like anything goes.

* In the same vein, please do not over-interpret bounds.
* That second significant digit doesn’t mean much.

* Anything from marginal incompatibility of data sets to a bad choice of fit
parameters/priors could shift bounds by 10-20%.



Future probes...



What to expect in the future?

Stage 2
1000’s
detectors

ACTPol

BICEP3

2017 & Keck

CMB 2018 Array
observations 2019 1 -
2020
SPrac T BIGERS
& BICEP
2021 Array
Stage 3
2022 mryr*™ | South Pole Obs
0023 [N 10m + 5 x 0.5m
52,000 detectors
2024 Simons Obs
New Infrastructure: 6m + 3 x 0.4m
2025 Wide-field SP-TMA, 60,000 detectors
BA-cameras and towers
2026 l
2027 John Carlstrom

Stage 4 500,000 detectors: CMB-S4 Start operations
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What to expect in the future?

Sensitivity Dark Energy
2015 wky  °0  oMNew)  oZmy) F.O.M
2016 St?o%(g - Boss BAO DES+BOSS
detocton prior SPT clusters
2017 10° 0.035 0.14 0.15eV 180
= U | : Nloe ~
CMB 2018

observations —_—

2020 ESELEE
10,000

2021 detectors

2022 }Bp—BAO ‘ESESCI_SDtESI
2023 106 0003 006  ~0.06eV  ~300-600
2024

2025

2026 ’ DESI BAO DESI +LSST
+Te Prior S4 Clusters
2027/34 [IYEF 10 0.0005 0.03  0.015eV 1250 John Carlstrom
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Galaxies,
cosmic shear,
clusters, etc.

What to expect in the future?

1o sensitivity to ), m,, 10 sensitivity to Ny

. Launched
ESA Euclid 2023 0.011 — 0.02 eV 0.05
LSST 202X 0.015 eV 0.05

These numbers mean, if the true neutrino mass sumis ), m, = 0.06 eV,
then it is possible to measure it with (3 — 5)0 significance.
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Do you need to believe these forecasts?

Yes and no.

* Forecasts are just that: an estimate of what an instrument can do
under an assumed set of conditions.*

* *including our ability to predict theoretically the observables given an
underlying cosmology theory.

 Clearly, some observables are inherently under better control than others
(see nonlinearities slide).

* So, again, your best bet is to treat these forecasted sensitivities as
ballpark figures.
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What it takes for me (Y3W) to believe it?

Suppose one of these future probes announces a cosmological
detection of the neutrino mass sum. Would | believe it?

* | might pay attention, depending on who is announcing it (again,
refer to nonlinearities slide).

* But | won’t believe any of it until multiple observations/data
combinations point to the same mass sum value with some statistical
significance.



Ssummary...

These is no doubt that neutrino masses induce some non-trivial effects on
cosmological observables.

* You can even turn this around and use cosmological observables to
“measure” the neutrino mass.

* But please please please don’t over-interpret bounds or forecasted
sensitivities. They are best treated as ballpark figures.

* Until multiple observations have measured the same neutrino mass sum
value, take all “measurements” cum grano salis.

Also summarised in Antel et al., Feebly Interacting Particles: FIPs 2022 workshop report,
Eur.Phys.J.C 83 (2023) 1122 [arXiv:2305.01715 [hep-ph]].
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Extra slides...



Neutrino masses & perturbation growth...

Cold dark matter only Cold dark matter + Qcpm = 10%
Qcpm = 25% neutrinos (), m, = 6.9 eV) Q, = 53";1‘; ~ 15%

Simulations by Troels Haugbglle
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Non-relativistic neutrino decay...

... into dark radiation

1012
1011.
1010.
109.
108.

106.
105.
104.
103.
102.
10}
1 I
0

I, [km/s/Mpc]

01 02 03 04 05 06 0.7

Abellan, Chacko, Dev, Du, Poulin & Tsai 2022

107 F Limitation of the analysis

Official Planck benchmark:
Ym, <0.12 eV

2m, [eV]

KATRIN

0.8 0.9

If neutrinos decay
with a lifetime

7, ~ 0.1 Myr

then it is possible
to accommodate

Ym, < 042eV

Planck+BAO+SN
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Neutrino spectral distortion...

Enhancing the average momentum (via decay, interaction, etc.) while
maintaining the early-time neutrino energy density (i.e., Nqgf) relaxes the
neutrino mass bound.

Planck 2015

12f — , TT+lowP (95 % CL) | TT+lowP+BAO (95 % CL)

f —— F=092, =0
100 [/ A\ N\t | e F=0, F,=1.06 |- FD Y-m, <0.73 eV - m, <0.18 eV

S A 4 0 N (e F=0.92, F;=1.06 _ _
0.8l ] F=092,F,=0 > m, < 0.95 eV > m, < 0.26 eV
06 F,=0,F, =1.06 S m, < 1.45 eV S m, < 0.37 eV
04l F1=092,F,=106 || S m, <134eV S m, < 0.32 eV
02

N A SN Oldengott, Barenboim, Kahlen, Salvado & Schwarz 2019
0.0-

0 2 4 6 8 10 12 14

X

* If you’re adventurous and take a Gaussian momentum distribution, you could

even relax the bound to )ym,, < 3 eV. Alvey, Escudero & Sabti 2022
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Official Planck benchmark:

Late-time v mass generation... ym, < 0.12eV

Late-time mass througha 200
phase transition at
T~mev Dvali & Funcke 2016

CMB + CMBL + BAO + SN —_— 68% CL

I — 95% CL

== Non-relativistic transition
== DE domination

—_— 2my(z)=const. (95% CL)

1
|
I
I
I

* But phenomenologically,
if neutrinos pick up
masses only after z~1,
then this is allowed:

Ym, < 146 eV
1072 10° 10! 102 103

Lorenz, Funcke, Loffler & Calabrese 2021
34



