Status of AMoRE experiment

Yeongduk Kim Center for Underground Physics Institute for Basic Science

2024. 2. 20.

NPB 2024, HKUST, Hong Kong

AMoRE Collaboration

10 Countries, 26 Institutions - Korea, Germany, Ukraine, USA, Russia, China, Thailand, Indonesia, India, Pakistan

Overview of AMoRE detector

Use scintillating bolometer with ⁴⁰Ca¹⁰⁰MoO₄(CMO) and

 100 Mo (Q = 3.034 MeV, Natural abundance : 9.74%). •

3

AMoRE-I @ Y2L : (2020.12-2023.5, ~ 900 days)

• To check detector performance & backgrounds.

- Run @ Yangyang Underground Laboratory (Y2L)
- Cryogen-free dilution refrigerator @12 mK
- Detectors: 13 CMO crystals (4.6 kg) and 5 LMO (1.6 kg) crystals
- 20cm Pb shielding + neutron shields (boric acid+PE+b.PE)
- Confirmed stable operation of MMC+SQUID system.

Background spectra after alpha background rejection

- 17 crystals excluding one LMO (for very poor β/α discrimination power)
 - Exposure = 8.02 kg_{XMoO_4} · yr = 3.88 kg_{100Mo} · yr.
 - CMO has higher alpha backgrounds and rejection power is high.
 - LMO has lower alpha backgrounds and rejection power is low.
 - $\sim 3 \times \text{CUPID-Mo} \text{ exposure } (1.48 \text{ kgMo-100} \cdot \text{yr}).$

 $\rightarrow T_{1/2}^{0\nu} > 3.4 \times 10^{24}$ years Cf. Current best limit 1.8×10²⁴ years by CUPID-Mo

AMoRE-II @Yemilab Yemi (禮美)

Hanbit

Sinan 신안

plant

Detector R&D (*a*) ground lab

- Signal pulses for 2.615 MeV gamma-rays at different temperatures. (LMO)
- Fast signals thanks to MMC sensor reading $\tau_{rise}(10 \text{ mK}) \sim 3.8 - 5.9 \text{ ms}$ for heat signal $\sim 0.5 - 0.9 \text{ ms}$ for light signal

Energy resolution and particle identification. л

- Better energy resolution \sim 7 keV FWHM.
- Signal slower, rising time $3.2 \text{ ms} \rightarrow 4.8 \text{ ms}$.

Satisfactory energy resolution keeping the fast rise time.

(2) Si wafer for light detector

AMoRE-II installation

Crystals are assembled in copper holder and tower

- Class 100
- Humidity<1%
- $Rn < 200mBq/m^3$

Signal readout

Cabling:

- 360 detectors, 24 wires for each detector (phonon/photon, heater)
- Ribbon cables between top plate and MC
 - TEKDATA CuNi alloy30, D=0.16 mm with NOMAX wire
 - SQUID: 63 wires, MMC: 36 wires

AMoRE-II SQUID electronics:

- Compact electronics for large number of SQUIDs by Magnicon.
- 9 SQUID channels / module.
- Similar noise performance compared to current small unit controller.
- Low power consumption, reasonable costs.

D-sub for MMCs

¹¹ Vacuum Feedthrough & Wiring

- Installed 270 SQUID & MMC channels for phase-1.
- After cooling test, will install DR at Yemilab.
- PCBs for MMC & Stabilization's filter circuits.
- ribbon wires $\leftarrow \rightarrow$ detector wires.

90 channels 🥢

 Each bundle consists 90 channels of MMCs and SQUIDs

Installed in cryostat

rvstals

Purification

- Purification of both powders, ${}^{100}MoO_3$ and Li_2CO_3 to produce pure $Li_2{}^{100}MoO_4$ crystals.
- 120 kg of enriched MoO₃ powder is purified in wet chemistry: 150 kg at CUP and 30 kg at NIIC.
- Repurification of crystal melts and wastes is going on. •

• ${}^{100}MoO_3$ purification (µBq/kg)				
	²²⁸ Ac	²²⁸ Th	²²⁶ Ra	⁴⁰K
Raw ¹⁰⁰ MoO ₃	260 ± 50	210 ± 50	260 ± 50	8500 ± 1400
Purified ¹⁰⁰ MoO ₃	<27	<16	110 ± 30	1700 ± 340

Front. Phys. 11:1142136.

In press in Front. Phys.

12

Crystal growing

- Crystals are grown at both CUP (Czochralski) and NIIC (Low temp. gradient).
- Growing speed gets slower due to the recycling of crystal melts and wastes.

Lapping @ polishing compounds and pads are selected.

• Dry box for crystal storage

Crystal production schedule

15 CMO, 113 (5 cm) & 141 (6 cm) LMO -> 269 ea, 109.6 kg (58.9 kg Mo-100)

By mid 2025:
157 kg (84.4 kg Mo-100), 360 crystals will be grown.

Pileup rejection in AMoRE-II

- Significant due to short lifetime of two neutrino lifetime of ¹⁰⁰Mo. (20 mBq/kg)
- Thanks to fast timing response of MMC, the pileup background of AMoRE-II is within the experimental requirement even with ~ 500g detector.
- Need multi-variable analysis to obtain the rejection efficiency high.

Pile-up backgrounds

Light detector

- Fast rise time of light detector, $\tau_{rise} \sim 0.5 0.9 ms$
 - LMO scintillation decay time ~ 0.1 ms. (Fast 0.04 ms, slow ~ 0.5ms)
- ~ 0.9 keV/MeV scintillation light measured.
 - 0.27 keV FWHM resolution with 2.615 MeV gammas.

Expect to reduce the pileup backgrounds with light signal rise time analysis.

Background of AMoRE-II

- A few items will be improved by replacing the materials.
- Expect to reach 10⁻⁴ counts/(keV kg year) (ckky) level.

Sensitivity of AMoRE-II

Maximum capacity of current Cryostat: ~ 900 crystals. (~200 kg ¹⁰⁰Mo isotopes)

- AMoRE-II experiment aims to be sensitive ~ 5x10²⁶ years range for ¹⁰⁰Mo isotope and could expand to 200 kg scale.
- The background reduction of a few active materials is expected and further studies of pileup reduction with light detector is going on.
- Further developments to background level of 10⁻⁵ ckky and multi-tons of ¹⁰⁰Mo, ⁷⁶Ge, and multi-tens of ¹³⁶Xe are doable though takes time.

Jump to reach ~ 8 meV

22

Vibration damping systems

Detector tower (Pb+Cu+LMO): ~ 3.4 ton Independent support of Kevlar strings + STS rods from room temp. Cooling method: IVC exchange gas + soft copper foils

CUP LMO in AMoRE-I Tighter cut removed most alpha backgrounds.

LMO backgrounds

• Alpha-alpha coincidence analysis

