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The Framework: the Reference 3-ν Mixing Scheme

νlL =
3
∑

j=1
Ulj νjL l = e, µ, τ.

The PMNS matrix U - 3× 3 unitary.

νj, mj 6= 0: Dirac or Majorana particles.

Data: 3 νs are light: ν1,2,3, m1,2,3 ∼< 0.5 eV.

3-ν mixing: 3-flavour neutrino oscillations possible.

νµ, E; at distance L: P (νµ → ντ(e)) 6= 0, P (νµ → νµ) < 1

P (νl → νl′) = P (νl → νl′;E,L;U ;m2
2 −m2

1,m
2
3 −m2

1)
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PMNS Matrix: Standard Parametrization

U = V P , P =





1 0 0

0 ei
α21

2 0

0 0 ei
α31

2



 ,

V =





c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13





• sij ≡ sin θij, cij ≡ cos θij, θij = [0, π
2
],

• δ - Dirac CPV phase, δ = [0,2π]; CP inv.: δ = 0, π,2π;

• α21, α31 - Majorana CPV phases; CP inv.: α21(31) = k(k′)π, k(k′) = 0,1,2...

S.M. Bilenky et al., 1980

• ∆m2
⊙ ≡ ∆m2

21
∼= 7.34× 10−5 eV2 > 0, sin2 θ12

∼= 0.305, cos 2θ12 ∼> 0.306 (3σ),

• |∆m2
31(32)

| ∼= 2.448 (2.502)× 10−3 eV2, sin2 θ23
∼= 0.545 (0.551), NO (IO) ,

• θ13 - the CHOOZ angle: sin2 θ13 = 0.0222 (0.0223)

F. Capozzi et al. (Bari Group), arXiv:2003.08511.
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Parameter Ordering Best fit 1σ range 2σ range 3σ range “1σ” (%)

δm2/10−5 eV2 NO, IO 7.36 7.21 – 7.52 7.06 – 7.71 6.93 – 7.93 2.3

sin2 θ12/10−1 NO, IO 3.03 2.90 – 3.16 2.77 – 3.30 2.63 – 3.45 4.5

|∆m2|/10−3 eV2 NO 2.485 2.454 – 2.508 2.427 – 2.537 2.401 – 2.565 1.1
IO 2.455 2.430 – 2.485 2.403 – 2.513 2.376 – 2.541 1.1

sin2 θ13/10−2 NO 2.23 2.17 – 2.30 2.11 – 2.37 2.04 – 2.44 3.0
IO 2.23 2.17 – 2.29 2.10 – 2.38 2.03 – 2.45 3.1

sin2 θ23/10−1 NO 4.55 4.40 – 4.73 4.27 – 5.81 4.16 – 5.99 6.7
IO 5.69 5.48 – 5.82 4.30 – 5.94 4.17 – 6.06 5.5

δ/π NO 1.24 1.11 – 1.42 0.94 – 1.74 0.77 – 1.97 16
IO 1.52 1.37 – 1.66 1.22 – 1.78 1.07 – 1.90 9

∆χ2IO−NO IO−NO +6.5 (2.5σ)

Global 3ν analysis of oscillation parameters: best-fit values and allowed

ranges at Nσ = 1, 2 and 3, for either NO or IO, including all data. The lat-

ter column shows the formal “1σ fractional accuracy” for each parameter,

defined as 1/6 of the 3σ range, divided by the best-fit value and expressed

in percent. We recall that ∆m2 = m2
3 − (m2

1 +m2
2)/2 and that δ ∈ [0, 2π]

(cyclic). The last row reports the difference between the χ2 minima in IO

and NO.
F. Capozzi et al. (Bari Group), arXiv:2107.00532.

θ12, θ23 - large, θ13 - small (very different from the quark mixing angles).

sin2 θ23 - relatively large uncertainty.

∆m2
21/|∆m2

31| ∼= 1/30.

S.T. Petcov, NPB 2024, IAS, HKUST, Hong Kong 20/02/2024



The Problem

Understanding the origin of the peculiar pattern of neutrino mixing of two

large and one small mixing angles is one of the major problems in neutrino

physics.

It is a part of the more general highly challenging and still unresolved

fundamental problem in particle physics of understanding the origins of

the patterns of the charged lepton and neutrino masses and of neutrino

mixing, of quark masses and mixing, and of CP violation in the quark

and lepton sector, i.e., understanding the origins of the lepton and quark

flavours.

“Asked what single mystery, if he could choose, he would like to see solved

in his lifetime, Weinberg doesnt have to think for long: he wants to be

able to explain the observed pattern of quark and lepton masses.”

From Model Physicist, CERN Courier, 13 October 2017.

The renewed attempts to seek new better solutions of the flavour problem

than those already proposed were stimulated primarily by the remarkable

progress made in the studies of neutrino oscillations, which began 24

years ago with the discovery of oscillations of atmospheric νµ and ν̄µ by

SuperKamiokande experiment. This lead, in particular, to the determina-

tion of the pattern of the 3-neutrino mixing, which turn out to consist of

two large and one small mixing angles.
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The Lepton Flavour Problem

Consists of three basic elements (sub-problems), namely, understanding:

• Why mνj <<< me,µ,τ ,mq, q = u, c, t, d, s, b (mνj ∼< 0.5 eV,

ml ≥ 0.511 MeV, mq ∼> 2 MeV);

• The origins of the patterns of

i) neutrino mixing of 2 large and 1 small angles (θl12 = 33.4◦, θl23 =

42.4◦ (49.0◦), θl13 = 8.59◦),
and of ii) ∆m2

ij, i.e., of ∆m2
21 ≪ |∆m2

31|, ∆m2
21/|∆m2

31| ∼= 1/30.

• The origin of the hierarchical pattern of charged lepton masses:

me ≪ mµ ≪ mτ , me/mµ
∼= 1/200, mµ/mτ

∼= 1/17.

The first two added new important aspects to the flavour problem.

mνj <<< me,µ,τ ,mq, q = u, c, t, d, s, b:

seesaw mechanism(s), Weinberg operator, radiative ν mass generation,

extra dimensions.

However, additional input (symmetries) needed to explain the pattern of

lepton mixing and to get specific testable predictions.
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The Neutrino Mixing Problem

The most elegant, simple and testable solution of the neutrino mixing

problem is arguably provided by the non-Abelian discrete symmetry ap-

proach.

In what concerns the lepton flavour problem, in the last 5 years a very

successful and attractive approach based on Modular Invariance has been

and continues to be developed.
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The Non-Abelian Discrete Symmetry Approach

With the observed pattern of neutrino mixing Na-
ture is sending us a Message. The Message is en-
coded in the values of the neutrino mixing angles,
leptonic CP violation phases and neutrino masses.
In my opinion, Nature gave us also a hint what the
content of Nature’s Message is.
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Neutrino Mixing: New Symmetry?

• θ12 = θ⊙ ∼= π
5.4, θ23 = θatm

∼= π
4(?), θ13

∼= π
20

UPMNS
∼=

















√

2
3

√

1
3 ǫ

−
√

1
6

√

1
3 −

√

1
2(?)

−
√

1
6

√

1
3

√

1
2(?)

















;

Very different from the CKM-matrix!

• θ12
∼= sin−1 1√

3
(= π

5)− 0.020; θ12
∼= π/4− 0.20,

θ13
∼= 0+ π/20, θ23

∼= π/4∓ 0.10.

• UPMNS due to new approximate symmetry?
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A Natural Possibility: UPMNS = U †
l Uν

UPMNS = U
†
l (θ

ℓ
ij, δ

ℓ) Q(ψ, ω)UTBM,BM,LC,... P̄(ξ1, ξ2) ,

with

UTBM =

















√

2
3

√

1
3 0

−
√

1
6

√

1
3 −

√

1
2

−
√

1
6

√

1
3

√

1
2

















; UBM =















1√
2

± 1√
2

0

−1
2 ±1

2
1√
2

1
2 ∓1

2
1√
2















.

• U†
lep(θ

ℓ
ij, δ

ℓ) - from diagonalization of the l− mass ma-

trix;

• UTBM,BM,LC,... P̄ (ξ1, ξ2) - from diagonalization of the ν
mass matrix;

•Q(ψ, ω), - from diagonalization of the l− and/or ν mass
matrices.

P. Frampton, STP, W. Rodejohann, 2003
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ULC, UGRAM, UGRBM, UHGM:

ULC =



















1√
2

1√
2

0

−cν23√
2

cν23√
2

sν23
sν23√
2

− sν23√
2
cν23



















; µ− τ symmetry : θν23 = ∓π/4 ;

UGR =















cν12 sν12 0

− sν12√
2

cν12√
2

−
√

1
2

− sν12√
2

cν12√
2

√

1
2















; UHGM =



















√
3
2

1
2 0

− 1
2
√
2

√
3

2
√
2

− 1√
2

− 1
2
√
2

√
3

2
√
2

1√
2



















, θν12 = π/6 .

UGRAM: sin2 θν12 = (2+ r)−1 ∼= 0.276, r = (1+
√
5)/2

(GR: r/1; a/b = a+ b/a, a > b)

UGRBM: sin2 θν12 = (3− r)/4 ∼= 0.345.

GRB and HG mixing: W. Rodejohann et al., 2009.
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UTBM(BM)...: Groups A4, T
′, S4 (S4),...(vast literature)

E. Ma, G. Rajasekaran, hap-ph/0106291; K. Babu, E. Ma, J.F.W. Valle, hep-ph/0206292;

G. Altarelli, F. Feruglio, hep-ph/0512103; C.S. Lam, 0708.3665 and 0804.2622; W. Grimus,

L.Lavoura, 0809.0226; Z.-Z. Xing, 1106.3244; S. Zhou, 1205.0761; F. Feruglio, C. Hagedorn,

R. Ziegler, 1211.5560; M. Holthausen, M. Lindner, M.A. Schmidt, 1211.6953; A. Meroni,

S.T.P., M. Spinrath, 1312:1966; S.T.P., 1405.6006; ...

(Reviews: G. Altarelli, F. Feruglio, arXiv:1002.0211; M. Tanimoto et al., arXiv:1003.3552;

S. King, Ch. Luhn, arXiv:1301.1340;...)

• UGRA: Group A5,...; s
2
13 = 0 and possibly s212 = 0.276

and s223 = 1/2 must be corrected.
L. Everett, A. Stuart, arXiv:0812.1057;...

• ULC: alternatively U(1), L′ = Le − Lµ − Lτ
S.T.P., 1982

• ULC: s
2
12 = 1/2, s213 = 0, sν23 - free parameter;

s213 = 0 and s212 = 1/2 must be corrected.
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• UGRB: Group D10,...; s
2
13 = 0 and possibly s212 = 0.345

and s223 = 1/2 must be corrected.

• UHG: Group D12,...; s
2
13 = 0, s212 = 0.25 and possibly

s223 = 1/2 must be corrected.

For all symmetry forms considered we have: θν13 = 0,
θν23 = ∓π/4.
They differ by the value of θν12:
TBM, BM, GRA, GRB and HG forms correspond to
sin2 θν12 = 1/3; 0.5; 0.276; 0.345; 0.25.
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The observed pattern of 3-ν mixing, two large and
one small mixing angles,
θ12

∼= 33◦, θ23 ∼= 45◦ ± 6◦ and θ13
∼= 8.4◦,

can most naturally be explained by extending the
Standard Model (SM) with a flavour symmetry cor-
responding to a non-Abelian discrete (finite) group
Gf .

Gf = A4, T
′, S4, A5, D10, D12,...

Vast literature; reviews: G. Altarelli, F. Feruglio, 1002.0211; H. Ishimori et al., 1003.3552; M.

Tanimoto, AIP Conf.Proc. 1666 (2015) 120002; S. King , Ch. Luhn, 1301.1340; D. Meloni,

1709.02662; STP, 1711.10806; F. Feruglio, A. Romanino, 1912.06028
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Examples of symmetries: A4, S4, A5
From M. Tanimoto et al., arXiv:1003.3552
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Group Number of elements Generators Irreducible representations

S4 24 S, T (U) 1, 1′, 2, 3, 3′

S′
4 48 S, T (R) 1, 1′, 2, 3, 3′, 1̂, 1̂′, 2̂, 3̂, 3̂′

A4 12 S, T 1, 1′, 1′′, 3

T ′ 24 S, T (R) 1, 1′, 1′′, 2, 2′, 2′′, 3

A5 60 S̃, T̃ 1, 3, 3′, 4, 5

A′
5 120 S̃, T̃ 1, 3, 3′, 4, 5, 2̂, 2̂′, 4̂, 6̂.

Number of elements, generators and irreducible representations of S4, S′
4,

A4, A′
4 ≡ T ′, A5 and A′

5 discrete groups.
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Predictions and Correlations

Uν = UTBM,BM,GRA,GRB,HG P̄ (ξ1, ξ2); θν12;

U
†
ℓ = R12(θ

ℓ
12)Q, Q = diag(eiϕ,1,1): θℓ12, ϕ

(the “minimal”= simplest case (SU(5)× T ′,...)

U
†
ℓ = R12(θ

ℓ
12)R23(θ

ℓ
23)Q, Q = diag(1, e−iψ, e−iω),

(next-to-minimal case): θℓ12, θ̂
ℓ
23, φ

θ12, θ23, θ13, δ in terms of θℓ12, θ̂
ℓ
23, φ + θν12

cos δ = cos δ(θ12, θ23, θ13; θ
ν
12, ...),

JCP = JCP(θ12, θ23, θ13, δ) = JCP(θ12, θ23, θ13; θ
ν
12, ...),

θν12,... - known (fixed) parameters, depend on the
underlying symmetry.
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For arbitrary fixed θν12 and any θ23
(“minimal” and “next-to-minimal” cases):

cos δ = tan θ23
sin 2θ12 sin θ13

[

cos 2θν12

+
(

sin2 θ12 − cos2 θν12
) (

1− cot2 θ23 sin2 θ13
)]

.

S.T.P., arXiv:1405.6006

This results is exact.

“Minimal” case: sin2 θ23 = 1
2
1−2 sin2 θ13
1−sin2 θ13

.
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-0.04 -0.02 0.00 0.02 0.04
JCP

2

4

6

8

NΣ

Θ12
Ν
= sin-1H1� 3 L

-0.04 -0.02 0.00 0.02 0.04
JCP

2

4

6

8

NΣ

Θ12
Ν
= Π�4

-0.04 -0.02 0.00 0.02 0.04
JCP

2

4

6

8

NΣ

Θ12
Ν
= sin-1H1� 2+ r L

-0.04 -0.02 0.00 0.02 0.04
JCP

2

4

6

8

NΣ

Θ12
Ν
= sin-1H 3- r �2L

-0.04 -0.02 0.00 0.02 0.04
JCP

2

4

6

8

NΣ

Θ12
Ν
= Π�6

I. Girardi, S.T.P., A. Titov
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How does it Work.

Choose Gf .

νeL(x), νµL(x), ντL(x): assigned to ρ(ν)(gf) - irreducible
representation of Gf , where gf is an element of Gf .

eL(x), µL(x), τL(x): assigned to ρ(e)(gf) - IRREP of
Gf .

Gf = S4, A4, T
′, A5: ρ

(ν)(gf), ρ
(e)(gf) - triplet IRREP.

eR(x), µR(x), τR(x): singlets of Gf .
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How Does it Work

E. Lisi, TAUP 2019
νj, Majorana mass term, mj 6= mk, j 6= k = 1,2,3: Gν = Z2 × Z2, Z2

Ge = Z2; Zn, n > 2; Zn × Zm, n,m ≥ 2
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Me - charged lepton mass matrix (L-R con-
vention).

Ue: U
†
eMeM

†
eUe = diag(m2

e ,m
2
µ,m

2
τ).

Ge - residual symmetry group of MeM
†
e:

ρ(e)(ge)†MeM
†
eρ(ge) =MeM

†
e,

ρ(e)(ge) generator(s) of Ge in the triplet rep.

ρ(e)(ge) and MeM
†
e commute: both are diag-

onalised by Ue.
ρ(e)(ge) - known! Thus, Ue - fixed!
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Mν - neutrino Majorana mass matrix (R-L
convention).
Uν: UTν MνUν = diag(m1,m2,m3).

Gν - residual symmetry group of Mν:

ρ(gν)TMνρ(gν) =Mν,

gν: an element of Gν,
ρ(gν) generator of Gν in the triplet repr.

ρ(gν) and M
†
νMν commute: both are diago-

nalised by Uν.
ρ(gν) - known! Thus, Uν-fixed.

UPMNS = U
†
e Uν

S.T. Petcov, NPB 2024, IAS, HKUST, Hong Kong 20/02/2024



A4: Ge = ZT3 = {1, T, T2}, Gν = ZS2 = {1, S}

(S2 = T3 = (ST )3 = I)

S =
1

3









−1 2 2
2 −1 2
2 2 −1









, T =









1 0 0
0 ω 0

0 0 ω2









, ω = ei2πτ/3 (A− F) .

Ue = I, UPMNS = U
†
eUν = UTBMU13(θ

ν
13, α), θ

ν
13, α - free.

W. Grimus, L. Lavoura, 2008

sin2 θ12 = 1
3(1−sin2 θ13)

∼= 0.34;

cos δ = cos 2θ23 cos 2θ13

sin 2θ23 sin θ13(2−3 sin2 θ13)
1
2

; if θ23 = π
4, δ = ±π

2.
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Examples of Predictions and Correlations II.

• sin2 θ23 = 1
2.

• sin2 θ23
∼= 1

2 (1∓ sin2 θ13) +O(sin4 θ13)
∼= 1

2 (1∓ 0.022).

• sin2 θ23 = 0.455; 0.463; 0.537; 0.545; 0.604.

• sin2 θ12
∼= 1

3 (1 + sin2 θ13) +O(sin4 θ13)
∼= 0.340.

• sin2 θ12
∼= 1

3 (1− 2 sin2 θ13) +O(sin4 θ13)
∼= 0.319.

• and/or cos δ = cos δ(θ12, θ23, θ13; θ
ν
12, ...),

JCP = JCP(θ12, θ23, θ13, δ) = JCP(θ12, θ23, θ13; θ
ν
12, ...),

θν12,... - known (fixed) parameters, depend on the underlying symmetry.

The Approach is testable/falsifyable experimentally!
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The measurement of the Dirac phase in the PMNS
mixing matrix, together with an improvement of the
precision on the mixing angles θ12, θ13 and θ23, can
provide unique information about the possible exis-
tence of new fundamental symmetry in the lepton
sector.

Prospective (useful/requested) precision:

δ(sin2 θ12) = 0.7% (JUNO),

δ(sin2 θ13) = 3% (Daya Bay),

δ(sin2 θ23) = 3% (T2HK, DUNE; T2K+NOνA(?)).

δ(δ) ≤ 12◦ at δ = 3π/2
(ESSνSB: ∼8%, A. Alekou et al., EPJ ST 231 (2022) 379; THKK?;

DUNE: accounting for both the 1st and 2nd probability maxima, Jogesh

Rout, Poonam Mehta et al., PRD 2021, S. Goswami et al., 2012.04958)
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The Power of Data
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Systematic analysis (I. Girardi et al.):
all possible combinations of residual symmetries
Ge and Gν of the lepton flavour symmetry groups
Gf = S4, A4, T

′ and A5, leading to correlations be-
tween some of the three neutrino mixing angles
and/or between the neutrino mixing angles and the
Dirac CPV phase δ, were considered.

(A) Ge = Z2 and Gν = Zk, k > 2 or Zm×Zn, m,n ≥ 2;

(B) Ge = Zk, k > 2 or Zm×Zn, m,n ≥ 2 and Gν = Z2;

(C) Ge = Z2 and Gν = Z2.

In these cases U
†
e and/or Uν of U = U

†
e Uν =

(Ũe)†ΨŨν Q0, are partially (or fully) determined by
residual discrete symmetries of Gf = S4, A4, T

′ and
A5.
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More specifically:

A. Ge = Z2, Gν = Zn, n > 2 or Zn × Zm, n,m ≥ 2;
Uν fixed; A1, A2 (A3):
θ23, cos δ (θ12, θ13) predicted.

B. Ge = Zn, n > 2 or Ge = Zn × Zm, n,m ≥ 2, Gν = Z2;
Ue fixed; B1,B2 (B3):
θ12, cos δ (θ23, θ13) predicted.

C. Ge = Z2 and Gν = Z2:
θ12 or θ23 or cos δ predicted (C1-C9).

For A4, S4 and A5 the total number of models to be
analysed is extremely large. However, a total of only
14 models survive the 3σ constraints on sin2 θij from
the current data and the requirement | cos δ| ≤ 1.
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Gf = A4, S4, T
′, A5.

A4: 3 Z2, 4 Z3, 1 Z2 × Z2 subgroups (total 8).

T ′: similar to A4.

S4: 9 Z2, 4 Z3, 3 Z4, 4 Z2×Z2 subgroups (total 20).

A5: has 15 Z2, 10 Z3, 6 Z5, 5 Z2 × Z2 subgroups
(36).
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In the case of A4 (T ′) symmetry only there are 64
models (up to permutation of rows and columns).

A4:
(Ge, Gν) = (Z2, Z3), A1 - A3;
(Ge, Gν) = (Z2, Z2), A1 - A3;
(Ge, Gν) = (Z3, Z2), B1 - B3;
(Ge, Gν) = (Z2 × Z2, Z2), B1 - B3;
(Ge, Gν) = (Z2, Z2), C1 - C9.

For A4, S4 and A5 the total number of models to be
analysed is extremely large. However, a total of only
14 models survive the 3σ constraints on sin2 θij from
the current data and the requirement | cos δ| ≤ 1.
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Phenomenologically Viable Predictions

A1 (A2), A5 (Ge = Z2, Gν = Z3 (Dirac νj)):

sin2 θ23
∼= 0.553 (0.447); cos δ ∼= 0.716 (−0.716).

B1, A4 (T ′, S4, A5) (Ge = ZT3 , Gν = ZS2):
UPMNS = UTBMU13(θ

ν
13, δ13)Q0;

sin2 θ12 = 1/(3 cos2 θ13)
∼= 0.340; cos δ ∼= 0.570.

B2, S4 (Ge = ZT3 , Gν = ZSU2 ):

sin2 θ12
∼= (1− 2 sin2 θ13)/3 = 0.319; cos δ ∼= −0.269.
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S.T.P., A. Titov, arXiv:1804.00182

Future: δ(sin2 θ23) = 3% (T2HK, DUNE).
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A total of 6 models would survive out of the cur-
rently viable 14 (of the extremely large number)
considered if δ(sin2 θ23) = 3%, δ(sin2 θ12) = 0.7% and
the current b.f.v. would not change:

A1A5, C3, C3A5, C4A5, C8, C2S4.

Will be constrained further by the data on δ.

S.T. Petcov, NPB 2024, IAS, HKUST, Hong Kong 20/02/2024



Symmetry Breaking

The correct lepton mixing pattern in a model with non-Abelian discrete

symmetry Gf is determined by the appropriate choice of residual sym-

metries Ge and Gν and is not directly related to the charged lepton and

neutrino mass generation.

The breaking of Gf has to ensure the correct generation of the fermion

masses and keep Ge and Gν intact.

The symmetry breaking in the lepton and quark flavour models based on

non-Abelian discrete symmetries is impressively complicated: it requires

the introduction of a plethora of “flavon” scalar fields having elaborate

potentials, which in turn require large shaping symmetries to ensure the

requisite breaking of the symmetry leading to correct mass and mixing

patterns.
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The Flavour Problem: Modular Invariance Approach

Modular invariance approach to the flavour problem was proposed in F.

Feruglio, arXiv:1706.08749 and has been intensively developed in the last

five years.

In this approach the flavour (modular) symmetry is broken by the vacuum

expectation value (VEV) of a single scalar field - the modulus τ . The VEV

of τ can also be the only source of violation of the CP symmetry.

Many (if not all) of the drawbacks of the widely studied alternative ap-

proaches are absent in the modular invariance approach to the flavour

problem.

The first phenomenologically viable “minimal” (in terms of fields, i.e.,

without flavons) lepton flavour model based on modular symmetry ap-

peared in June of 2018 (J.T. Penedo, STP, arXiv:1806.11040). Since

then various aspects of this approach were and continue to be extensively

studied – the number of publications on the topic exceeds 190.
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Matter Fields and Modular Forms

The matter(super)fields (charged lepton, neutrino, quark) transform under

Γ ≃ PSL(2,Z) = SL(2,Z)/Z2, Z2 = {I,−I} (Γ ≃ SL(2,Z)) as ”weighted”

multiplets:

ψi
γ−→ (cτ + d)−kψ ρij(γ̃)ψj , γ ∈ Γ (γ ∈ Γ) ,



γτ = aτ+b
cτ+d , γ =





a b
c d



 , a, b, c, d ∈ Z , ad− bc = 1 , Imτ > 0





kψ is the weight of ψ; kψ ∈ Z (or rational number).

Γ(N) - principal congruence (normal) subgroup of SL(2,Z).

ρ(γ̃) is a unitary representation of the inhomogeneous (homogeneous) finite

modular group ΓN = Γ/Γ(N) (Γ′
N = Γ/Γ(N)), γ̃ – representation of γ in ΓN

(Γ′
N)

F. Feruglio, arXiv:1706.08749; S. Ferrara et al., Phys.Lett. B233 (1989) 147, B225 (1989) 363

As we have indicated in brackets, one can consider also the case of Γ and

γ ∈ Γ(N). Then ρ(γ) will be a unitary representation of the homogeneous

finite modular group Γ′
N.
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Remarkably, for N ≤ 5, the inhomogeneous finite modular groups ΓN are

isomorphic to non-Abelian discrete groups widely used in flavour model

building:

Γ2 ≃ S3, Γ3 ≃ A4, Γ4 ≃ S4 and Γ5 ≃ A5.

ΓN is presented by two generators S and T satisfying:

S2 = (ST )3 = TN = I .

The group theory of Γ2 ≃ S3, Γ3 ≃ A4, Γ4 ≃ S4 and Γ5 ≃ A5 is summarized,

e.g., in P.P. Novichkov et al., JHEP 07 (2019) 165, arXiv:1905.11970.

Γ ≃ SL(2,Z) – homogeneous modular group, Γ(N) and the quotient groups

Γ′
N ≡ Γ/Γ(N) – homogeneous finite modular groups. For N = 3,4,5, Γ′

N are

isomorphic to the double covers of the corresponding non-Abelian discrete

groups:

Γ′
3 ≃ A′

4 ≡ T ′, Γ′
4 ≃ S′

4 and Γ′
5 ≃ A′

5.

Γ′
N is presented by two generators S and T satisfying:

S4 = (ST )3 = TN = I , S2 T = T S2 (S2 = R) .

The group theory of Γ′
3 ≃ A′

4, Γ′
4 ≃ S′

4 and Γ′
5 ≃ A′

5 for flavour model building

was developed in X.-G. Liu, G.-J. Ding, arXiv:1907.01488 (A′
4);

P.P. Novichkov et al., arXiv:2006.03058 (S′
4); C.-Y. Yao et al.,

arXiv:2011.03501 (A′
5).
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The Fundamental Domain of Γ (Γ) shown for Imτ ≤ 2 (the red dots cor-

respond to solutions of the lepton flavour problem, see further).

P.P. Novichkov, J.T. Penedo, STP, A.V. Titov, arXiv:1811.04933.
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Mass Matrices

Consider the bilinear (i.e., mass term)

ψci M(τ)ij ψj ,

where the fields ψ and ψc transform as

ψ
γ−→ (cτ + d)−kρr(γ)ψ (ρ(γ) , Γ

(′)
N , N = 2,3,4,5) ,

ψc
γ−→ (cτ + d)−k

c

ρcrc(γ)ψ
c , (ρc(γ) , Γ

(′)
N ) .

Modular invariance: M(τ)ij must be modular form of level N and weight

K ≡ k+ kc,

M(τ)
γ−→ M(γτ) = (cτ + d)K ρrY (γ)M(γτ) ,

where ρ(γ)rY - irrep of M(γτ):

K = k+ kc ,

rY ⊗ r⊗ rc ⊃ 1 .
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Modular Forms

Within the considered framework the elements of the Yukawa coupling

and fermion mass matrices in the Lagrangian of the theory are expressed

in terms of modular forms of a certain level N and weight kf.

The modular forms are functions of a single complex scalar field – the

modulus τ – and have specific transformation properties under the action

of the modular group.

Both the modular forms of given level N and weight kf and the matter

fields (supermultiplets) are assumed to transform in representations of an

inhomogeneous (homogeneous) finite modular group Γ
(′)
N .

Once τ acquires a VEV, the modular forms and thus the Yukawa couplings

and the form of the mass matrices get fixed, and a certain flavour structure

arises.

Quantitatively and barring fine-tuning, the magnitude of the values of the

non-zero elements of the fermion mass matrices and therefore the fermion

mass ratios are determined by the modular form values (which in turn are

functions of the τ ’s VEV).
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Modular Forms (contd.)

The key elements of the considered framework are modular forms f(τ) of

weight kf and level N – holomorphic functions of τ , which transform under

Γ (Γ) as follows:

F (γτ) = (cτ + d)kF ρr(γ̃)F(τ) , γ ∈ Γ (γ ∈ Γ) ,

F. Feruglio, arXiv:1706.08749

ρr is a unitary representation of the finite modular group ΓN (Γ′
N).

In the case of Γ (Γ) non-trivial modular forms exist only for positive even

integer (positive integer) weight kF .

For given k, N (N is a natural number), the modular forms span a linear

space of finite dimension:

of weight k and level 3, Mk(Γ
(′)
3 ≃ A(′)

4 ), is k+ 1;

of weight k and level 4, Mk(Γ
(′)
4 ≃ S(′)

4 ), is 2k+ 1;

of weight k and level 5, Mk(Γ
(′)
5 ≃ A(′)

5 ), is 5k+ 1.

Thus, dimM1(Γ
′
3 ≃ A′

4) = 2, dimM1(Γ
′
4 ≃ S′

4) = 3, dimM1(Γ
′
5 ≃ A′

5) = 6.

Multiplets of ΓN (Γ′
N) of higher weight modular forms can be constructed

from tensor products of the lowest weight 2 (weigh 1) multiplets (they

represent homogeneous polynomials of the lowest weight modular forms).
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Following arXiv:1706.08749, it was of highest priority and of crucial impor-

tance for model building to find the basis of modular forms of the lowest

weight 2 (weight 1) transforming in irreps of ΓN (Γ′
N).

It took about two years to find the requisite bases for ΓN (Γ′
N), N = 2,3,4,5.

F. Feruglio, 1706.08749 (Γ3 ≃ A4, kf = 2: the 3 mod.forms form a 3 of

A4);

T. Kobayashi et al., 1803.10391 (Γ2 ≃ S3, kf = 2: the 2 mod. forms form

a 2 of S3);

J. Penedo, STP, 1806.11040 (Γ4 ≃ S4, kf = 2: the 5 mod. forms form a 2

and 3′ of S4);

P.P. Novichkov et al., 1812.02158; G.-J. Ding et al., 1903.12588 ((Γ5 ≃
A5), kf = 2: the 11 basis modular forms were shown to form a 3, a 3′ and
a 5 of A5).More elegant constuction: modular forms for A′

4, S
′
4, A

′
5 (and A4, S4, A5).

The weight 1 modular forms

i) of A′
4 form a 2 of A′

4, ii) of S′
4 form a 3̂ of S′

4, iii) of A′
5 form a 5 of A′

5,

as was proven respectively in X.-G. Liu, G.-J. Ding, 1907.01488, P.P.

Novichkov et al., 2006.03058 and C.-Y. Yao et al., 2011.03501.
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In each of the cases of A′
4, S

′
4 and A′

5 the lowest weight 1 modular forms,

and thus all higher weight modular forms, icluding those (of even weight)

associated with A4, S4 and A5, constructed from tensor products of the

weight 1 multiplets, were shown (respectively in X.-G. Liu, G.-J. Ding,

1907.01488, P.P. Novichkov et al., 2006.03058 and C.-Y. Yao et al.,

2011.03501) to be expressed in terms of only two independent functions

of τ .

These pairs of functions are different for the three different groups; but

they all are related (in different ways) to the Dedekind η-function (in the

case of A′
5 (A5) - to two Jacobi theta constants also) and have similar

(fastly converging) q−expansions, i.e., power series expansions in q = e2πiτ.

Thus, in the case of a flavour symmetry described by a finite modular group

Γ
(′)
N , N = 2,3,4,5, the elements of the matices of the Yukawa couplings in

the considered approach represent homogeneous polynomials of various

degree of only two (holomorphic) functions of τ . They include also a

limited (relatively small) number of constant parameters.
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The modular forms of level N = 2,3,4,5 for Γ
(′)
2,3,4,5 ≃ S3, A

(′)
4 , S

(′)
4 , A(′)

5 have

been constructed by use of the of Dedekind eta function, η(τ):

η(τ) = q
1
24

∞
∏

n=1
(1−qn) = q

1
24

∞
∑

n=−∞
(−1)n q

n(3n−1)
2 , q = ei2πτ .

In the cases of Γ
(′)
5 ≃ A(′)

5 two “Jacobi theta constants” are also used.

Modular forms of level N = 4 for Γ′
4 ≃ S′

4 (Γ4 ≃ S4) – in terms of θ(τ), ε(τ):

θ(τ) ≡ η5(2τ)

η2(τ)η2(4τ)
= Θ3(2τ) , ε(τ) ≡ 2 η2(4τ)

η(2τ)
= Θ2(2τ) .

Θ2(τ) and Θ3(τ) are the Jacobi theta constants, η(aτ), a = 1,2,4, is the

Dedekind eta.

Modular forms of level N = 3 for Γ′
3 ≃ A′

4 (Γ3 ≃ A4) – in terms of ê1 and ê2:

ê1 =
η3(3τ)

η(τ)
, ê2 =

η3(τ/3)

η(τ)
.

Modular forms of level N = 5 for Γ′
3 ≃ A′

5 (Γ3 ≃ A4) – in

terms of θ5(τ) and ε5(τ): θ5(τ) = exp(− iπ/10)Θ 1

10
,1
2
(5τ) η−3/5(τ), ε5(τ) =

exp(− i3π/10)Θ 3

10
,1
2

(5τ) η−3/5(τ).

S.T. Petcov, NPB 2024, IAS, HKUST, Hong Kong 20/02/2024



Example: S′
4

P.P. Novichkov, J.T. Penedo. S.T.P., arXiv:2006.03058

Weight 1 modular forms furnishing a 3̂ of S′
4:

Y (1)

3̂
(τ) =





√
2 ε θ

ε2

−θ2





Modular S4 lowest-weight 2 multiplets furnish a 2 and a 3′ irreducible

representations of S4 (S′
4) and are given by: :

Y (2)
2 (τ) =

( 1√
2

(

θ4 + ε4
)

−
√
6 ε2 θ2

)

=

(

Y1
Y2

)

, Y (2)
3′ (τ) =





1√
2

(

θ4 − ε4
)

−2 ε θ3

−2 ε3 θ



 =





Y3
Y4
Y5



 .

At weight k = 3, a non-trivial singlet and two triplets exclusive to S′
4 arise:

Y (3)

1̂′ (τ) =
√
3
(

ε θ5 − ε5 θ
)

,

Y (3)

3̂
(τ) =







ε5 θ+ ε θ5

1

2
√
2

(

5 ε2 θ4 − ε6
)

1

2
√
2

(

θ6 − 5 ε4 θ2
)






, Y (3)

3̂′ (τ) =
1

2





−4
√
2 ε3 θ3

θ6 +3 ε4 θ2

−3 ε2 θ4 − ε6



 .
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The functions θ(τ) and ε(τ) are given by:

θ(τ) ≡ η5(2τ)

η2(τ)η2(4τ)
= Θ3(2τ) , ε(τ) ≡ 2 η2(4τ)

η(2τ)
= Θ2(2τ) .

Θ2(τ) and Θ3(τ) are the Jacobi theta constants, η(aτ), a = 1,2,4, is the

Dedekind eta function.

The functions θ(τ) and ε(τ) admit the following q-expansions - power series

expansions in q4 ≡ exp(iπτ/2) (Im(τ) ≥
√
3/2, |q4| . 0.26) :

θ(τ) = 1+ 2

∞
∑

k=1

q(2k)
2

4 = 1+ 2 q44 + 2 q164 + . . . ,

ε(τ) = 2

∞
∑

k=1

q
(2k−1)2

4 = 2 q4 +2 q94 +2 q254 + . . . .

In the “large volume” limit Im τ → ∞, θ → 1, ε→ 0.
In this limit ε ∼ 2 q4 and ε can be used as an expansion parameter instead

of q4.

Due to quadratic dependence in the exponents of q4, the q−expansion

series converge rapidly in the fundamental domain of the modular group,

where Im(τ) ≥
√
3/2 and |q4| ≤ exp(−π

√
3/4) ≃ 0.26.

Similar conclusions are valid for the pair of functions in terms of which the

lowest weight 1 modular forms, and thus all higher weight modular forms

of A′
4 and A′

5 are expressed.
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Lepton sector: reference 3-ν mixing scheme

νlL =
3
∑

j=1
Ulj νjL l = e, µ, τ.

Data: 3 νs are light: ν1,2,3, m1,2,3 ∼< 0.8 eV;
KATRIN: mν̄e < 0.81 eV;
Cosmology:

∑

jmj < 0.12 - 0.77 eV (95% CL; 2107.00532).

The value of min(mj) and “mass ordering” unknown.

∆m2
21, |∆m2

31| - known (sgn(∆m2
31) - unknown).

νj, mj 6= 0: nature - Dirac or Majorana - unknown.

The PMNS matrix U - 3 × 3 unitary: θ12, θ13, θ23 -
known; CPV phases δ, α21, α31 - unknown.

Thus, 5 known + 4 unknown parameters + MO.
“Known” = measured; “unknown” = not measured.

me, mµ, mτ also known - used as input.

S.T. Petcov, NPB 2024, IAS, HKUST, Hong Kong 20/02/2024



Example: Lepton Flavour Models Based on S4
(Seesaw Models without Flavons)

P.P. Novichkov et al., arXiv:1811.04933

We assume that neutrino masses originate from the (supersymmetric) type

I seesaw mechanism.

The fields involved:

• two Higgs doublets Hu and Hd; transform trivially under Γ4, ρu = ρd ∼ 1,

ku = kd = 0;

• three lepton SU(2) doublets L1, L2, L3; furnish a 3-dim. irrep of S4,

i.e., ρL ∼ 3 or 3′, and carry weight kL = 2;

• three neutral lepton gauge singlets N c
1, N

c
2, N

c
3; transform as a triplet

of Γ4, ρN ∼ 3 or 3′, and carry weight kN = 0;

• three charged lepton SU(2) singlets Ec
1, E

c
2, E

c
3; transform as singlets

of Γ4, ρ1,2,3 ∼ 1′ ,1 ,1′ and carry weights k1,2.3 = 0,2,2.

With these assumptions, the superpotential has the form:

W =

3
∑

i=1

αi (E
c
i LfEi (Y ))1Hd + g (N cLfN (Y ))1Hu +Λ(N cN c fM (Y ))1

α1,2,3, g, g
′, Λ are constants.
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We work in a basis in which the S4 generators S and T are represented by

symmetric matrices for all irreducible representations r. In this basis the

triplet irreps of S and T to be used read:

S = ± 1

3











−1 2ω2 2ω

2ω 2 −ω2

2ω2 −ω 2











, T = ± 1

3











−1 2ω 2ω2

2ω 2ω2 −1

2ω2 −1 2ω











,

ω = ei2πτ/3. The plus (minus) corresponds to the irrep 3 (3′) of S4.

In the employed basis we have:

ST =









1 0 0

0 ω2 0
0 0 ω









.
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By specifying the weights of the matter fields one obtains the weights of

the relevent modular forms.

After modular symmetry breaking, the matrices of charged lepton and

neutrino Yukawa couplings, λ and Y, as well as the Majorana mass matrix

M for heavy neutrinos, are generated:

W = λij E
c
i LjHd + YijN c

i LjHu +
1

2
MijN

c
i N

c
j ,

a sum over i, j = 1,2,3 is assumed. After integrating out N c and after

EWS breaking, the charged lepton mass matrix Me and the light neutrino

Majorana mass matrix Mν are generated (we work in the L-R convention

for the charged lepton mass term and the R-L convention for the light

and heavy neutrino Majorana mass terms):

Me = vd λ
† , vd ≡ vev(H0

d) ,

Mν = −v2u YTM−1Y , vu ≡ vev(H0
u) .
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The Majorana mass term for heavy neutrinos

Assume kΛ = 0, i.e., no non-trivial modular forms are present in

Λ(N cN c fM (Y ))1, kN = 0, and for both ρN ∼ 3 or ρN ∼ 3′

(N cN c)1 = N c
1N

c
1 +N c

2N
c
3 +N c

3N
c
2 ,

leading to the following mass matrix for heavy neutrinos:

M = 2Λ





1 0 0
0 0 1
0 1 0



 , for kΛ = 0 .

The spectrum of heavy neutrino masses is degenerate; the only free

parameter is the overall scale Λ, which can be rendered real. The Majorana

mass term conserves a “non-standard” lepton charge and two of the three

heavy Majorana neutrinos with definite mass form a Dirac pair.

C.N. Leung, STP, 1983
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The neutrino Yukawa couplings

The lowest non-trivial weight, kL = 2, leads to

g
(

N cLY (2)
2

)

1
Hu + g′

(

N cLY (2)
3′

)

1
Hu .

There are 4 possible assignments of ρN and ρL we consider. Two of

them, namely ρN = ρL ∼ 3 and ρN = ρL ∼ 3′ give the following form of Y:

Y = g









0 Y1 Y2
Y1 Y2 0
Y2 0 Y1



+
g′

g





0 Y5 −Y4
−Y5 0 Y3
Y4 −Y3 0







 , for kL +KN = 2 and ρN = ρL .

The two remaining combinations, (ρN , ρL) ∼ (3, 3′) and (3′, 3), lead to:

Y = g









0 −Y1 Y2
−Y1 Y2 0
Y2 0 −Y1



+
g′

g





2Y3 −Y5 −Y4
−Y5 2Y4 −Y3
−Y4 −Y3 2Y5







 , for kL + kN = 2 and ρN 6= ρL .

In both cases, up to an overall factor, the matrix Y depends on one

complex parameter g′/g and the VEV of τ , vev(τ).

Y (2)
2 (τ) =

( 1√
2

(

θ4 + ε4
)

−
√
6 ε2 θ2

)

=

(

Y1
Y2

)

, Y (2)
3′ (τ) =





1√
2

(

θ4 − ε4
)

−2 ε θ3

−2 ε3 θ



 =





Y3
Y4
Y5



 .
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The charged lepton Yukawa couplings

In the minimal (in terms of weights) viable possibility for L1,2,3 furnishing

a 3-dim. irrep of S4, i.e., ρL ∼ 3 or 3′, and carrying a weight kL = 2, and

Ec
1,2,3 transforming as singlets of Γ4, ρ1,2,3 ∼ 1′ ,1 ,1′ (up to permutations)

and carrying weights k1,2.3 = 0,2,2, the relevant part of W , We, can take

6 different forms which lead to the same matrix Ue diagonalising MeM
†
e =

v2d λ
†λ, and thus do not lead to new results for the PMNS matrix. We give

just one of these 6 forms corresponding to ρL = 3, ρ1 = 1′, ρ2 = 1, ρ3 = 1′:

α
(

Ec
1LY

(2)
3′

)

1
Hd + β

(

Ec
2LY

(4)
3

)

1
Hd + γ

(

Ec
3LY

(4)
3′

)

1
Hd .

This leads to

λ =





αY3 αY5 αY4
β (Y1Y4 − Y2Y5) β (Y1Y3 − Y2Y4) β (Y1Y5 − Y2Y3)
γ (Y1Y4 + Y2Y5) γ (Y1Y3 + Y2Y4) γ (Y1Y5 + Y2Y3)



 ,

In this “minimal” example the matrix λ depends on 3 free parameters, α,

β and γ, which can be rendered real by re-phasing of the charged lepton

fields.

We recall that

Me = vd λ
† , vd ≡ vev(H0

d) ,

Mν = −v2u YTM−1Y , vu ≡ vev(H0
u) .
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Parameters of the model: α, β, γ, g2/Λ – real; g′ and VEV of τ – complex,

i.e., 6 real parameters + 2 (1) phases for description of 12 observables

(3 charged lepton masses, 3 neutrino masses, 3 mixing angles and 3 CPV

phases). Excellent description of the data is obtained also for real g′ (i.e.,
6 real parameters + 1 phase, employing gCP).

The 3 real parameters vdα, β/α, γ/α – fixed by fitting me, mµ and mτ .

The remaining 3 real parameters and 2 (1) phases – v2ug
2/Λ, |g′/g|, |τ | and

arg(g′/g), arg τ (arg τ) – describe the 5 ν measured observables - 3 mixing

angles, 2 ∆m2
ij.

The model considered leads to testable predictions for min(mj) (
∑

imi),

type of the ν mass spectrum (NO or IO), the 3 CPV Dirac and Majorana

phases; predicted are also |〈m〉|, the range of θ23, as well as of correlations

between different observables.

Seven real parameters (5 real couplings + the complex VEV of τ) – is the

minimal number of parameters in the constructed so far phenomenologi-

cally viable lepton flavour models with massive Majorana neutrinos based

on modular invariance.
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Numerical Analysis

Each model depends on a set of dimensionless parameters

pi = (τ, β/α, γ/α, g′/g, . . . , Λ′/Λ, . . .) ,

which determine dimensionless observables (mass ratios, mixing angles and

phases), and two overall mass scales: vd α for Me and v2u g
2/Λ for Mν. Phe-

nomenologically viable models are those that lead to values of observables

which are in close agreement with the experimental results summarized in

the Table below. We assume also to be in a regime in which the running

of neutrino parameters is negligible.
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Observable Best fit value and 1σ range

me/mµ 0.0048± 0.0002

mµ/mτ 0.0565± 0.0045

NO IO

δm2/(10−5 eV2) 7.34+0.17
−0.14

|∆m2|/(10−3 eV2) 2.455+0.035
−0.032 2.441+0.033

−0.035

r ≡ δm2/|∆m2| 0.0299± 0.0008 0.0301± 0.0008

sin2 θ12 0.304+0.014
−0.013 0.303+0.014

−0.013

sin2 θ13 0.0214+0.0009
−0.0007 0.0218+0.0008

−0.0007

sin2 θ23 0.551+0.019
−0.070 0.557+0.017

−0.024

δ/π 1.32+0.23
−0.18 1.52+0.14

−0.15

Best fit values and 1σ ranges for neutrino oscillation parameters, obtained in the global

analysis of F. Capozzi et al., arXiv:1804.09678, and for charged-lepton mass ratios,

given at the scale 2 × 1016 GeV with the tanβ averaging described in F. Feruglio,

arXiv:1706.08749 obtained from G.G. Ross and M. Serna, arXiv:0704.1248. The pa-

rameters entering the definition of r are δm2 ≡ m2
2 −m2

1 and ∆m2 ≡ m2
3 − (m2

1 +m2
2)/2. The

best fit value and 1σ range of δ did not drive the numerical searches here reported.
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P.P. Novichkov, J.T. Penedo, STP, A.V. Titov, arXiv:1811.04933
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Best fit value 2σ range 3σ range

Re τ ±0.1045 ±(0.09597− 0.1101) ±(0.09378− 0.1128)
Im τ 1.01 1.006− 1.018 1.004− 1.018
β/α 9.465 8.247− 11.14 7.693− 12.39
γ/α 0.002205 0.002032− 0.002382 0.001941− 0.002472

Re g′/g 0.233 −0.02383− 0.387 −0.02544− 0.4417
Im g′/g ±0.4924 ±(−0.592− 0.5587) ±(−0.6046− 0.5751)

vd α [MeV] 53.19
v2u g

2/Λ [eV] 0.00933

me/mµ 0.004802 0.004418− 0.005178 0.00422− 0.005383
mµ/mτ 0.0565 0.048− 0.06494 0.04317− 0.06961

r 0.02989 0.02836− 0.03148 0.02759− 0.03224
δm2 [10−5 eV2] 7.339 7.074− 7.596 6.935− 7.712

|∆m2| [10−3 eV2] 2.455 2.413− 2.494 2.392− 2.513
sin2 θ12 0.305 0.2795− 0.3313 0.2656− 0.3449
sin2 θ13 0.02125 0.01988− 0.02298 0.01912− 0.02383
sin2 θ23 0.551 0.4846− 0.5846 0.4838− 0.5999

Ordering NO
m1 [eV] 0.01746 0.01196− 0.02045 0.01185− 0.02143
m2 [eV] 0.01945 0.01477− 0.02216 0.01473− 0.02307
m3 [eV] 0.05288 0.05099− 0.05405 0.05075− 0.05452

∑

i
mi [eV] 0.0898 0.07774− 0.09661 0.07735− 0.09887

|〈m〉| [eV] 0.01699 0.01188− 0.01917 0.01177− 0.02002
δ/π ±1.314 ±(1.266− 1.95) ±(1.249− 1.961)
α21/π ±0.302 ±(0.2821− 0.3612) ±(0.2748− 0.3708)
α31/π ±0.8716 ±(0.8162− 1.617) ±(0.7973− 1.635)

Nσ 0.02005

Best fit values along with 2σ and 3σ ranges of the parameters and observables in cases A and

A∗, (which refer to (kΛ, kg) = (0,2) and τ = ±0.1045+ i1.01).
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Best fit value 2σ range 3σ range

Re τ ∓0.109 ∓(0.1051− 0.1172) ∓(0.103− 0.1197)
Im τ 1.005 0.9998− 1.007 0.9988− 1.008
β/α 0.03306 0.02799− 0.03811 0.02529− 0.04074
γ/α 0.0001307 0.0001091− 0.0001538 0.0000982− 0.0001663

Re g′/g 0.4097 0.3513− 0.5714 0.3241− 0.5989
Im g′/g ∓0.5745 ∓(0.5557− 0.5932) ∓(0.5436− 0.5944)

vd α [MeV] 893.2
v2u g

2/Λ [eV] 0.008028

me/mµ 0.004802 0.004425− 0.005175 0.004211− 0.005384
mµ/mτ 0.05649 0.04785− 0.06506 0.04318− 0.06962

r 0.0299 0.02838− 0.03144 0.02757− 0.03223
δm2 [10−5 eV2] 7.34 7.078− 7.59 6.932− 7.71

|∆m2| [10−3 eV2] 2.455 2.414− 2.494 2.393− 2.514
sin2 θ12 0.305 0.2795− 0.3314 0.2662− 0.3455
sin2 θ13 0.02125 0.0199− 0.02302 0.01914− 0.02383
sin2 θ23 0.551 0.4503− 0.5852 0.4322− 0.601

Ordering NO
m1 [eV] 0.02074 0.01969− 0.02374 0.01918− 0.02428
m2 [eV] 0.02244 0.02148− 0.02522 0.02101− 0.02574
m3 [eV] 0.05406 0.05345− 0.05541 0.05314− 0.05577

∑

i
mi [eV] 0.09724 0.09473− 0.1043 0.0935− 0.1056

|〈m〉| [eV] 0.01983 0.01889− 0.02229 0.01847− 0.02275
δ/π ±1.919 ±(1.895− 1.968) ±(1.882− 1.977)
α21/π ±1.704 ±(1.689− 1.716) ±(1.681− 1.722)
α31/π ±1.539 ±(1.502− 1.605) ±(1.484− 1.618)

Nσ 0.02435

Best fit values along with 2σ and 3σ ranges of the parameters and observables in cases B and

B∗, (which refer to (kΛ, kg) = (0,2) and τ = ±0.109+ i1.005).
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P.P. Novichkov et al., arXiv:1811.04933
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Predictions for the neutrinoless double beta decay effective Majorana

mass.

F. Feruglio, talk at Bethe Colloquium, 18/06/2020

Predictions of modular invariant models of lepton flavoour for the neutrinoless double

beta decay effective Majorana mass. The predictions are in the range of sensitivity of

some of the current and upcoming neutrinoless double beta decay experiments (LEGEND,

nEXO, KamLAND-Zen II, NEXT).
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Success led to Ambitious Program

The charged lepton mass hierarchy is decsribed correctly by the model

due to a fine-tuning of the constants β/α and γ/α.

This is a common problem of the numerous proposed lepton and quark

flavour models based on modular invariance and constructed prior 2021.

Idea: the fermion mass hierarchies should arise as a cosequence of the

properties of the modular forms rather than by fine-tuning the constants

present in the fermion mass matrices.

A possible solution to the fine-tuning problem in modular invariant models

of flavour was proposed in

P.P. Novichkov, J.T. Penedo, STP, arXiv:2102.07488.
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Instead of Conclusions

We have presented two approaches to the lepton flavour problem based

respectively on non-Abelian discrete symmetries and modular invariance.

Both approaches lead to specific testable predictions. Only with the addi-

tional data from the current and upcoming experiments (T2K, NOνA,

JUNO, HK, T2HK, DUNE,..., LEGEND, KamLAND-Zen II, nEXO,

SNO+, CUORE, CUPID, NEXT,...) it will be possible to perform thor-

ough tests of these predictions. The planned high precision measurements

of θ12 (JUNO), θ23 (T2HK, DUNE) and especially of the Dirac CPV phase

δ (T2HK, DUNE, ESSνSB), if successful, will allow us to perform such

tests. Experimental confirmation of some of the discussed specific predic-

tions will imply the exitence of a new basic symmetry in particle physics.

This will have profound implications.

I personally am looking very much forward to the upcoming new data on

neutrino mixing, leptonic CP violation, neutrino mass ordering, absolute

neutrino mass scale and the nature of massive neutrinos and the better

understanding of neutrinos and the associated development of the theory

of neutrino masses, mixing and leptonic CP vilation these data will bring.
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