

KamLAND-Zen / Geoneutrino

Hiroko Watanabe,

Research Center for Neutrino Science, **Tohoku University, Japan**

International Symposium on Neutrino Physics and Beyond Feb, 19-21, 2024, Hong Kong

KamLAND-Zen Collaboration

* Institutions : **5 from Japan** 8 from US **1 from Europe** * ~50 collaborators

Sep 2023 @Obihiro (Hokkaido) + Online

KamLAND

KamLAND-Zen

inner mini-balloon

- Gas purification is possible
- Soluble to LS more than 3 wt%, easily extracted

* ¹³⁶Xe loaded LS into KamLAND center with

<u>Why Xe?</u> Q-value 2.458 MeV, 2vββ T_{1/2}~10²¹ yr

- Isotopic enrichment (centrifugal) established

- Slow 2vββ requires modest energy resolution

Continue to measure neutrinos with KamLAND LS volume outside of mini-balloon

KamLAND-Zen: upgrades

Past 2011-2015 a a

KamLAND-Zen 400

Nylon balloon R 1.54 m

Xenon 320 – 380 kg

world top performance

 $\langle m_{\beta\beta} \rangle < 61 - 165 \text{ meV}$

Phys. Rev. Lett. 117, 082503 (2016)

KamLAND-Zen 800

target $\langle m_{\beta\beta} \rangle \sim 40 \text{ meV}$

reduced radioactive BG demonstration of scalability

- Nylon balloon R 1.90 m
 - Xenon 745 kg

"Near" Future

KamLAND2-Zen

Xenon 1 ton

target $\langle m_{\beta\beta} \rangle \sim 20 \text{ meV}$

high light yield better performance

KamLAND-Zen: upgrades

Past 2011-2015 a a 0

KamLAND-Zen 400

Nylon balloon R 1.54 m

Xenon 320 – 380 kg

world top performance

 $\langle m_{\beta\beta} \rangle < 61 \text{--} 165 \text{ meV}$

Phys. Rev. Lett. 117, 082503 (2016)

KamLAND-Zen 8

Nylon balloon R 1.90 Xenon 745 kg

target $\langle m_{\beta\beta} \rangle \sim 40 \text{ me}$

reduced radioactive demonstration of scal

lamLAND2-Zen Xenon 1 ton

get $\langle m_{\beta\beta} \rangle \sim 20 \text{ meV}$

high light yield etter performance

KamLAND-Zen: upgrades

Past 2011-2015

KamLAND-Zen 400

Nylon balloon R 1.54 m

Xenon 320 – 380 kg

world top performance

 $\langle m_{\beta\beta} \rangle < 61 \text{--} 165 \text{ meV}$

Phys. Rev. Lett. 117, 082503 (2016)

KamLAND2-Zen

Xenon 1 ton

target $\langle m_{\beta\beta} \rangle \sim 20 \text{ meV}$

high light yield better performance

KamLAND-Zen 800

Nylon balloon R 1.90 m Xenon 745 kg

target $\langle m_{\beta\beta} \rangle \sim 40 \text{ meV}$

reduced radioactive BG demonstration of scalability

Improvements: cleaner balloon

* Hand-made mini-balloon production at class-1 clean room (>1.5 yr, >20 researchers)

* Background reduction & sensitive volume increase

Improvements: short-lived spallation backgrounds 6/19

time and space correlation with muon and neutrons

Rejection efficiency: ¹⁰C > 99.3 %, ⁶He 97.6±1.7 %, ¹³⁷Xe 74±7 %

 γ (2.2 MeV) τ~207.5 sec

2. Shower tagging : dE/dX, dL dE/dX

dL

space correlation with muon shower

likelihood method using muon energy deposit (dE/dX)

Photons

Improvements: long-lived spallation backgrounds 7/19

- * Each isotopes yields are small, but **many candidates** are produced
- * Total yield becomes one of the main background

Likelihood-based tagging : N_{neutron}, dR, dT

N: effective number of neutron dR: distance between Xe-spallation and neutron capture gamma dT: Time difference from muon

Rejection efficiency: ~40 %

* **long half-life** (~hours to ~days)

neutrino multiplicity is higher than carbon's

rate in ROI : 0.082 events/day/Xe-ton

time difference from muon

Data set: Feb. 5, 2019 - May 8, 2021 Exposure: 970 kg • yr

Data divided into "0vββ candidate" and "long-lived candidate"

Data Analysis

Best-fit Energy Spectra

0v\beta\beta candidate (sensitive to $0v\beta\beta$ signal) 523.4 days livetime R < 1.57 m

long-lived candidate (Long-lived BG constraint) 49.3 days livetime R < 1.57 m

¹³⁶Xe 0vββ Decay Half Life (KamLAND-Zen 400+800)

- * KamLAND-Zen 400 dataset was reanalyzed with updated background rejection techniques and long-lived spallation consideration.
- * Zen400 and Zen800 dataset were combined in $\Delta \chi^2$ map.

Long-lived BG rate in 2.35-2.70 MeV $= 0.111 \pm 0.019$ events/day/Xe-ton

 $(FLUKA = 0.082 \pm 0.006 \text{ events/day/Xe-ton})$

Combined T^{0v}_{1/2} > 2.3 × 10²⁶ yr

2 times better!

* * Xe is the leading experiment

* Decay rate \rightarrow proportional to (neutrino mass)²

$[T_{1/2}^{0\nu}]^{-1} = G^{0\nu}(Q_{\beta\beta}, Z) |M^{0\nu}|^2 \langle m_{\beta\beta} \rangle^2$

PSF NME

NME calculations assuming $g_A \sim 1.27$

QRPA

- J. Terasaki, Phys. Rev. C 102, 044303 (2020)
- J. Hyvärinen and J. Suhonen, Phys. Rev. C 91, 024613 (2015).
- F. Šimkovic, V. Rodin, A. Faessler, and P. Vogel, Phys. Rev. C 87, 045501 (2013).
- M. T. Mustonen and J. Engel, Phys. Rev. C 87, 064302 (2013).
- D.-L. Fang, A. Faessler, and F. Šimkovic, Phys. Rev. C **97**, 045503 (2018).

<u>SM</u>

- L. Coraggio, A. Gargano, N. Itaco, R. Mancino, and F. Nowacki, Phys. Rev. C 101, 044315 (2020).
- A. Neacsu and M. Horoi, Phys. Rev. C 91, 024309 (2015).
- J. Menendez, A. Poves, E. Caurier, and F. Nowacki, Nucl. Phys. A 818, 139 (2009).

<u>IBM</u>

- F. F. Deppisch, L. Graf, F. Iachello, and J. Kotila, Phys. Rev. D 102, 095016 (2020).
- J. Barea, J. Kotila, and F. Iachello, Phys. Rev. C 91, 034304 (2015).

EDF

- N. L. Vaquero, T. R. Rodríguez, and J. L. Egido, Phys. Rev. Lett. 111, 142501 (2013).
- J. M. Yao, L. S. Song, K. Hagino, P. Ring, and J. Meng, Phys. Rev. C 91, 024316 (2015).
- T. R. Rodríguez and G. Martínez-Pinedo, Phys. Rev. Lett. 105, 252503 (2010).

KamLAND-Zen (¹³⁶Xe) < 36-156 meV

KamLAND-Zen started to enter the "Inverted-Ordering" region search.

Current status

ROI event (2.35 < E < 2.70 MeV)

Improvement

KamLAND2-Zen

more light, higher resolution, more Xe \rightarrow covering inverted neutrino mass ordering! High QE PMT, Winston corn

Brighter liquid scintillator

<u>RI in IB</u> **Scintillation balloon**

(PEN film) 100% fiducial volume

000 kg enriched Xe

long-lived New electronics

improve neutron tagging efficiency

Super-clean room will be constructed in the mine in 2024. \rightarrow Promote international corporative joint research regarding extremely rare event research.

Geo-neutrinos

S. Abe et al, "Abundances of uranium and thorium elements in Earth estimated by geoneutrino spectroscopy", GRL, 49, $e^{0.11} - \Phi^{0.11} - \Phi^{$

KamLAND Latest Results

Madiogenic Heat

Adding heat estimate from crust, ²³⁸U : **3.4** TW, ²³²Th : **3.6** TW

 $Q^{\rm U} = 3.3^{+3.2}_{-0.8} ~{\rm TW}$ $Q^{\rm Th} = 12.1^{+8.3}_{-8.6} \,\,{\rm TW}$ $Q^{\rm U} + Q^{\rm Th} = 15.4^{+8.3}_{-7.9} \,\,{\rm TW}$

Model Rejection

HighQ model is rejected at 99.76 % C.L. (homogeneous mantle) 97.9% C.L. (concentrated at CMB)

<u>Achieved the accuracy level can further geoscientific discussion</u> Improve the distinct spectroscopic contributions of U and Th

Beyond: Multi-site Measurement

Observation =
$$Crust$$
 + Mantle
(y = x + b)

Near Future...

4 multi-site measurements can constrain mantle contribution.

* KamLAND, Borexino, SNO+, JUNO

* Crust estimation needs to be accurate.

60

Beyond: Multi-site Measurement+OBD

Near Future...

4 multi-site measurements can constrain mantle contribution.

* KamLAND, Borexino, SNO+, JUNO

* Crust estimation needs to be accurate.

+ Ocean Bottom Detector

directly measure mantle contribution.

60

Beyond: OBD

Original idea (2005) 'Hanohano"

U. Hawaii & Makai Ocean Engineering

Technical tests and detector design

* Mantle geoneutrino sensitivity

+ Prototype detector is under construction to be installed into 1km depth Collaboration and community supports are being enhanced. (U. Hawaii, Chiba U., LLNL)

Japan Agency for Marine-Earth Science and Technology

Ocean Bottom Detector project (2019~)

KamLAND-Zen

- KamLAND-Zen 800 achieved to enter the inverted ordering region. $\langle m_{\beta\beta} \rangle < 36-156 \text{ meV}$ *
- hardware and analysis improvements from KamLAND-Zen 400 were clearly * effective to enhance the sensitivity
- * KamLAND-Zen 800 was completed in January 2024.
- KamLAND2-Zen is planned to search deeper into inverted ordering region. *

Geoneutrinos

- * Geoneutrinos are unique tool to measure the Earth's radiogenic engine.
- * To date, physics experiments have shown the usefulness of geoneutrinos. Interdisciplinary community has furthered its connection over these past 15 years.
- * "Neutrino Geoscience"
 - Now it's exciting generation for 4 multi-site measurements
 - * **OBD** has strong power to measure mantle contribution directly

