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Matter-antimatter asymmetry

Main questions:

* Why do the Earth, the Solar system and our galaxy consists of matter
and not of antimatter?

* Why we do not see any traces of antimatter in the universe except of
those where antiparticles are created in collisions of ordinary particles?

This looks really strange, as the properties of matter and antimatter are
very similar.

Problems to solve:

* Why in the early universe the number of baryons is greater than the
number of anti-baryons ?

e How to compute the primordial baryon asymmetry? (from observations
baryon to photon ratio is nB/ny ~ 10719)



Sakharov proposal, 1967

VIOLATION OF CP INVARIANCE, C ASYMMETRY, AND BARYON ASYMMETRY OF THE UNIVERSE

A. D. Sakharov
Submitted 23 September 1966
ZhETF Pis'ma 5, No. 1, 32-35, 1 January 1967

According to our hypothesis, the occurrence of C asymmetry is the consequence of viola-
tion of CP invariance in the nonstationary expansion of the hot universe during the super-
dense stage, as manifest in the difference between the partial probabilities of the charge-
conjugate reactions. This effect has not yet been observed experimentally, but its existence

is theoretically undisputed

The source of baryon asymmetry:
decays of Markov’s maximons with masses ~ 10!° GeV

Sakharov conditions:

* Baryon number non-conservation, to produce net baryon number
* C and CP-violation, to have difference between particles and antiparticles
* Departure from thermal equilibrium, “arrow of time”, to kill static CPT prediction



Technology is highly elaborated nowadays: take a specific Lagrangian, embed it
iInto expanding Universe, and make a computation. However, to have a
prediction, we should know the theory to start with.

Standard Model?

Potentially BAU could be generated (Sakharov conditions are
satisfied):

e Difference between matter and anti-matter: CP-violation present
in the Standard Model (experimentally detected)

e Baryon number non-conservation in the Standard Model : rapid
“sphaleron” transitions in the early Universe and very slow at
normal conditions, may lead to creation of excess of baryons

over anti-baryons

e Non-equilibrium: OK, Universe expansion, electroweak phase
transition?



BAU in the Standard Model

In the Standard Model: everything is known (all
parameters, CP-violation, mechanism of baryon
number non-conservation). No true computation has
been done for asymmetry, but we are convinced that
it does not work.

» CP violation is too small
» No phase transition for Higgs mass above 73 GeV.

v

BAU tells that there is physics beyond the SM!
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Baryogenesis: window to BSM physics

But the window is wide open. There is just one number
ne/ny to explain, and therefore many possibilities.

Epistemology tells that the
# of theories ~ const/(# of data points)*, a > 0

To narrow the search, we should look at other
indications that the Standard model is not complete

Deficiency of the Standard Model:

neutrino masses and oscillations, Dark Matter




successful approach

From 1871
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Mendeleev: example of

Mendeleev article

Predictions: eka-boron, eka-aluminium, eca-silicon, eka-manganese
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Standard Model of Elementary Particles

three generations of matter interactions / force carriers
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New particle every 5 years (in average, 1974-2012)!



Mendeleev approach to
Standard Model
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Mendeleev approach to
Standard Model

Standard Model of Elementary Particles
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Standard Model of Elementary Particles

three generations of matter interactions / force carriers - - —
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— Dark matter in the
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New particles are called “Heavy neutral leptons”, sometimes sterile neutrinos.
UMSM-neutrino minimal SM, or low scale minimal type | see-saw model.



Matter-antimatter asymmetry and neutrino masses
in the YUMSM: N23

figure from Klaric, Timiryasov, MS
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HL-LHC - High Luminosity Large Hadron Collider
BAU - Baryon asymmetry of the Universe
NH - normal neutrino hierarchy

The mechanisms of neutrino mass and matter-antimatter
asymmetry generation can be verified experimentally!



Experimental challenges of HNL
searches:

HNL production and decays are highly suppressed
— dedicated experiments are needed:

e Mass below ~ 5 GeV - Intensity frontier, CERN
SPS: SHIP

e Mass above ~ 5 GeV - FCC in e+e— mode in Z-
peak, LHC



Projection of bounds on HNLs

e coupling dominance: U?:U?,:U?%; = 1:0:0
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Dark Matter in the vMSM: Nj

Dark matter sterile neutrino N1: long-lived light particle (mass
in the keV region) with the life-time greater than the age of

the Universe. It can decay as N; — yv, what allows for

experimental detection by X-ray telescopes in space. Future
experimental searches: Hitomi-like satellite XRISM (2023),
Large ESA X-ray mission, Athena + (20287)

Avalilable parameter space, Prediction for neutrinoless
current situation double beta decay:
10 LT T ot

Int.J.Mod.Phys.A 33 (2018) 05n06, 1842006

Hagedorn et al.,

0.001 0.010

my (eV)

M [keV]

Possible detection (?), controversial
Bulbul et al; Boyarsky et al

Prediction from Dark Matter:
minimal neutrino mass < 107 eV



Conclusions

e Both baryon asymmetry of the Universe and Dark
Matter may have their roots in neutrino physics.

e Traditional goals of neutrino physics should be
supplemented by the HNL searches. PMNS+neutrino
masses are not enough to uncover the origin of
neutrino masses, dark matter and baryon asymmetry.

The planned future experiments such as SHiP and FCC-
ee Iin the Z-resonance mode have chances to uncover
the origin of neutrino masses and baryon asymmetry of

the Universe, whereas X-ray telescopes have chances to
find sterile neutrino dark matter.



