Status and Perspectives of Coherent Neutrino Scattering

Manfred Lindner

International Symposium on Neutrino Physics and Beyond NPB24, Feb. 19-21, 2024 HKUST Jockey Club, IAS, Hong Kong

The simple Picture

Z-exchange of v with nucleus

 $Q_w = N - (1 - 4\sin^2\theta_w)Z \sim \mathbf{N}$

→ sees mostly neutrons momentum ← → wavelength

Very low momentumnucleus recoils as a whole

Coherence length ~ $1/E \rightarrow E_{\nu}$ below O(50) MeV \rightarrow low energy $E_{\nu} \leftarrow \rightarrow$ lower cross sections \rightarrow very high flux!

$$\frac{d\sigma(E_{\nu},T)}{dT} = \frac{G_f^2}{4\pi} Q_w^2 M \left(1 - \frac{MT}{2E_{\nu}^2}\right) F(Q^2) \sim \mathbb{N}^2$$

$$N \sim 40 \Rightarrow \mathbb{N}^2 = 1600 \Rightarrow \text{detector mass } 10t \Rightarrow \text{few kg}$$

Sources: Flux & Energy

Vitagliano, Tamborra, Raffelt Rev.Mod.Phys. 92 (2020) 45006 arXiv:1910.11878

Sources: Flux & Energy

\rightarrow very different close to a nuclear power reactor and in a stopped π -beam or a supernova

 \rightarrow event rates: \otimes detector size $\leftarrow \rightarrow$ backgrounds

Incomplete List of Reactor Experiments

			4
CONNIE	Si CCDs	Brazil	
CONUS	HPGe	Germany	→ CONUS+, Switzerland
NEWS-G	Ar+2%CH4	Canada	
MINER	Ge/Si cryogenic	USA	
NEON	Nal(TI)	Korea	
NUCLEUS	CaWO ₄ , Al ₂ O ₃ cryogenic	Europe	
√GEN	Ge PPC	Russia	
RED-100	LXe dual phase	Russia	*
Ricochet	Ge, Zn, Al, Sn cryogenic	France	
TEXONO	p-PCGe	Taiwan	
Dresden II	PCGe	USA	

The CONUS Collaboration

Max-Planck-Institut für Kernphysik (MPIK), Heidelberg:

N. Ackermann, S. Armbruster, A. Bonhomme, H. Bonet, C. Buck, J. Hakenmüller, J. Hempfling, G. Heusser, M. Lindner, W. Maneschg, K. Ni, T. Rink, E. Sanchez-Garcia, H. Strecker Former collaborators: T. Schierhuber, E. Van der Meeren, J. Henrichs, T. Hugle, J. Stauber **Preussen Elektra GmbH, Kernkraftwerk Brokdorf (KBR), Brokdorf:** K. Fülber, R. Wink **Kernkraftwerk Leibstadt AG (KKL), Leibstadt:** J. Wönckhaus, M. Rank

highest ∨ flux → commercial power plant

Brokdorf, Germany NPP

3.9 GW thermal power
→ very powerful anti-v source distance to core: 17m
→ 2*10¹³ v/cm²/s
150 kW in v's / m²

Eur. Phys. J C79, 699 (2019)

must follow strict rules

(allowed materials, ...)

+ full access during Covid

access at all times

+ shutdown = off statistics!
→ move to another reactor
→ improvements...: CONUS+

The CONUS Detector

Special ``virtual depth" shield

Active muon veto system: suppresses cosmogenic bkg (muons and muon-induced bkg)

25 cm radiopure lead: suppresses external gamma-radiation

Stainless steel cage: fullfills earthquake safety requirements

Radon mitigation by aged air

total background suppression (w/o PSD) > 10⁴ x → low background conditions like in UG labs

Eur. Phys J. C83, 195 (2023)

CONUS-1 to -4 (C1-C4)

- intensive R&D with producer
- point-contact high purity Ge detector
- active mass: 3.72 kg
- low energy threshold: ~250 eV
- electrical PT cryocoolers at 85 K
- very low background components
- pulse shape discrimination (PSD)
- long cryostat arms

Eur. Phys J. C81, 267 (2021)

Feb. 19-21, 2024

BSM Results Run 1-4

Fully coherent regime → any deviation form SM = **new physics:**

Tensor/Vector NSI (non-standard interactions): limits the coupling parameter space

Light vector boson: limits the mass-coupling parameter space **Neutrino millicharged**: $|q_v| < 3.3 \times 10^{-12} e_0$ **Neutrino magnetic moment**: $\mu_v < 7.5 \times 10^{-11} \mu_B$

JHEP 05 (2022) 085

CONUS Run 5

CONUS Run 5 result

arXiv:2401.07684

Total exposure: 458d ON, 293d OFF

- combined limit (90% C.L.): factor ~2 above predicted (Lindhard quenching with k=0.162)
- further slight improvements expected (PSD, additional statistics,...)

CONUS+

Brokdorf → Leibstadt,CH

Site characterisation (d=20.7 m):

- neutrons, muons, Radon, γ 's, ...

Detector improvements:

- improved energy resolution
- lower thresholds
- better trigger efficiency
- improved muon veto

Foreseen 2024: mass $4 \rightarrow 10$ kg

Feb. 19-21, 2024

Installation Summer 2023

→ start of data taking: Nov. 11, 2023

Expected Event Rate per Year

Scaling to larger Detector Masses

→ technology for high statistics exists!

What is CEvNS good for?

High statistics CEvNS experiments touch many interesting topics:

- Large cross sections \rightarrow small neutrino detectors \rightarrow faster progress, applications
- Clean SM predictions for cross sections \rightarrow BSM sensitivity
- Sensitivity to neutrino magnetic moment and $\langle r_v^2 \rangle \rightarrow BSM$ sensitivity
- Possibility to measure $\sin^2 \theta_W$ at low energies \rightarrow BSM sensitivity
- Masurements of neutron formfactors (nuclear structure) \rightarrow unique
- Nuclear reactor monitoring (non-proliferation) \rightarrow applications
- Precision flavor-independent neutrino flux measurements for oscillation experiments → synergy with other experiments
- Sterile neutrino searches \rightarrow BSM
- Energy transport in supernovae \rightarrow important for next SN
- SN neutrino detection \rightarrow SNEWS, pointing, ...
- Input for dark matter direct detection (neutrino floor) \rightarrow solar neutrinos
- dark matter physics \rightarrow BSM

BSM Physics as NSI's

NSI's $\Leftarrow \Rightarrow$ BSM at high scales ... which is integrated out Z', new scalars, ... $\Rightarrow \varepsilon_{ij}$ $\int_{f} \int_{f} \int_{f}$

Barranco et al. 2005

Competitive method to test TeV scales ε = 0.01 ← TeV scales

Neutrino magnetic Moment in the SM + v_R

Dirac:
$$\mathcal{L} \supset \mu_{\nu} \overline{\nu}_{L} \sigma_{\mu\nu} \nu_{R} F^{\mu\nu} + m_{\nu} \overline{\nu}_{L} \nu_{R} + \text{H.c.}$$

 μ_{v} and v mass operators have the same chiral structure $\rightarrow \mu_{v}$ typically proportional to m_{v}

SM+v_R:
$$\mu_{\nu} = \frac{eG_F m_{\nu}}{8\sqrt{2}\pi^2} = 3 \times 10^{-20} \mu_B \left(\frac{m_{\nu}}{0.1 \text{ eV}}\right)$$

Transition mag. moment for Majorana v's:

$$\mu_{ij} = -\frac{3eG_F}{32\sqrt{2}\pi^2} (m_i \pm m_j) \sum_{\ell=e,\mu,\tau} U_{\ell i}^* U_{\ell j} \frac{m_\ell^2}{m_W^2} \twoheadrightarrow \mathcal{O}(10^{-23}) \ \mu_B$$

W+

→ many BSM models significantly enhance μ_{ν} e.g. MSSM with L violation by R-parity violation ~ λ '

$$\mu_{\nu} \sim \lambda^{\prime 2}/(16\pi^2) m_{\ell}^2 A_{\ell}/M_{\tilde{\ell}}^4$$

BUT $\Rightarrow \mu_{v} \leq 10^{-13} \mu_{B}$

 $A_{l} \longleftrightarrow \rightarrow \text{SUSY breaking}$ trilinear coupling $M_{\tilde{\ell}} \longleftrightarrow \Rightarrow \text{slepton mass}$

Rather general: TeV-ish BSM models allow/predict $\mu_v \leq 10^{-13} \mu_B$

Pushing higher often leads to two problems:

- light new particles that should have been discovered
- intrinsic relation between magnetic moment and radiative neutrino masses

→ neutrino mass shifts which are much bigger than allowed w/o fine-tuning

\rightarrow observation would be a major discovery $\leftarrow \rightarrow$ flavour!

But: Flavour symmetries can unlock mass/magnetic moment link See e.g.: ML, B. Radovčić, J. Welter, JHEP 07 (2017) 139 symmetries for v mass patterns \rightarrow impact on $m_v \leftarrow \rightarrow \mu_v$ relation

K.S. Babu, S. Jana, ML, JHEP 10 (2020) 040 Horizontal $SU(2)_H$ broken by muon Yukawa coupling Main point:

$$\mathcal{L}_{\text{mag.}} = (\nu_e^T \quad \nu_\mu^T) C^{-1} \sigma_{\mu\nu} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} F^{\mu\nu} \quad \textcircled{\leftarrow} \quad \textcircled{\leftarrow} \quad \mathcal{L}_{\text{mass}} = (\nu_e^T \quad \nu_\mu^T) C^{-1} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix}$$

 $\mathcal{L}_{\text{mass}}$ is not invariant $\Rightarrow m_{\nu} = 0$ in the SU(2)_H limit while μ_{ν} is allowed + corrections \Rightarrow elegantly generates the correct ν mass scale

100

Millicharges

But: Current CEvNS limits are much weaker than the best limit above...

Feb. 19-21, 2024

Nuclear Structure with coherent Scattering

DAR sources partially coherence **←** → combine with reactor measurements

$$\frac{\mathrm{d}\sigma}{\mathrm{d}T} \approx \frac{\mathrm{G}_{\mathrm{F}}^{2}\mathrm{M}}{4\pi} \left(1 - \frac{\mathrm{M}T}{2\mathrm{E}^{2}}\right) \left[\mathrm{N}F_{\mathrm{N}}(\mathrm{q}^{2}) - \mathrm{Q}_{\mathrm{W}}\mathrm{Z}F_{\mathrm{Z}}(\mathrm{q}^{2})\right]^{2}$$

Nuclear form factors F_{N,Z}(q) ∼ Fourier transforms of N & P densities → resolve nuclei (neutrons) in neutrino light

Fit recoil **spectral shape** to determine the F(Q²) moments (requires very good energy resolution, good systematics control)

Conclusions

CEvNS is becoming hot topic ← → many theoretical connections

- Outlook:
 - further observations of CEvNS in the pipeline
 - higher statistics \rightarrow growing precision
 - growing number of studies discussing BSM scenarios
 - interplay of HEP, astroparticle analyses (DM...) and nuclear physics

→ rising experimental and theoretical activity!

BACKUP

CONUS Quenching Measurement

Measurement at PTB:

Nuclear Reactors and DM Detectors

S. Sierra, V. De Romeri, Ch. Ternes: 2402.06416

XLZD-like detector \rightarrow rate per year:

0.1 keV threshold: 16 (SURF) 44 (LNGS) 82 (Kamioka) 124 (SNOLAB) 733 (Boulby)

0.3 keV threshold: factor 1/7

- → cannnot be ignored...
- could be a feature with a very close NPPs turing on or off

Nuclear Models and NSI's

Klein-Nystrand form factor

$$F_W(|\vec{q}|^2) = 3\frac{j_1(|\vec{q}|R_A)}{|\vec{q}|R_A} \left(\frac{1}{1+|\vec{q}|^2 a_k^2}\right)$$

→ relies on a surface-diffuse distribution folding a short-range Yukawa potential with range a_k over a hard sphere distribution with radius R_A

 $\langle r^2 \rangle_{\mathrm{KN}} = \frac{3}{5} R_A^2 + 6a_k^2$

Aristizabal Sierra, Liao, Marfatia, JHEP 06 (2019) 141

allowed regions in the NSI case and for two choices of the rms neutron radius

New Bosons

Heavy: → partially covered by NSI's (being integrated out...)
→ interactions of new heavy bosons with SM bosons

Light: → simplified models

- new light scalar/vector mediators
- universal couplings

- light scalar boson
$$\phi$$
: $\frac{d \sigma_{\phi}}{dT} = \frac{g_{\phi}^4 (14N+15.1Z)^2 M^2 T}{4 \pi E_v^2 (2MT+m_{\phi}^2)^2}$
- light vector boson Z': $\frac{d \sigma_Z'}{dT} = \left(1 - \frac{3g_Z^{\nu} g_Z^{\prime} (Z+N)}{\sqrt{2}G_F Q_{SM} (2MT+m_Z^2')}\right)^2 \frac{d \sigma_{SM}}{dT}$

→ often connected to dark sector = DM

Feb. 19-21, 2024

Precise Measurement of $sin^2\theta_W$ at low E

CEvNS cross-section: $\sigma \sim N - [(1 - 4*sin^2\theta_W) Z]^2$

SM: running $\sin^2 \theta_W$ \rightarrow sensitivity to light particles in loops

Beware – models often in conflict with other measurements:

- g-2
- dark matter searches
- astroparticle physics

^{• •••}

Even more fundamental...

Elementary reaction: neutrinos interact with quarks via Z exchange

<u>requirements:</u> absence of individual recoil scattering in phase

Form factors and x-sections ← → quark level
 ← → limitations of factorization σ ⊗ F(q²)

fafnir.phyast.pitt.edu

- CEvNS in QFT → conceptually very interesting questions see e.g. Akhmedov, Arcadi, ML, Vogl, JHEP 1810 (2018) 045, arXiv:1806.10962
 role of the recoil of constituents in quantized picture
 - semi-classical factorization of QFT process into (cross-section) * $F(q^2)$?
- coherence length in QFT approach Egorov, Volobuev: 1902.03602