

INTERNATIONAL SYMPOSIUM ON NEUTRINO PHYSICS AND BEYOND NPB 2024

THE HONG KONG **UNIVERSITY OF SCIENCE**

On behalf of the CUPID collaboration

HONG KONG - FEBRUARY 19-21, 2024

HKUST JOCKEY CLUB INSTITUTE FOR ADVANCED STUDY, LO KA CHUNG BUILDING, LEE SHAU KEE CAMPUS

The CUPID experiment

Monica Sisti INFN Milano-Bicocca

Istituto Nazionale di Fisica Nucleare

CUPID: <u>CUORE</u> <u>Upgrade</u> with <u>Particle</u> <u>ID</u>entification

A ton scale high resolution array for the search of $0\nu\beta\beta$ decay of ¹⁰⁰Mo with cryogenic detectors

Monica Sisti - NPB 2024

CUPID goal

calorimetric search for ovßß decay

with Cryogenic Detectors (or Bolometers)

CUORE: from challenge to established technology

Custom-made cryogenic system

- Designed to cool down ~1 ton detector to ~ 10 mK. • Detectors mechanically
- decoupled for extremely low vibrations.
- Careful selection of materials for low background

- Cryogen free cryostat
- Fast cooling system down to ~50 mK
- 5 pulse tube cryocooler down to ~4 K
- Dilution refrigerator down to ~10 mK.
- Nominal cooling power: 3 μ W @ 10 mK

Cryogenic detectors for ovßß decay

TeO₂ crystals kept at 11-15 mK

• Cryogenics 102(2019)9

- Cryostat total mass: ~30 ton
- Mass cooled below 4K: ~15 ton
- Mass cooled below 50 mK: ~ 3 ton (Pb, Cu, TeO₂)
- Adv. High. En. Phys (2015) 879871
- © *Eur.Phys.J.C77(2017)532*

CUORE: from challenge to established technology \rightarrow more than 2 ton-yr of TeO₂ data

			2500 -
Data taking	g with CUOR	E (kg.	
 ◆ Continuous since 2017 optimisatio 	data taking (with few n campaigns	Exposure	2000
◆ Since March than 90% up temperature	2019, more time in sta conditions	e able S.	1500
Avorago data	taking ra	ate:	1000
~50 kg×	yr/month		E
~50 kg×	yr/month		500

• Nature 604(2022)53

Cryogenic detectors for ovßß decay

Combining 1st TY and 2nd TY data

- ROI: [2465, 2575] keV
- Unbinned Bayesian fit with $\Gamma_{0\nu} > 0$
- Systematics are treated as nuisance parameters

We combined the posteriors on the $0\nu\beta\beta$

CUORE results

Modeling CUORE background index BI

CUORE background components:

- ▶ Bulk contaminations in the materials of the experimental setup:
 - Main decay chains: ²³²Th, ²³⁸U, ²³⁵U
 - Ubiquitous contaminants: ⁴⁰K, ⁶⁰Co
 - Fallout: ¹³⁷Cs, ⁹⁰Sr, ²⁰⁷Bi
 - Activation: ¹²⁵Sb, ⁵⁴Mn, ^{110m}Ag, ^{108m}Ag
 - Others: ¹⁴⁷Sm, ¹⁹⁰Pt (crystal growing)

Surface contaminations of copper and crystals from main decay chains

Muons and muon induced background

Average BI in CUORE ROI [2465,2575]keV for 2nd TY data: $1.30(3) \times 10^{-2} c/keV/kg/y$

A new detector concept to lower the background index

Monica Sisti - NPB 2024

CUPID concept

Particle Identification

A ton scale high resolution array for the search of $0\nu\beta\beta$ decay

♦ Re-use CUORE infrastructure + Replace CUORE ^{nat}TeO₂ detectors with an array of Li2¹⁰⁰MoO4 enriched at 95% in ¹⁰⁰Mo

Enough to take a leap forward in sensitivity because background reduces dramatically (~ ×100):

- ¹⁰⁰Mo has higher $Q_{\beta\beta}$ (3034 keV) than ¹³⁰Te: lower γ -induced background, more favourable phase space and matrix element factors
- New detector with α particle rejection: removes the dominant background of CUORE

Average depth ~ 3600 m.w.e. μ flux: 3×10⁻⁸ μ /s/cm² n flux: 4×10^{-6} n/s/cm² < 10 MeV flux: ~0.73 $\gamma/s/cm^2$ < 3 MeV

Monica Sisti - NPB 2024

CUPID Location **INFN LABORATORI NAZIONALI DEL GRAN SASSO**

- ▶ 25 cm of Lead ▶ 20 cm of Borated Polyethylene and
 - boric acid

CUPID collaboration

~180 collaborators from different countries

Major participants: Italy (~60), USA (~ 40) , France (~ 25) Other participants: Ukraine, Russia, China, Spain

https://cupid.lngs.infn.it/

Leverages previous collaborative experience:

- + CUORE
- + CUPID-0
- + Cupid-Mo

Planned upgrades in view of CUPID

Cryogenic upgrades

- new pulse tubes
- new thermalisation

CUORE infrastructure beyond 2025

Muon tagger system

12

► $45 \times 45 \times 45$ mm³ Li₂¹⁰⁰MoO₄ crystals:

• Single crystal mass: 280 g

▶ 1596 crystals in the array

- 450 kg of Li₂¹⁰⁰MoO₄
- 95% enrichment in ¹⁰⁰Mo: 240 kg of ¹⁰⁰Mo
- 57 towers of 28 crystals each. 14-floors of 2×1 crystal pairs. Gravity assisted design
- ▶ Ge light detectors (LD) with SiO antireflective coating.
 - Top and bottom light detectors for each crystal: 1710 light detectors
 - No reflective foils
- Muon veto for muon-induced background suppression

• Eur.Phys.J. C82(2022)810

Monica Sisti - NPB 2024

- Light Yield: 0.3 keV/MeV
- LD: σ_{baseline} ~100 eV for PID
- Background: 10⁻⁴ ckky (counts/keV/kg/y)

The expected background rate in the ROI

Using past experiment achievements, the total estimated background in CUPID ROI ([3034 ± 15] keV) is: $\sim 1.4 \times 10^{-4}$ ckky \Rightarrow expected improvements will lead to the background goal of 10⁻⁴ ckky

Monica Sisti - NPB 2024

CUPID background budget

CUPID (baseline) goal

14

On the way to CUPID

Enriched LMO crystal production

- Enriched LMO crystal pre-production is ongoing in China at SICCAS (Shanghai), funded by INFN (Italy) and CNRS (France).

CUPID LMO natural crystals by SICCAS

- assess performance and analyse residual radioactivity.
- crystals and close components, to reach the 10^{-4} ckky baseline bkg goal.
- Production at large scale of the entire CUPID array at SICCAS is feasible. INFN is presently negotiating with SICCAS the full purchase.

SICCAS is a highly reliable producer, having already made the CUORE crystal array.

Sequential crystal tests at the Gran Sasso CUPID facility are being conducted to

▶ In parallel, we are working on the strategies to improve the surface cleaning of

On the way to CUPID

CUPID enhanced light detectors

- background for $0\nu\beta\beta$ experiments.
- ► CUPID goal for pile-up background contribution: 5×10-5 ckky
- small-medium scale prototypes. use for pile-up rejection, fulfilling CUPID requirements.

Assembled light detectors for test in a Pulse Tube cryostat at IJCLab

• JINST 18 P06033

► Relatively fast ¹⁰⁰Mo 2ν double beta decay ($^{2\nu}T_{1/2} = 7.1 \times 10^{18}$ y) leads to the possibility of two 2ν decays to sum up in the ROI -> it is the ultimate

Light detectors made of high-purity Ge wafer with SiO anti-reflective coating and NTD readout are a robust technology already used in several

The use of the NTL (Neganov-Trofimov-Luke) amplification enables their

NTL-based light detectors

16

On the way to CUPID

Tests on new tower design

- Prototype towers to optimise the new assembly design are being tested in one of the LNGS test cryostats.
- Main parameters under study are noise performance and FWHM resolutions.

\star Li₂¹⁰⁰MoO₄ pre-production \star detector design prototype and test \star infrastructure preparation (clean-room, assembly line, cryogenic test facilities at LNGS ...)

CUPID timeline

Present schedule

CUPID baseline

240 kg ¹⁰⁰Mo CUORE cryostat Bkg: 10⁻⁴ ckky

 $T_{1/2} > 1 \times 10^{27} yr$ $m_{\beta\beta}$: [13-21] meV

Monica Sisti - NPB 2024

CUPID Reach

240 kg ¹⁰⁰Mo CUORE cryostat Bkg: 2×10⁻⁵ ckky

 $T_{1/2} > 2 \times 10^{27} yr$ $m_{\beta\beta}$: [9-15] meV

CUPID 1 ton

1000 kg ¹⁰⁰Mo NEW cryostat Bkg: 5×10⁻⁶ ckky

 $T_{1/2} > 9 \times 10^{27} yr$ $m_{\beta\beta}$: [4-7] meV

conclusions and outlook

- CUPID builds on an existing and well-established international collaboration.
- effective, leverages international investments).
- of ~ 10-4 ckky
- feasible and under negotiation.

• We have operational experience of ton-scale cryogenic experiments and will use the CUORE infrastructure (cost

• Data-driven background model indicates a background level

• Test production of the first enriched LMO crystals is ongoing. Mass production of the entire CUPID array is

• The collaboration is working on getting ready for CUPID.

https://cupid.lngs.infn.it/

BACK UP slides

Plan: arXiv:2304.03451iv:2304.03451

Monica Sisti - NPB 2024

Discovery sensitivity of CUORE and CUPID

