Neutrinoless double-beta decay with the LEGEND Experiment

Riccardo Brugnera

Università degli Studi di Padova e INFN Padova on behalf of the LEGEND Collaboration

Outline:

The LEGEND Experiment: general aspects

The first stage: LEGEND-200

➢ LEGEND−1000

FEEND

R. Brugnera

NPB 2024, 19 February 2024

0νββ decay

The LEGEND Experiment: general aspects

For the physics motivation in the 0vββ research field: <u>talk of Prof. Fedor Šimkovic</u>

R. Brugnera

Large Enriched Germanium Experiment for Neutrinoless ββ Decay - LEGEND

LEGEND mission:

"The collaboration aims to develop a phased Ge-76 based double-beta decay experimental program with discovery potential at a half-life significantly longer than 10²⁷ years, using existing resources as appropriate to expedite physics results"

R. Brugnera

LEGEND: a staged approach

First Stage (LEGEND-200):

- upgrade of the existing infrastructure of GERDA up to 200 kg
- reduction of the BI of a factor 5 w.r.t. GERDA Phase II goal
- to reach 200 kg: 35 kg from GERDA + 30 kg from MJD. The remaining 140 kg are new

Further Stages (LEGEND-1000):

- ▶1000 kg (staged)
- timeline and budget: highest priority from DOE after the Portfolio review (July
- 2021)
- Background reduction of a factor 20 w.r.t. LEGEND-200
- LNGS is the preferred site, SNOLAB is the alternative

R. Brugnera

sensitivity and discovery

Plots details:

R. Brugnera

- ~69% efficiency (including: isotopic fraction, active volume fraction, analysis cuts)
- GERDA Phase II: 1.5 counts/(FWHM·ton·yr)
- LEGEND-200: 0.5 counts/(FWHM·ton·yr)
- LEGEND-1000: 0.025 counts/(FWHM·ton·yr)

N.B.: background-free^(*) condition is a prerequisite for a discovery

(*) average expected bkg events < 1.0 in the ROI for the entire exposure

The first stage: LEGEND-200

NPB 2024, 19 February 2024

LEGEND-200

- L-200 uses the GERDA infrastructure (cryostat, clean room, water plan, ...) at LNGS
- new elements: part of the enriched Ge detectors, cables, LAr veto, FE electronics, DAQ
- February 2020: L-200 took over the GERDA infrastructure
- November 2021: start commissioning
- March 2023: start of the physics run with ~140 kg of enriched detectors
- L-200 Background Index goal at Q_{ββ}: 2·10⁻⁴ cts/(keV·kg·yr)
 L-200 Sensitivity goal: T_{1/2} > 1.5·10²⁷ years (90% CL exclusion) after 1 ton · yr of exposure m_{ββ} < 27 – 64 meV (90% CL exclusion)

R. Brugnera

NPB 2024, 19 February 2024

LEGEND-200: the experiment

R. Brugnera

NPB 2024, 19 February 2024

0νββ decay

active background reduction tools

Single-site event topology (SSE)

2νββ

• Ονββ

Detector multiplicity

scattered events

Pulse Shape Discrimination (PSD)

- scattered multi-site events (MSE)
- surface events

LAr-anti coincidence

- intrinsic backgrounds
- Ge cosmogenics

Water Cherenkov anti-coincidence

• muons

R. Brugnera

NPB 2024, 19 February 2024

 $0ν\beta\beta$ decay

First LEGEND-200 background data: LEGEN Energy spectrum after quality cuts

• Only a small exposure shown here

used only BEGe (2.1 kg·yr) + ICPC (8)

- Exposure: 10.1 kg·yr
- kg·yr) detectors 10^{4} .200 - Aug 2023 Preliminary 10³ Counts / 15 keV After DC 10² After DC + μ + AC 10 1000 2000 3000 4000 5000 6000 Energy (keV) NPB 2024, 19 February 2024 R. Brugnera $0\nu\beta\beta$ decay 10

- Data cleaning (DC)
- Muon veto (μ)
- Ge-detector anticoincidence (AC)

Background after quality cuts

11

- No unexpected background components
 - 238 U & 232 Th decay chains, 40 K, 42 K
- Improved peak to Compton ratio
 - Reduced Compton continuum
 - Higher detection efficiency due to larger detectors
- Higher rate from ²⁰⁸Tl compared to GERDA
 - Expected \rightarrow more construction material
- Similar spectra

LEGEND vs. GERDA BEGe +ICPC

 $0\nu\beta\beta$ decay

R. Brugnera

Background decomposition after quality cuts

Decomposition before analysis cuts

 Well described by expected contributions with current statistics

Background after QC + LAr AC

- Some gamma lines "vanishes" & Compton continuum suppressed
- LAr instrumentation
 - Improved background suppression higher light yield & less shadowing
 - More self-vetoing material: fibers of the LAr veto & PEN plates

LEGEND vs. GERDA BEGe + ICPC

Background after QC + LAr AC + PSD LEGEND

- PSD cuts multi-site and alpha events effectively
- More powerful due to higher MSE probability in larger ICPC detectors
- PSD suppression in physics data depends on actual background composition and location

LEGEND vs. GERDA BEGe + ICPC

 $0\nu\beta\beta$ decay

R. Brugnera

Background Index

- Analized first 10.1 kg·yr of LEGEND-200 data
- ICPC&BEGe detectors
- Events in the BI-window (1930-2190) keV after QC + LAr and PSD cuts
- BI is compatible with LEGEND-200 goal:

2·10⁻⁴ cts/(keV·kg·yr)

- Expect 0.4 cts
- Probability to observe

#cts > 0 ~38%

R. Brugnera

4.1 [1.5-11.4] 10-4

NPB 2024, 19 February 2024

After LAr & PS

0νββ decay

5.2 [3.9-6.8]·10⁻⁴

LEGEND-1000

NPB 2024, 19 February 2024

performance parameters & timeline

$0 \mathbf{v} \mathbf{\beta} \mathbf{\beta}$ decay isotope	⁷⁶ Ge
$Q_{\beta\beta}$	2039 keV
Total mass	1000 kg
Energy resolution at $Q_{\beta\beta}$	2.5 keV FWHM
Overall signal acceptance	0.69
Total exposure	10 t∙yr
Background goal	< 10 ⁻⁵ cts/(keV·kg·yr) < 0.025 cts/(FWHM·t·yr)
T ⁰ v _{1/2}	1.3·10 ²⁸ yr (90% C.L. discovery) 1.8·10 ²⁸ yr (90% C.L. sensitivity)
m _{ββ}	9.4 – 21.4 meV (99.7% C.L. discovery) 8.5 – 19.4 meV (90% C.L. sensivity)

R. Brugnera

NPB 2024, 19 February 2024

R. Brugnera

NPB 2024, 19 February 2024

 $0ν\beta\beta$ decay

LEGEND-1000 background projections

Expected total spectrum from $2\nu\beta\beta$ decay and from all background components after all cuts

Projected background index after all cuts:

```
13.2<sup>+7.4</sup>-8.4 · 10<sup>-6</sup> cts/(keV·kg·yr)
```

R. Brugnera

LEGEND-1000 target sensitivities

•
$$m_{\beta \beta} = m_e / \sqrt{G g_A^4 M^2 T_{1/2}}$$

- Inverted Ordering: $m_{BB} > 18.4 \pm 1.3 \text{ meV}$
- the discovery sensitivity required depends on the matrix element used
- the range of values given depends on the matrix elements that has been calculated for each isotope
- LEGEND-1000 will fully test inverted order and a large part of the normal ordering

Agostini, Detwiler, Benato, Menendez, Vissani

R. Brugnera

NPB 2024, 19 February 2024

0νββ decay

Summary

- The LEGEND experiment combines the best technologies from the two Ge experiments: GERDA and MAJORANA-DEMONSTRATOR
- Key feature is the staged approach: leading results at each phase
- The first phase is LEGEND-200 at LNGS using the GERDA infrastructure: the aim is to reach the limit of 10²⁷ yr in the half-life of the 0vββ decay of ⁷⁶Ge

- LEGEND-200 is now taking data: the first data show that the BI is not far from the LEGEND-200 goal. With much more statistics, we are now studying the background sources in detail
- The ultimate phase will be LEGEND-1000 able to reach an half-life greater than 10²⁸ yr covering the entire inverted ordering region
- The LEGEND-1000 approval process is already begun: DOE Portfolio review (July 2021) for the choice of the best Ton-scale experiment put highest priority on LEGEND-1000.

R. Brugnera NPB 2024, 19 February 2024

backup slides

NPB 2024, 19 February 2024

 $0ν\beta\beta$ decay

discovering $0\nu\beta\beta$ with LEGEND-1000

... zooming around the signal region

R. Brugnera

efficiencies

Efficiencies	MJD/GERDA Achieved	LEGEND-1000 Projected
Active volume fraction	88.5%	92.0%*
Containment efficiency	89.0%	92.0%*
Fraction of isotopic mass	87.5%	91.0%
Analysis cuts	90.0%	90.0%
Total (w/o ROI)	62.0%	69.3%
Events in ROI	95.0%	95.0%
Total (w/ ROI)	58.9%	65.9%

*Improvement due to larger-mass ICPC detectors

R. Brugnera

The ⁷⁶Ge experiments: GERDA & MJD

GERDA

- Bare ^{enr}Ge array in liquid argon
 Shield: high purity liquid Argon/II
- Shield: high-purity liquid Argon/H₂O
 Phase I: 17 kg (IIdM/ICEX)
- Phase I: 17 kg (HdM/IGEX)
- Phase II: 35.8 kg enriched in ⁷⁶Ge

MAJORANA-DEMONSTRATOR (MJD)

- Arrays of ^{enr}Ge housed in high-purity electroformed copper cryostat
- Shield: electroformed copper/lead
- 30 kg enriched in ⁷⁶Ge

Physics goals: degenerate mass range
 Technology: study of backgrounds and exp. techniques

- exchange of knowledge & technologies (e.g. MaGe MC)
- intention to merge for future large scale ⁷⁶Ge experiment selecting the best technologies tested in GERDA & MJD

R. Brugnera

NPB 2024, 19 February 2024

LEGEND-200 background projections

R. Brugnera

NPB 2024, 19 February 2024

0νββ decay

clean materials

Underground electroformed copper

reduces U/Th cosmogenic activation of 60 Co in Cu $< 0.017 \pm 0.03 \text{ pg}({}^{238}\text{U})/\text{g}$ $< 0.011 \pm 0.05 \text{ pg}({}^{232}\text{Th})/\text{g}$

Underground electroformed copper

- Polyethylene naphtalene (PEN) replaces optically inactive structural materials
- Shift 128 nm LAr scintillation light to ~440 nm
- Yield strength higher than copper at cryogenic temperatures
- Evaluated in L-200

PEN: scintillating high purity detector support

R. Brugnera

NPB 2024, 19 February 2024

Pulse Shape Discrimination (PSD)

28

Ge Detectors

-20

-10

FEEND

Speed [cm/ μ s] with paths and isochrones

0

10

20

Radial position [mm]

In LEGEND-200 four different types of enriched Ge detectors will be used: BEGe (GERDA), PPC (Majorana), **ICPC** (GERDA, L-200) and semicoax (GERDA)

R. Brugnera

0

-30

NPB 2024, 19 February 2024

30

0νββ decay

ICPC: energy resolution

- Excellent energy resolution leads to lower backgrounds and higher discovery potential
- No resolution degradation seen in higher-mass ICPCs
- Well-understood peak shape, energy scale stability, and linearity (better than 0.1%) lead to improved confidence in results

Energy resolution of ICPCs from characterization tests and calibration runs in GERDA and MJD

LAr veto

LECKND

External LAr Veto: 20 modules, 40 readout channels

 $0\nu\beta\beta$ decay

Internal LAr Veto : 9 modules, 18 readout channels

R. Brugnera

Liquid Argon Veto

128 nm LAr scintillation light readout by TPB coated WLS fibers coupled to SiPMs arrays

Single photo-electron resolution

charge [a.u.]

R. Brugnera

NPB 2024, 19 February 2024

Underground Liquid Argon

- one of the most important background: ⁴²K from ⁴²Ar (produced in atmosphere by cosmic rays)
- in GERDA and in LEGEND-200 under control thanks to nylon minishrouds and PSD
- in LEGEND-1000 we think to use underground Ar (~18.5 t in the 4 re-entrant tubes)
- technology developed by the DarkSide collaboration
- expected a reduction factor of ~1400 in ⁴²Ar respect to the ⁴²Ar content in atmospheric Ar (similar to the reduction of ³⁹Ar)

Credit: DarkSide/Argo collaboration

33

R. Brugnera

NPB 2024, 19 February 2024

0νββ decay

First LEGEND-200 background data

Look at

- Background before and after LAr and PSD cuts
- Compare with GERDA

Dataset based on BEGe & ICPC detectors

- Directly comparable with GERDA
- Mono-parametric PSD (A/E)
- No blinding applied

Exposure (kg·yr)	BEGe	ICPC
10.1	2.1	8.0

10 strings - 142 kg - 101 detectors

Energy Resolution and Stability

Weekly energy calibration between physics runs using ²²⁸Th sources

- Excellent energy resolution @ $Q_{\beta\beta}$
- Energy scale very stable between calibrations

Pulse Shape Discrimination

LAr Instrumentation

 Improved Si photo-multiplier (SiPM) readout
 Improved geometry + optically active PEN → less shadowing

 Improved wavelengthshifting (TPB) fiber coating

 \rightarrow ~ 3 more light wrt. GERDA

NPB 2024, 19 February 2024

 $0\nu\beta\beta$ decay

R. Brugnera

37

2νββ shape and uniformity after QC + LAr AC

- Spectral shape compatible with $2\nu\beta\beta$ Uniform rate/detect
- after LAr instrumentation anti-coincidence (LAr AC)
- ⁴⁰K & ⁴²K Compton edges vanish

- Uniform rate/detector in (1000-1300) keV
 - Normalized to detector specific exposure
 - BEGe/ICPC different containment eff.
- After LAr AC: Medium energy region dominated by $2\nu\beta\beta$ events

R. Brugnera

