SNG

International Symposium on Neutrino Physics and Beyond (NPB 2024)

Mark Chen Queen's University and CIFAR *February 20, 2024*

SNO+ is the Sudbury Neutrino Observatory Filled with Liquid Scintillator

Repairs and Upgrades

Historically significant objects sometimes need a few repairs...

- SNO Cavity floor liner had been badly torn at the end of SNO; had to be remade (during SNO+ hold-down anchor installation)
- Anchor plate installation involved *drilling* into concrete and rock *inside an ultra-low background neutrino detector*
- Submersible pump that drained the SNO AV had self-destructed, covering the inner AV bottom with dirty oil
- SNO Cavity wall liner had many leaks SNO+ had to find these pinhole leaks paddling around in the Cavity in a raft, in low-light conditions, using multiple leak hunting techniques...many months of effort!
- After all of these interventions, would SNO+ still have low backgrounds?

SNO+ Water Phase

53

SNO+ Water Phase Physics Results

- World's best limits on invisible modes of nucleon decay
 - 2022 update published in Phys. Rev. D
- Solar neutrinos
 - detected via neutrino-electron elastic scattering

 $\nu_{\chi} + e^- \rightarrow \nu_{\chi} + e^-$

PHYSICAL REVIEW D **99**, 012012 (2019)

- now with even lower backgrounds
- First observation of reactor $\bar{\nu}_e + p \rightarrow e^+ + n$ events using *pure* water (undoped)
 - published in *Phys. Rev. Lett.*
 - made possible by ~50% neutron detection efficiency (highest in a water Cherenkov detector)

Data taken

in 2017-2019

Decay Mode			Partial Lifetime Limit		Existing Limits
	n		9.0 imes 10	²⁹ y	5.8×10^{29} y [5]
	р		9.6 imes 10	²⁹ y	$3.6 \times 10^{29} \text{ y} [6]$
	pp		1.1×10	²⁹ y	4.7×10^{28} y [6]
	np		6.0 imes 10	²⁸ y	$2.6 \times 10^{28} \text{ y} [6]$
	nn		1.5×10	²⁸ y	$1.4 \times 10^{30} \text{ y } [5]$

Best limits are from SNO+

SNO+ Water Phase ⁸B Solar Neutrino Energy Spectrum

result as shown at Neutrino 2022

SNO+ Water Phase list of physics publications

- Set world-leading limits on invisible modes of nucleon decay, PRD 99, 032008 (2019); PRD 105 112012 (2022)
- "Measurement of the ⁸B solar neutrino flux in SNO+ with very low backgrounds", PRD **99**, 012012 (2019)
- Highest efficiency (~50%) for neutron detection in a water Cherenkov detector, PRC **102**, 014002 (2020)
- Detection of antineutrinos from distant reactors using only pure water, PRL **130**, 091801 (2023)

PHYSICAL REVIEW LETTERS 130, 091801 (2023)

Editors' Suggestion Featured in Physics

Evidence of Antineutrinos from Distant Reactors Using Pure Water at SNO+

240 and 340 km away

technical papers

- SNO+ "Detector Paper" JINST 16, P08059 (2021)
- SNO+ Scintillator Paper "Development, characterization and deployment of the SNO+ liquid scintillator" JINST 16, P05009 (2021)
- Water Phase optical calibration JINST 16, P10021 (2021)

Reactor Antineutrinos in SNO+

Inverse Beta Decay (IBD)

 $[\]bar{\nu}_e + p \rightarrow e^+ + n$

Coincidence event

Prompt - positron kinetic energy (several MeV) plus 1.022 MeV from annihilation γ ' s Delayed - neutron capture 2.2 MeV γ

Antineutrino IBD Events in SNO+ Water? Yes!

Water Phase - Detection of IBD events (reactor antineutrinos) <u>using pure water</u> \rightarrow this is a first

Two independent analyses - likelihood ratio and Boosted Decision Tree - both with 3σ detection significance; using event selection overlap + non-overlap, calculated combined discourse circuificance; of 3.5σ

SNO+ Scintillator Purification Plant

- •reinforced mezzanine steel
- •enlarged D20 pit "mining in a clean room"
- installed columns, vessels, heat exchangers, tank, pumps, valves, highgrade sanitary piping (orbital-welded, electropolished stainless steel tubing)
- •utility plumbing (cooling water, compressed air, vent, boil-off nitrogen)
- process control, wiring, instrumentation, electrical
- •firewalls, fire detection and suppression

 $\ensuremath{\operatorname{SNO}}$ heavy water purification system was here

SNO+ Scintillator Purification Plant

electropolished stainless steel tubing)

- •utility plumbing (cooling water, compressed air, vent, boil-off nitrogen)
- •process control, wiring, instrumentation, electrical
- firewalls, fire detection and suppression

SNO+ upgrades also included

- Refurbishing the electronics
- Repair of many "dead" PMT bases
- All-new DAQ
- New cover gas system
- New calibration systems capable of deploying in LAB scintillator
- New *in-situ* injected LED/laser light calibration system
- Calibration system cameras (for photogrammetry)

...in addition to the hold-down ropes and the scintillator plant

Feed-through

termination

box for fibe

Fibre bundles

SNO+ Scintillator Fill

Started in mid-late 2019 and was proceeding smoothly (post-commissioning) when the pandemic struck, halting all activities for >6 months. At 365 tonnes filled (~45%), SNO+ **partial-fill** benefited from a quiet period with no operations, allowing radon backgrounds to decay and background levels in the LS to be measured.

SNO+ Partial Fill

• LS backgrounds measured at

²¹⁴BiPo delayed coincidences for U chain

 $(4.7\pm1.2)\times10^{-17} g_U/g_{LAB}$

²¹²BiPo delayed coincidences for Th chain

 $(5.3\pm1.5)\times10^{-17} g_{Th}/g_{LAB}$

meeting SNO+ background targets (for double beta decay)

- Optical properties of LS 👈
- Also physics from SNO+ partial fill...

Physics with Partial-Fill Scintillator

Event-by-Event Direction Reconstruction of Solar Neutrinos in SNO+ Liquid Scintillator

• Borexino has published the observation 16 Events / 0.1 of a correlation between early PMT hits Reconstructed direction of in the forward direction caused by the ⁸B solar neutrinos 14 Data Cherenkov light produced by ⁷Be solar above ~5 MeV in SNO+ neutrinos in liquid scintillator 12 MC "Correlated and Integrated Directionality" 10 • new SNO+ result: each recoil electron also studying event's direction can be reconstructed directionality in full fill LS by fitting with the combined 8 Cherenkov+scintillation pdf 6 This is a first – event-by-event direction 4 reconstruction of MeV events in liquid scintillator! 2 Accepted for publication in Phys. Rev. D $\cos \theta_{c}$ -0.8-0.6 -0.4-0.20.2 0.4 0.6 0

SNO+ Scintillator Fill Completed during the pandemic

- Deliveries of LAB from CEPSA (Bécancour, QC) to SNOLAB
- Transportation of LAB from surface to underground, coordinating with Vale, shipping railcars underground
- Distillation of LAB
- Water extraction and secondary distillation of PPO
- Nitrogen stripping
- Simultaneous filling of AV with purified LS and draining of water
- Nearly 5,000 QA samples analyzed (with assistance from the SNOLAB Scientific Support Group) to verify the quality of the process to approve it before sending purified LS to the AV
- After completion of "bulk" fill, topped up the PPO concentration in the detector LS to 2.2 g/L

Monumental effort by SNO+ and SNOLAB during the pandemic!

April 2022, scintillator operations concluded and we started the...

SNO+ Scintillator Phase

Physics Goals in the Scintillator Phase

- Solar neutrinos (e.g. ⁸B) at lower energies
- Reactor antineutrinos flux, spectrum, oscillations (Δm_{12}^2 , in particular)
- Geo neutrinos
- SNO+ is supernova neutrino live
- and other physics (e.g. MIMP dark matter searches, DSNB diffuse supernova neutrino background, nucleon decay)

SNO+ Scintillator Phase: ⁸B Solar Neutrinos

Preliminary data as shown at TAUP 2023

Internal Th backgrounds between 3 and 4 MeV – background rejection using directionality/multi-site being studied

N.B. Plot shows data with large fiducial volume

In a smaller fiducial volume (R < 3.3 m), external backgrounds are negligible and ⁸B solar neutrinos are being detected down to below 2.5 MeV

SNO+ Scintillator Phase: Antineutrinos in Full LS

Preliminary data as shown at TAUP 2023

(α, n) Classifier (tested in partial-fill) – SNO+-developed analysis

Objectives for SNO+ Scintillator Phase: Reactor Antineutrinos Δm_{12}^2

The advantages of a well-understood detector with very low backgrounds...

- are being demonstrated!
- and allows SNO+ to pursue a physics program with many interesting topics.
- With the detector performing well; with all background components being measured and constrained (most coming in at or below target levels), it looks promising for the final phase of SNO+...

SNO+ Tellurium Double Beta Decay Phase

Neutrinoless Double Beta Decay in SNO+ with Tellurium-Loaded Liquid Scintillator

Principal goal: economical, scalable approach to $0\nu\beta\beta$; achieving sensitivity to $m_{\beta\beta}$ in the parameter space corresponding to the Inverted Neutrino Mass Ordering...*and beyond*

¹³⁰Te has 34% natural abundance = does not require costly or logistically difficult procurement of enriched isotope

Novel Tellurium Purification and Tellurium Loading Techniques Pioneered by SNO+ Te purification technique established

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Volume 795, 21 September 2015, Pages 132-139

Purification of telluric acid for SNO+ neutrinoless double-beta decay search

S. Hans^{a 1}, R. Rosero^{a 1}, L. Hu^{a 1}, O. Chkvorets^b, W.T. Chan^{a 1}, S. Guan^{a 1}, W. Beriguete ^{a 1}, A. Wright ^d, R. Ford ^c, M.C. Chen ^d, S. Biller ^e, M. Yeh ^{a 1} 2 Practical, stable Te loading method established

Contents lists available at ScienceDirect

Nuclear Inst. and Methods in Physics Research, A

journal homepage: www.elsevier.com/locate/nima

Full Length Article

A method to load tellurium in liquid scintillator for the study of neutrinoless double beta decay

D.J. Auty^a, D. Bartlett^b, S.D. Biller^{c,*}, D. Chauhan^{f,b}, M. Chen^b, O. Chkvorets^d, S. Connolly^b, X. Dai^b, E. Fletcher^b, K. Frankiewicz^e, D. Gooding^e, C. Grant^e, S. Hall^f, D. Horne^b, S. Hansⁱ, B. Hreljac^b, T. Kaptanoglu^{g,h}, B. Krar^b, C. Kraus^{d,f}, T. Kroupová^{c,g}, I. Lam^b, Y. Liu^b, S. Maguireⁱ, C. Miller^b, S. Manecki^{f,b}, R. Roseroⁱ, L. Segui^c, M.K. Sharma^a, S. Tacchino^f, B. Tam^b, L. Tian^b, J.G.C. Veinot^a, S.C. Walton^d, J.J. Weigand^j, A. Wright^{b,k}, M. Yehⁱ, T. Zhao^b

Tellurium for Double Beta Decay

Loaded Scintillator Approach to DBD

- Previous slide: "why tellurium?"
- This slide: "why in liquid scintillator?"
- 1. very low backgrounds: 2.9×10⁻⁴ counts/keV/kg_{fiducial isotope}/yr (GERDA is 5.2 ×10⁻⁴ ckky)
- 2. homogeneous detector volume reliable background model
- 3. "target out" ability to measure/constrain backgrounds *before* isotope added
- 4. "sideband analysis" not just counts in a bin but distributions in position and energy verify detector response and background model
- 5. liquid detector permits: assays, chemistry; liquid medium can be modified *in situ* (e.g., adding more Te, more fluor)

A potential signal's dependence on the amount of isotope would be a strong confirmation!

SNO+ Te DBD Additional Considerations

- ¹³⁰Te DBD is scalable, cost effective, unimpacted by challenges and cost of isotope enrichment
- KL-Z 800 has world-leading sensitivity (upper limit 36-156 meV) and highlights the strength of the loaded LS DBD approach
- Complementarity of isotope
 - NME model dependencies → importance of complementary isotopes and approaches
 - purification of Te underground is novel technology
 - "target out" analysis is a strong and unique feature; all non-Te backgrounds constrained prior to adding any Te

Dunger and Biller, *NIM A*, 943, 162420, 2019)

SNO+ Multi-site Background Likelihood Constraint

DBD Spectrum and Backgrounds Pie Chart

DBD Spectrum and Backgrounds Pie Chart

DBD Sensitivity to $m_{\beta\beta}$

Status of SNO+ Te DBD

Tellurium systems are built and ready for operation!

Full-scale test (200 kg batch) of telluric acid purification is being prepared and will start next month

Target date: mid-2025 for Te loading in the SNO+ detector

Telluric acid purification

Te-diol synthesis

Recent addition of bis-MSB (and BHT)

- Recently added 2.2 mg/L bis-MSB to the liquid scintillator cocktail (plus a small amount of BHT, antioxidant) in preparation for SNO+ Te Double Beta Decay Phase
- Boosted light yield in the detector by ~1.7×

Plot on the right shows ²¹⁰Po events in detector versus z position after adding ~0.5 mg/L bis-MSB to the bottom of the detector

Summary

- SNO+ is an operating liquid scintillator neutrino detector filled with LAB + 2.2 g/L PPO and taking data
- Diverse program of neutrino physics is underway
- Already-built underground tellurium plants represent novel technology in the field of low-radioactivity techniques and are beginning full-scale, test batch operations in the next few months
- Operating the plants and demonstrating their capabilities is the next step towards preparing to load SNO+ with Te for the $0\nu\beta\beta$ phase (aiming for $0.5\% \rightarrow 1.5\%$ loading, to begin in 2025)

